Skip to main content

Brain–Machine Interfaces for Communication in Complete Paralysis: Ethical Implications and Challenges

  • Reference work entry
  • First Online:
Handbook of Neuroethics

Abstract

Recent advances in computational capacities and sensor technologies allow online translation of electric, magnetic, or metabolic brain activity into control signals of computers or external devices. These brain-machine or brain-computer interfaces (BMI/BCI) allow individuals with complete paralysis to sustain communication, for example, enabling them to answer simple “yes-no” questions or to select letters in order to spell out whole words and phrases. The possibility to sustain communication through BMI/BCI systems in paralysis raises many critical neuroethical questions addressed in this chapter.

After an introduction and overview of the available BMI/BCI systems used for communication, ethical implications of this novel technology are drafted and discussed in direct reference to results and new insights from several clinical studies. These suggest, for example, that quality of life in locked-in syndrome (LIS), a state in which an individual is unable to move or speak, is not as limited and poor as generally believed, so that “patient wills” or “advanced directives” that were signed long before the locked-in state are questionable and might be used to avoid financial and social burdens by shortening what is anticipated to be long periods of care. After discussing limitations and challenges of the current BMI/BCI technology, the chapter closes with a future outlook and perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeles, M. (1991). Corticonics: Neural circuits of the cerebral cortex. Cambridge: Cambridge University Press.

    Google Scholar 

  • Berger, H. (1929). Ueber das Elektrenkephalogramm des Menschen. Archiv für Psychiatrie und Nervenkrankheiten, 87, 527–570.

    Article  Google Scholar 

  • Birbaumer, N. (2006). Breaking the silence: Brain-computer-interfaces (BCI) for communication and motor control. Psychophysiology, 43, 517–532.

    Article  Google Scholar 

  • Birbaumer, N., & Cohen, L. (2007). Brain-computer-interfaces (BCI): Communication and restoration of movement in paralysis. The Journal of Physiology, 579, 621–636.

    Article  Google Scholar 

  • Birbaumer, N., Elbert, T., Canavan, A., & Rockstroh, B. (1990). Slow potentials of the cerebral cortex and behavior. Physiological Reviews, 70, 1–41.

    Google Scholar 

  • Birbaumer, N., Gallegos-Ayala, G., Wildgruber, M., Silvoni, S., & Soekadar, S. R. (2014). Direct brain control and communication in paralysis. Brain Topography, 27, 4–11.

    Google Scholar 

  • Birbaumer, N., Ghanayim, N., Hinterberger, T., Iversen, I., Kotchoubey, B., Kübler, A., Perelmouter, J., Taub, E., & Flor, H. (1999). A spelling device for the paralysed. Nature, 398, 297–298.

    Article  Google Scholar 

  • Birbaumer, N., Hinterberger, T., Kübler, A., & Neumann, N. (2003). The thought-translation device (TTD): Neurobehavioral mechanisms and clinical outcome. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 11, 120–123.

    Article  Google Scholar 

  • Birbaumer, N., Roberts, L. E., Lutzenberger, W., Rockstroh, B., & Elbert, T. (1992). Area-specific self-regulation of slow cortical potentials on the sagittal midline and its effects on behavior. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 84, 353–361.

    Article  Google Scholar 

  • Borasio, G. D. (1996). Discontinuing ventilation of patients with amyotrophic lateral sclerosis. Medical, legal and ethical aspects. Medizinische Klinik, 91, 51–52.

    Google Scholar 

  • Caligari, M., Godi, M., Guglielmetti, S., Franchignoni, F., & Nardone, A. (2013). Eye tracking communication devices in amyotrophic lateral sclerosis: Impact on disability and quality of life. Amyotroph Lateral Scler Frontotemporal Degener, 14, 546–552 [Epub ahead of print].

    Article  Google Scholar 

  • Caria, A., Sitaram, R., & Birbaumer, N. (2012). Real-time fMRI: A tool for local brain regulation. The Neuroscientist, 18, 487–501.

