Skip to main content

Fiber Optical Tweezers for Manipulation and Sensing of Bioparticles

  • Reference work entry
  • First Online:
Handbook of Photonics for Biomedical Engineering

Abstract

Optical tweezers have been an important tool in biology and physics for studying single molecules and colloidal systems. Compared with optical tweezers built with microscope objectives, fiber optical tweezers are compact, versatile, readily integratable, and robust to environmental fluctuations. Fiber optical tweezers can provide a solution for cost reduction and miniaturization, and these optical tweezers can be potentially used in microfluidic systems. However, the existing fiber optical tweezers have the following limitations: (i) lack of fundamental understanding of some novel fiber optical trapping systems, (ii) lack of the ability to manipulate multiple particles simultaneously and limited functionalities, and (iii) low trapping efficiency due to weakly focused beams. In this chapter, we summarize our recent work on novel fiber optical trapping systems to address the abovementioned limitations. With an enhanced understanding of the inclined dual-fiber optical tweezers (DFOTs) system, multiple traps have been experimentally created at different vertical levels with adjustable separations and positions. Furthermore, multiple functionalities have been achieved and studied with the help of multiple traps. To improve the trapping efficiency, superfocusing effects have been experimentally demonstrated with a fiber-based surface plasmonic (SP) lens. A focus size that is comparable to the smallest achievable focus size of high NA objective lenses has been achieved on a fiber end face. Three-dimensional subwavelength trapping beyond the near-field has been realized experimentally for the first time with fiber optical tweezers, demonstrating the significant improvement of the trapping efficiency. With significantly enhanced functionalities and trapping efficiency, these fiber optical tweezers are expected to find unprecedented applications in integrated microfluidic systems for biological studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Neuman KC, Block SM (2004) Optical trapping. Rev Sci Instrum 75:2787–2809. doi:10.1063/1.1785844

    Article  Google Scholar 

  2. Bowman RW, Padgett MJ (2013) Optical trapping and binding. Rep Prog Phys 76:026401. doi:10.1088/0034-4885/76/2/026401

    Article  Google Scholar 

  3. Hormeno S, Arias-Gonzalez JR (2006) Exploring mechanochemical processes in the cell with optical tweezers. Biol Cell 98:679–695. doi:10.1042/BC20060036

    Article  Google Scholar 

  4. Abbondanzieri EA, Greenleaf WJ, Shaevitz JW, Landick R, Block SM (2005) Direct observation of base-pair stepping by RNA polymerase. Nature 438:460–465. doi:10.1038/nature04268

    Article  Google Scholar 

  5. Ashkin A (2000) History of optical trapping and manipulation of small-neutral particle, atoms, and molecules. IEEE J Sel Top Quantum 6:841–859. doi:10.1109/2944.902132

    Article  Google Scholar 

  6. Grier DG (1997) Optical tweezers in colloid and interface science. Curr Opin Colloid Interface 2:264–270. doi:10.1016/S1359-0294(97)80034-9

    Article  Google Scholar 

  7. Crocker JC, Grier DG (1996) When like charges attract: the effects of geometrical confinement on long-range colloidal interactions. Phys Rev Lett 77:1897–1900. doi:10.1103\PhysRevLett.77.1897

    Article  Google Scholar 

  8. Taguchi K, Ueno H, Hiramatsu T, Ikeda M (1997) Optical trapping of dielectric particle and biological cell using optical fibre. Electron Lett 33:413–414. doi:10.1049/el:19970247

    Article  Google Scholar 

  9. Hu Z, Wang J, Liang J (2006) Theoretical and experimental investigation of the optical trapping force in single lensed fibre trapping. J Opt A-Pure Appl Opt 8:891–896. doi:10.1088/1464-4258/8/10/010

    Article  Google Scholar 

  10. Taylor RS, Hnatovsky C (2003) Particle trapping in 3-D using a single fiber probe with an annular light distribution. Opt Express 11:2775–2782. doi:10.1364/OE.11.002775

    Article  Google Scholar 

  11. Liu Z, Guo Z, Yang J, Yuan L (2006) Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application. Opt Express 14:12510–12516. doi:10.1364/OE.14.012510

    Article  Google Scholar 

  12. Yuan L, Liu L, Yang J, Guan C (2008) Twin-core fiber optical tweezers. Opt Express 16:4559–4566. doi:10.1364/OE.16.004559

    Article  Google Scholar 

  13. Constable A, Kim J, Mervis J, Zarinetchi F, Prentiss M (1993) Demonstration of a fiber optic light-force trap. Opt Lett 18:1867–1869. doi:10.1103\PhysRevLett.77.1897