    Article  Google Scholar 

  • Chapman, R. M., & Bragdon, H. R. (1964). Evoked responses to numerical and non-numerical visual stimuli while problem solving. Nature, 203, 1155–1157.

    Article  Google Scholar 

  • Chatrian, G. E., Petersen, M. C., & Lazarte, J. A. (1959). The blocking of the rolandic wicket rhythm and some central changes related to movement. Electroencephalography and Clinical Neurophysiology, 11, 497–510.

    Article  Google Scholar 

  • Clausen, J. (2011). Conceptual and ethical issues with brain-hardware interfaces. Current Opinion in Psychiatry, 24, 495–501.

    Google Scholar 

  • Collinger, J. L., Wodlinger, B., Downey, J. E., Wang, W., Tyler-Kabara, E. C., Weber, D. J., McMorland, A. J., Velliste, M., Boninger, M. L., & Schwartz, A. B. (2013). High-performance neuroprosthetic control by an individual with tetraplegia. Lancet, 381, 557–564.

    Article  Google Scholar 

  • Cruse, D., Chennu, S., Chatelle, C., Bekinschtein, T. A., Fernández-Espejo, D., Pickard, J. D., Laureys, S., & Owen, A. M. (2011). Bedside detection of awareness in the vegetative state: A cohort study. Lancet, 378, 2088–2094.

    Article  Google Scholar 

  • deCharms, R. C., Christoff, K., Glover, G. H., Pauly, J. M., Whitfield, S., & Gabrieli, J. D. (2004). Learned regulation of spatially localized brain activation using real-time fMRI. NeuroImage, 21, 436–443.

    Article  Google Scholar 

  • deCharms, R. C., Maeda, F., Glover, G. H., Ludlow, D., Pauly, J. M., Soneji, D., Gabrieli, J. D. E., & Mackey, S. C. (2005). Control over brain activation and pain learned by using real-time functional MRI. Neuriscience, PNAS, 102, 18626–18631.

    Article  Google Scholar 

  • DeMassari, D., Matuz, T., Furdea, A., Ruf, C. A., Halder, S., & Birbaumer, N. (2013b). Brain-computer interface and classical conditioning of communication in paralysis. Biological Psychology, 92, 267–274.

    Article  Google Scholar 

  • DeMassari, D., Ruf, C. A., Furdea, A., Matuz, T., van der Heiden, L., Halder, S., Silvoni, S., & Birbaumer, N. (2013a). Brain communication in the locked-in state. Brain, 136, 1989–2000.

    Article  Google Scholar 

  • Dworkin, B. R. (1993). Learning and physiological regulation. Chicago: The University of Chicago Press.

    Google Scholar 

  • Dworkin, B. R., & Dworkin, S. (1995). Learning of physiological responses: II. Classical conditioning of the baroreflex. Behavioral Neuroscience, 109, 1119–1136.

    Article  Google Scholar 

  • Dworkin, B. R., & Miller, N. E. (1986). Failure to replicate visceral learning in the acute curarized rat preparation. Behavioral Neuroscience, 100, 299–314.

    Article  Google Scholar 

  • Farwell, L. A., & Donchin, E. (1988). Talking off the top of your head: Toward a mental prosthesis utilizing event-related brain potentials. Electroencephalography and Clinical Neurophysiology, 70, 510–523.

    Article  Google Scholar 

  • Furdea, A., Halder, S., Krusienski, D. J., Bross, D., Nijboer, F., Birbaumer, N., & Kübler, A. (2009). An auditory oddball (P300) spelling system for brain-computer interfaces. Psychophysiology, 46, 617–625.

    Article  Google Scholar 

  • Furdea, A., Ruf, C., Halder, S., DeMassari, D., Bogdan, M., Rosenstiel, W., Matuz, T., & Birbaumer, N. (2012). A new (semantic) reflexive brain-computer interface: In search for a suitable classifier. Journal of Neuroscience Methods, 203, 233–240.