    Article  Google Scholar 

  14. Lyons ER, Sonek GJ (1995) Confinement and bistability in a tapered hemispherically lensed optical fiber trap. Appl Phys Lett 66:1584–1586. doi:10.1063/1.113859

    Article  Google Scholar 

  15. Guck J, Ananthakrishnan R, Mahmood H, Moon TJ, Cunningham CC, Kas J (2001) The optical stretcher: a novel laser tool to micromanipulate cells. Biophys J 81:767–784. doi:10.1016/S0006-3495(01)75740-2

    Article  Google Scholar 

  16. Guck J, Schinkinger S, Lincoln B, Wottawah F, Ebert S, Romeyke M, Lenz D, Erickson HM, Ananthakrishnan R, Mitchell D, Käs J, Ulvick S, Bilby C (2005) Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys J 88:3689–3698. doi:10.1529/biophysj.104.045476

    Article  Google Scholar 

  17. Singer W, Frick M, Bernet S, Ritsch-Marte M (2003) Self-organized array of regularly spaced microbeads in a fiber-optical trap. J Opt Soc Am B 20:1568–1574. doi:10.1364/JOSAB.20.001568

    Article  Google Scholar 

  18. Taguchi K, Atsuta K, Nakata T, Ideda M (2000) Levitation of a microscopic object using plural optical fibers. Opt Commun 176:43–47. doi:10.1016/S0030-4018(00)00499-5

    Article  Google Scholar 

  19. Taguchi K, Tanaka M, Ikeda M (2000) Dual-beam trapping method for an object with large relative refractive index. Jpn J Appl Phys 39:L1302–L1304. doi:10.1143/JJAP.39.L1302

    Article  Google Scholar 

  20. Liberale C, Minzioni P, Bragheri F, De Angelis F, Di Fabrizio E, Cristiani I (2007) Miniaturized all-fiber probe for three-dimensional optical trapping and manipulation. Nat Photonics 1:723–727. doi:10.1038/nphoton.2007.230

    Article  Google Scholar 

  21. Collins SD, Baskin RJ, Howitt DG (1999) Microinstrument gradient-force optical trap. Appl Opt 38:6068–6074. doi:10.1364/AO.38.006068

    Article  Google Scholar 

  22. Liu Y, Yu M (2009) Investigation of inclined dual-fiber optical tweezers for 3D manipulation and force sensing. Opt Express 17:13624–13638. doi:10.1364/OE.17.013624

    Article  Google Scholar 

  23. Liu Y, Yu M (2009) Multiple traps created with an inclined dual-fiber system. Opt Express 17:21680–21690. doi:10.1364/OE.17.021680

    Article  Google Scholar 

  24. Liu Y, Yu M (2010) Optical manipulation and binding of microrods with multiple traps enabled in an inclined dual-fiber system. Biomicrofluidics 4:043010. doi:10.1063/1.3504716

    Article  Google Scholar 

  25. Liu Y, Xu H, Stief F, Zhitenev N, Yu M (2011) Far-field superfocusing with an optical fiber based surface plasmonic lens made of nanoscale concentric annular slits. Opt Express 19:20233–20243. doi:10.1364/OE.19.020233

    Article  Google Scholar 

  26. Liu Y, Stief F, Yu M (2013) Subwavelength optical trapping with a fiber-based surface plasmonic lens. Opt Lett 38:721–723. doi:10.1364/OL.38.000721

    Article  Google Scholar 

  27. Vogel S (1996) Life in moving fluids: the physical biology of flow, 2nd edn. Princeton University Press, Princeton

    Google Scholar 

  28. Lamb H (1945) Hydrodynamics, 6th edn. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  29. Berg-Sørensen K, Flyvbjerg H (2004) Power spectrum analysis for optical tweezers. Rev Sci Instrum 75:594–612. doi:10.1063/1.1645654

    Article  Google Scholar 

  30. Gauthier RC (1997) Optical trapping: a tool to assist optical machining. Opt Laser Technol 29:389–399. doi:10.1016/S0030-3992(97)00038-8

    Article  Google Scholar 

  31. Craighead H (2006) Future lab-on-a-chip technologies for interrogating individual molecules. Nature 442:387–393. doi:10.1038/nature05061

    Article  Google Scholar 

  32. Tam JM, Biran I, Walt DR (2004) An imaging fiber-based optical tweezer array for microparticle array assembly. Appl Phys Lett 84:4289–4291. doi:10.1063/1.1753062