    Article  Google Scholar 

  • Gastaut, H. (1952). Electrocorticographic study of the reactivity of rolandic rhythm. Review Neurologique (Paris), 87, 176–182.

    Google Scholar 

  • Haggard, P., Clark, S., & Kalogeras, J. (2002). Voluntary action and conscious awareness. Nature Neuroscience, 5, 382–385.

    Article  Google Scholar 

  • Haselager, P., Vlek, R., Hill, J., & Nijboer, F. (2009). A note on ethical aspects of BCI. Neural Networks, 22, 1352–1357.

    Article  Google Scholar 

  • Heim, S., & Keil, A. (2006). Effects of classical conditioning on identification and cortical processing of speech syllables. Experimental Brain Research, 175, 411–424.

    Article  Google Scholar 

  • Hinterberger, T., Birbaumer, N., & Flor, H. (2005). Assessment of cognitive function and communication ability in a completely locked-in patient. Neurology, 64, 1307–1308.

    Article  Google Scholar 

  • Hinterberger, T., Widmann, G., Lal, T. N., Hill, J., Tangermann, M., Rosenstiel, W., Schölkopf, B., Elger, C., & Birbaumer, N. (2008). Voluntary brain regulation and communication with electrocorticogram signals. Epilepsy & Behavior, 13, 300–306.

    Article  Google Scholar 

  • Hochberg, L. R., Bacher, D., Jarosiewicz, B., et al. (2012). Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature, 485, 372–375.

    Article  Google Scholar 

  • Hochberg, L. R., Serruya, M. D., Friehs, G. M., et al. (2006). Neuronal ensemble control of prostheticdevices by a humanwithtetraplegio. Nature, 442, 164–171.

    Article  Google Scholar 

  • Hohl, L. (1984). Notizen Suhrkamp, Frankfurt am Main, ISBN 3-518-37500-8, 64.

    Google Scholar 

  • Howe, R. C., & Sterman, M. B. (1972). Cortical-subcortical EEG correlates of suppressed motor behavior during sleep and waking in the cat. J. Electroencephalography and Clinical Neurophysiology, 32, 681–695.

    Article  Google Scholar 

  • Klimesch, W. (1996). Memory processes, brain oscillations and EEG synchronization. International Journal of Psychophysiology, 24, 61–100.

    Article  Google Scholar 

  • Kotchoubey, B., Veser, S., Real, R., Herbert, C., Lang, S., & Kübler, A. (2013). Towards a more precise neurophysiological assessment of cognitive functions in patients with disorders of consciousness. Restorative Neurology and Neuroscience, 31, 473–485.

    Google Scholar 

  • Kübler, A., & Birbaumer, N. (2008). Brain-computer interfaces and communication in paralysis: Extinction of goal directed thinking in completely paralysed patients? Clinical Neurophysiology, 119, 2658–2666.

    Article  Google Scholar 

  • Kübler, A., Nijboer, F., Mellinger, J., Vaughan, T. M., Pawelzik, H., Schalk, G., McFarland, D. J., Birbaumer, N., & Wolpaw, J. R. (2005b). Patients with ALS can use sensorimotor rhythms to operate a brain-computer interface. Neurology, 64, 1775–1777.

    Article  Google Scholar 

  • Kübler, A., Weber, C., & Birbaumer, N. (2006). Locked-in – Freigegeben für den Tod? Wenn nur Denken und Fühlen bleiben – Neuroethik des Eingeschlossenseins. Zeitschrift für medizinische Ethik, 52, 57–70.

    Google Scholar 

  • Kübler, A., Winter, S., Ludolph, A. C., Hautzinger, M., & Birbaumer, N. (2005a). Severity of depressive symptoms and quality of life in patients with amyotrophic lateral sclerosis. Neurorehabilitation and Neural Repair, 19, 182–193.