    Article  Google Scholar 

  33. Gherardi DM, Carruthers AE, Čižmár T, Wright EM, Dholakia K (2008) A dual beam photonic crystal fiber trap for microscopic particles. Appl Phys Lett 93:041110. doi:10.1063/1.2955518

    Article  Google Scholar 

  34. Mohanty KS, Liberale C, Mohanty SK, Degiorgio V (2008) In depth fiber optic trapping of low-index microscopic objects. Appl Phys Lett 92:151113. doi:10.1063/1.2908216

    Article  Google Scholar 

  35. Mohanty SK, Mohanty KS, Berns MW (2008) Organization of microscale objects using a microfabricated optical fiber. Opt Lett 33:2155–2157. doi:10.1364/OL.33.002155

    Article  Google Scholar 

  36. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2008) Molecular biology of the cell, 5th edn. Garland Science, New York

    Google Scholar 

  37. Juan ML, Righini M, Quidant R (2011) Plasmon nano-optical tweezers. Nat Photon 5:349–356. doi:10.1038/nphoton.2011.56

    Article  Google Scholar 

  38. Neuman KC, Chadd EH, Liou GF, Bergman K, Block SM (1999) Characterization of photodamage to Escherichia coli in optical traps. Biophys J 77:2856–2863. doi:10.1016/S0006-3495(99)77117-1

    Article  Google Scholar 

  39. Righini M, Zelenina AS, Girard C, Quidant R (2007) Parallel and selective trapping in a patterned plasmonic landscape. Nat Phys 3:477–480. doi:10.1038/nphys624

    Article  Google Scholar 

  40. Righini M, Ghenuche P, Cherukulappurath S, Myroshnychenko V, Garcia de Abajo FJ, Quidant R (2009) Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas. Nano Lett 9:3387–3391. doi:10.1021/nl803677x

    Article  Google Scholar 

  41. Garcés-Chávez V, Quidant R, Reece PJ, Badenes G, Torner L, Dholakia K (2006) Extended organization of colloidal microparticles by surface plasmon polariton excitation. Phys Rev B 73:085417. doi:10.1103/PhysRevB.73.085417

    Article  Google Scholar 

  42. Juan ML, Gordon R, Pang Y, Eftekhari F, Quidant R (2009) Self-induced back-action optical trapping of dielectric nanoparticles. Nat Phys 5:915–919. doi:10.1038/nphys1422

    Article  Google Scholar 

  43. Verslegers L, Catrysse PB, Yu Z, White JS, Barnard ES, Brongersma ML, Fan S (2009) Planar lenses based on nanoscale slit arrays in a metallic film. Nano Lett 9:235–238. doi:10.1021/nl802830y

    Article  Google Scholar 

  44. Catrysse PB, Fan S (2009) Understanding the dispersion of coaxial plasmonic structures through a connection with the planar metal-insulator-metal geometry. Appl Phys Lett 94:231111. doi:10.1063/1.3148692

    Article  Google Scholar 

  45. Levi V, Ruan Q, Gratton E (2005) 3-D particle tracking in a two-photon microscope: application to the study of molecular dynamics in cells. Biophys J 88:2919–2928. doi:10.1529/biophysj.104.044230

    Article  Google Scholar 

  46. Rao S, Balint S, Cossins B, Guallar V, Petrov D (2009) Raman study of mechanically induced oxygenation state transition of red blood cells using optical tweezers. Biophys J 96:209–216. doi:10.1529/biophysj.108.139097

    Article  Google Scholar 

  47. Ashkin A, Dziedzic JM (1987) Optical trapping and manipulation of viruses and bacteria. Science 235:1517–1520. doi:10.1126/science.3547653

    Article  Google Scholar 

  48. Rasmussen MB, Oddershede LB, Siegumfeldt H (2008) Optical tweezers cause physiological damage to Escherichia coli and listeria bacteria. Appl Environ Microbiol 74:2441–2446. doi:10.1128/AEM.02265-07

    Article  Google Scholar 

  49. Harada Y, Asakura T (1996) Radiation forces on a dielectric sphere in the Rayleigh scattering regime. Opt Commun 124:529–541. doi:10.1016/0030-4018(95)00753-9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxiang Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Liu, Y., Yu, M. (2017). Fiber Optical Tweezers for Manipulation and Sensing of Bioparticles. In: Ho, AP., Kim, D., Somekh, M. (eds) Handbook of Photonics for Biomedical Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5052-4_22

Download citation

Publish with us

Policies and ethics