    Article  Google Scholar 

  • Laureys, S., Pellas, F., Van Eeckhout, P., Ghorbel, S., Schnakers, C., Perrin, F., Berré, J., Faymonville, M. E., Pantke, K. H., Damas, F., Lamy, M., Moonen, G., & Goldman, S. (2005). The locked-in syndrome: What is it like to be conscious but paralyzed and voiceless? Progress in Brain Research, 150, 495–511.

    Article  Google Scholar 

  • Leocani, L., Toro, C., Zhuang, P., Gerloff, C., & Hallet, M. (2001). Event-related desynchronization in reaction time paradigms: A comparison with event-related potentials and corticospinal excitability. Clinical Neurophysiology, 112, 923–930.

    Article  Google Scholar 

  • Leuthardt, E. C., Schalk, B., Wolpaw, J. R., Ojemann, J. G., & Moran, D. W. (2004). A brain-computer interface using electrocorticographic signals in humans. Journal of Neural Engineering, 1, 63–71.

    Article  Google Scholar 

  • Logothetis, N., Pauls, J., Augath, M., Trinath, T., & Oeltermann, A. (2001). Neurophysiological investigation of the basis of the fMRI signal. Nature, 412, 150–157.

    Article  Google Scholar 

  • Lorenceau, J. (2012). Cursive writing with smooth pursuit eye movements. Current Biology, 22, 1506–1509.

    Article  Google Scholar 

  • Lulé, D., Ehlich, B., Lang, D., Sorg, S., Heimrath, J., Kübler, A., Birbaumer, N., & Ludolph, A. C. (2013). Quality of life in fatal disease: The flawed judgement of the social environment. Journal of Neurology, 260, 2836–2843.

    Google Scholar 

  • Lulé, D., Diekmann, V., Müller, H. P., Kassubek, J., Ludolph, A. C., & Birbaumer, N. (2010). Neuroimaging of multimodal sensory stimulation in amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery, and Psychiatry, 81, 899–906.

    Article  Google Scholar 

  • Lulé, D., Pauli, S., Altintas, E., Singer, U., Merk, T., Uttner, I., Birbaumer, N., & Ludolph, A. (2012). Emotional adjustment in amyotrophic lateral sclerosis (ALS). Journal of Neurology, 259, 334–341.

    Article  Google Scholar 

  • Lulé, D., Zickler, C., Bruno, M. A., Demertzi, A., Pellas, F., Laureys, S., & Kübler, A. (2009). Life can be worth living in locked-in syndrome. Progress in Brain Research, 177, 339–351.

    Article  Google Scholar 

  • Lutzenberger, W., Elbert, T., Rockstroh, B., & Birbaumer, N. (1982). Biofeedback produced slow brain potentials and task performance. Biological Psychology, 14, 99–111.

    Article  Google Scholar 

  • Matuz, T., Birbaumer, N., Hautzinger, M., & Kubler, A. (2010). Coping with amyotrophic lateral sclerosis: An integrative view. Journal of Neurology, Neurosurgery, and Psychiatry, 81, 893–898.

    Article  Google Scholar 

  • Mellinger, J., Schalk, G., Braun, C., Preissl, H., Rosenstiel, W., Birbaumer, N., & Kübler, A. (2007). An MEG-based brain-computer interface (BCI). NeuroImage, 36, 581–593.

    Article  Google Scholar 

  • Monti, M. M., Vanhaudenhuyse, A., Coleman, M. R., Boly, M., Pickard, J. D., Tshibanda, L., Owen, A. M., & Laureys, S. (2010). Willful modulation of brain activity in disorders of consciousness. The New England Journal of Medicine, 362, 579–589.

    Article  Google Scholar 

  • Montoya, P., Larbig, W., Pulvermüller, F., Flor, H., & Birbaumer, N. (1996). Cortical correlates of semantic classical conditioning. Psychophysiology, 33, 644–649.

    Article  Google Scholar 

  • Müller-Putz, G. R., Scherer, R., Brauneis, C., & Pfurtscheller, G. (2005). Steady-state visual evoked potential (SSVEP)-based communication: Impact of harmonic frequency components. Journal of Neural Engineering, 2, 123–130.

    Article  Google Scholar 

  • Müller-Putz, G. R., Scherer, R., Pfurtscheller, G., & Rupp, R. (2006). Brain-computer interfaces for control of neuroprostheses: From synchronous to asynchronous mode of operation. Biomedizinische Technik (Berlin), 51, 57–63.

    Article  Google Scholar 

  • Naci, L., & Owen, A. M. (2013). Making every word count for nonresponsive patients. JAMA Neurology. doi:10.1001/jamaneurol.2013.3686.

    Google Scholar 

  • Neudert, C., Oliver, D., Wasner, M., & Borasio, G. D. (2001). The course of the terminal phase in patients with amyotrophic lateral sclerosis. Journal of Neurology, 248, 612–616.

    Article  Google Scholar 

  • Nicolelis, M. A. (2012). Mind in motion. Scientific American, 307, 58–63.

    Article  Google Scholar 

  • Nijboer, F., Clausen, J., Allison, B. Z., & Haselager, P. (2011). Researchers’ opinions about ethically sound dissemination of BCI research to the public media. International Journal of Bioelectromagnetism, 13, 108–109.

    Google Scholar 

  • Nijboer, F., Sellers, E. W., Mellinger, J., Jordan, M. A., Matuz, T., Furdea, A., Halder, S., Mochty, U., Krusienski, D. J., Vaughan, T. M., Wolpaw, J. R., Birbaumer, N., & Kübler, A. (2008). A P300-based brain-computer interface for people with amyotrophic lateral sclerosis. Clinical Neurophysiology, 119, 1909–1916.

    Article  Google Scholar 

  • Pan, J., Li, Y., Zhang, R., Gu, Z., & Li, F. (2013). Discrimination between control and idle states in asynchronous SSVEP-based brain switches: A pseudo-key-based approach. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 21, 435–443.

    Article  Google Scholar 

  • Pantke, K.-H., & Birbaumer, N. (2012). Die Lebensqualität Schwerstbetroffener nach einem Schlaganfall mit Locked-in Syndrom. Logos Interdisziplinär, 20, 296–300.

    Google Scholar 

  • Perelmouter, J., & Birbaumer, N. (2000). A binary spelling interface with random errors. IEEE Transactions on Rehabilitation Engineering, 8, 227–232.

    Article  Google Scholar 

  • Peterson, A., Naci, L., Weijer, C., Cruse, D., Fernández-Espejo, D., Graham, M., & Owen, A. M. (2013). Assessing decision-making capacity in the behaviorally nonresponsive patient with residual covert awareness. AJOB Neuroscience, 4, 3–14.

    Article  Google Scholar 

  • Pfurtscheller, G., & Aranibar, A. (1979). Evaluation of event-related desynchronization (ERD) preceding and following self-paced movement. Electroencephalography Clinical Neurophysiology, 46, 138–146.

    Article  Google Scholar 

  • Pfurtscheller, G., & Neuper, C. (2006). Future prospects of ERD/ERS in the context of brain-computer interface (BCI) developments. Progress in Brain Research, 159, 433–437.

    Article  Google Scholar 

  • Pfurtscheller, G., Stancák, A., Jr., & Neuper, C. (1996). Event-related synchronization (ERS) in the alpha band–an electrophysiological correlate of cortical idling: A review. International Journal of Psychophysiology, 24, 39–46.

    Article  Google Scholar 

  • Plum, F., & Posner, J. B. (1966). The diagnosis of stupor and coma. Philadelphia: F. A. Davis.

    Google Scholar 

  • Ray, W. J., & Cole, H. W. (1985). EEG activity during cognitive processing: Influence of attentional factors. International Journal of Psychophysiology, 3, 43–48.

    Article  Google Scholar 

  • Razran, G. (1949). Semantic and phonetographic generalizations of salivary conditioning to verbal stimuli. Journal of Experimental Psychology, 39, 642–652.

    Article  Google Scholar 

  • Razran, G. (1961). The observable unconscious and the inferable conscious in current soviet psychophysiology: Interoceptive conditioning, semantic conditioning, and the orienting reflex. Psychological Review, 68, 1–147.

    Article  Google Scholar 

  • Ruf, C., DeMassari, D., Wagner-Podmaniczky, F., Matuz, T., & Birbaumer, N. (2013). Semantic conditioning of salivary pH for communication. Special Issues, Artificial Intelligence in Medicine, 59, 91–98.

    Google Scholar 

  • Sakurada, T., Kawase, T., Takano, K., Komatsu, T., & Kansaku, K. (2013). A BMI-based occupational therapy assist suit: Asynchronous control by SSVEP. Frontiers in Neuroscience, 7, 172.

    Google Scholar 

  • Schreuder, M., Blankertz, B., & Tangermann, M. (2010). A new auditory multi-class brain-computer interface paradigm: Spatial hearing as an informative cue. PLoS ONE, 5(4), e9813. doi:10.1371/journal.pone.0009813.

    Article  Google Scholar 

  • Sellers, E. W., & Donchin, E. (2006). A P300-based brain-computer interface: Initial tests by ALS patients. Clinical Neurophysiology, 117, 538–548.

    Article  Google Scholar 

  • Silvoni, S., Cavinato, M., Volpato, C., Ruf, C. A., Birbaumer, N., & Piccione, F. (2013). Amyotrophic lateral sclerosis progression and stability of brain-computer interface communication. Amyotrophic Lateral Sclerosis Frontotemporal Degeneration, 14, 390–396.

    Article  Google Scholar 

  • Sitaram, R., Guan, C., Zhang, H., Thulasidas, M., Hoshi, Y., Ishikawa, A., Shimizu, K., & Birbaumer, N. (2007). Temporal classification of multi-channel near infrared spectroscopy signals of motor imagery for developing a brain-computer interface. NeuroImage, 34, 1416–1427.

    Article  Google Scholar 

  • Soekadar, S. R., Born, J., Birbaumer, N., Bensch, M., Halder, S., Murguialday, A. R., Gharabaghi, A., Nijboer, F., Schölkopf, B., & Martens, S. (2013). Fragmentation of slow wave sleep after onset of complete locked-in state. Journal of Clinical Sleep Medicine, 9, 951–953.

    Google Scholar 

  • Soekadar, S. R., Witkowski, M., Mellinger, J., Ramos, A., Birbaumer, N., & Cohen, L. G. (2011). ERD-based online brain-machine interfaces (BMI) in the context of neurorehabilitation: optimizing BMI learning and performance. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 19, 542–549.

    Article  Google Scholar 

  • Sorger, B., Reithler, J., Dahmen, B., & Goebel, R. (2012). A real-time fMRI-based spelling device immediately enabling robust motor-independent communication. Current Biology, 22, 1333–1338.

    Article  Google Scholar 

  • Stoll, J., Chatelle, C., Carter, O., Koch, C., Laureys, S., & Einhäuser, W. (2013). Pupil responses allow communication in locked-in syndrome patients. Current Biology, 23, 647–648.

    Article  Google Scholar 

  • van der Waal, M., Severens, M., Geuze, J., & Desain, P. (2012). Introducing the tactile speller: An ERP-based brain-computer interface for communication. Journal of Neural Engineering, 9, 045002.

    Article  Google Scholar 

  • Velliste, M., Perel, S., Spalding, M. C., Whitford, A. S., & Schwartz, A. B. (2008). Cortical control of a prosthetic arm for self-feeding. Nature, 453, 1098–1101.

    Article  Google Scholar 

  • Vidal, J. J. (1977). Real-time detection of brain events in EEG. Proceedings of the IEEE, 65, 633–641.

    Article  Google Scholar 

  • Vidal, J. J. (1973). Toward direct brain-computer communication. Annual Review of Biophysics and Bioengineering, 2, 157–180.

    Article  Google Scholar 

  • Waldert, S., Preissl, H., Demandt, E., Braun, C., Birbaumer, N., Aertsen, A., & Mehring, C. (2008). Hand movement direction decoded from MEG and EEG. Journal of Neuroscience, 28, 1000–1008.

    Article  Google Scholar 

  • Walsh, E. G. (1953). Visual attention and the alpha-rhythm. Journal of Physiology, 120, 155–159.

    Google Scholar 

  • Weis, J., Katona, I., Müller-Newen, G., Sommer, C., Necula, G., Hendrich, C., Ludolph, A. C., & Sperfeld, A. D. (2011). Small-fiber neuropathy in patients with ALS. Neurology, 76, 2024–2029.

    Article  Google Scholar 

  • Weiskopf, N., Veit, R., Erb, M., Mathiak, K., Grodd, W., Goebel, R., & Birbaumer, N. (2003). Physiological self-regulation of regional brain activity using real-time functional magnetic resonance imaging (fMRI): Methodology and exemplary data. NeuroImage, 19, 577–586.

    Article  Google Scholar 

  • Wilhelm, B., Jordan, M., & Birbaumer, N. (2006). Communication in locked-in syndrome: Effects of imagery on salivary pH. Neurology, 67, 534–535.

    Article  Google Scholar 

  • Wolpaw, J. R. (2007). Brain-computer interfaces as new brain output pathways. Journal of Physiology, 579, 613–619.

    Article  Google Scholar 

  • Wolpaw, J. R., & McFarland, D. J. (2004). Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proceedings of the National Academy of Sciences of the United States of America, 101, 17849–17854.

    Article  Google Scholar 

  • Wolpaw, J. R., Birbaumer, N., Heetderks, W. J., McFarland, D. J., Peckham, P. H., Schalk, G., Donchin, E., Quatrano, L. A., Robinson, C. J., & Vaughan, T. M. (2000). Brain-computer interface technology: A review of the first international meeting. IEEE Transactions on Rehabilitation Engineering, 8, 164–173.

    Article  Google Scholar 

  • Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., & Vaughan, T. M. (2002). Brain-computer interfaces for communication and control. Clinical Neurophysiology, 113, 767–791.

    Article  Google Scholar 

  • Wolpaw, J., & Wolpaw, E. (2012). Brain-computer interfaces: Something new under the sun. In Wolpaw J. R. & Wolpaw E. W. (Eds), Brain-computer interfaces: Principles and practice 1–5. Oxford University Press.

    Google Scholar 

  • Yoo, S. S., Fairneny, T., Chen, N. K., Choo, S. E., Panych, L. P., Park, H., Lee, S. Y., & Jolesz, F. A. (2004). Braincomputer interface using fMRI: Spatial navigation by thoughts. NeuroReport, 15, 1591–1595.

    Article  Google Scholar 

  • Zander, T. O., & Jatzev, S. (2012). Context-aware brain-computer interfaces: Exploring the information space of user, technical system and environment. Journal of Neural Engineering, 9, 016003.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Sook-Lei Liew and Birgit Teufel for their help in preparing this manuscript. This work was supported by the German Federal Ministry of Education and Research (BMBF, 16SV5840 and 01GQ0831), the European Commission under the project WAY (#288551), the Deutsche Forschungsgemeinschaft (DFG SO932-2, Reinhart Koselleck Project), the Volkswagen Stiftung, the BrainProducts GmbH, and the Baden-Württemberg Stiftung gGmbH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surjo R. Soekadar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Soekadar, S.R., Birbaumer, N. (2015). Brain–Machine Interfaces for Communication in Complete Paralysis: Ethical Implications and Challenges. In: Clausen, J., Levy, N. (eds) Handbook of Neuroethics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4707-4_41

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-4707-4_41

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-4706-7

  • Online ISBN: 978-94-007-4707-4

  • eBook Packages: Humanities, Social Sciences and Law

Publish with us

Policies and ethics