Tropical Freshwater Swamps (Mineral Soils)

Reference work entry


Freshwater swamps on mineral soils are frequently or (almost) continuously inundated wetlands characterized by emergent vegetation. In the tropics, these areas usually occur in vast flat floodplains maintained by incoming floodwaters, with some fed by groundwater, and characterized by a cycle of seasonal flooding and desiccation. Data on exact areas of freshwater swamps is lacking and unreliable for many tropical countries, partly because of their vastness, seasonal variation in extent, changes in area over time, and extensive conversion and reclamation. Four main physiognomic types of freshwater swamps can be distinguished: (i) herbaceous swamps, (ii) shrub swamps, (iii) savanna/woodland wetlands, and (iv) swamp forests. Tropical freshwater swamps support a wide biological diversity and provide ecosystem services that benefit local dependent communities. Anthropogenic threats to tropical freshwater swamps are highly variable and depend very much on local circumstances and the type of wetland. Climate change is expected to impact tropical freshwater swamps via the increased incidence of drought and tropical storms and to lesser extent sea level rise.


Tropical freshwater swamps on mineral soils Ecosystem services Biodiversity Threats and trends 


  1. Agostinho AA, Zalewski M. The dependence of fish community structure and dynamics on floodplain and riparian ecotone zone in Parana River, Brazil. Hydrobiologia. 1995;303:141–8.CrossRefGoogle Scholar
  2. Alho CJ. Biodiversity of the Pantanal: response to seasonal flooding regime and to environmental degradation. Braz J Biol. 2008;68(4 Suppl):957–66.CrossRefPubMedGoogle Scholar
  3. Allison A. 2006. Reptiles and amphibians of the Trans-Fly Region, New Guinea. WWF South Pacific Programme & WWF PNG Madang Office, Madang, Papua New Guinea. Contribution No. 2006–039 to the Pacific Biological Survey, 52 pp.Google Scholar
  4. Anshari GAP, Kershaw A, Van Der Kaars S, Jacobsen G. Environmental change and peatland forest dynamics in the Lake Sentarum area, West Kalimantan. Indones J Quat Sci. 2004;19(7):637–55.CrossRefGoogle Scholar
  5. Arcadis Euroconsult. Buffering capacity of wetlands study (BCWS) Final Report, vol. 2 main report. Arnhem: Lake Victoria Environmenal Management Project (LVEMP). United Republic of Tanzania and World Bank; 2001, 183 pp.Google Scholar
  6. Aselmann I, Crutzen P. Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions. J Atmos Chem. 1989;8:307–58.CrossRefGoogle Scholar
  7. Beadle NCW. The vegetation of Australia. Cambridge/London/New York/New Rochelle/Melbourne/Sydney: Cambridge University Press; 1981, 690 pp.Google Scholar
  8. Bowman DMJS, Prior LD, Williamson G. The roles of statistical inference and historical sources in understanding landscape change: the case of feral buffalo in the freshwater floodplains of Kakadu National Park. J Biogeogr. 2009;37:193–9.CrossRefGoogle Scholar
  9. Bradshaw CJA, Field IC, Bowman DMJS, Haynes C, Brook BW. Current and future threats from non-indigenous animal species in Northern Australia: a spotlight on World Heritage Area Kakadu National Park. Wildl Res. 2007;34(6):419–36.CrossRefGoogle Scholar
  10. Braithwaite RW, Lonsdale WM, Estbergs JA. Alien vegetation and native biota in tropical Australia: the impact of Mimosa pigra. Biol Conserv. 1989;48:189–210.CrossRefGoogle Scholar
  11. Brooks SE, Allison EH, Reynolds JD. Vulnerability of Cambodian water snakes: initial assessment of the impact of hunting at Tonle Sap Lake. Biol Conserv. 2007;139:401–14.CrossRefGoogle Scholar
  12. Campbell IC, Poole C, Giesen W, Valbo-Jorgensen J. Species diversity and ecology of Tonle Sap Great Lake, Cambodia. Aquat Sci. 2006;68:355–73.CrossRefGoogle Scholar
  13. Cao M, Marshall S, Gregson K. Global carbon exchange and methane emissions from natural wetlands: application of a process-based model. J Geophys Res. 1996;101(D9):14399–414.CrossRefGoogle Scholar
  14. Carpenter SR, Fisher SG, Grimm NB, Kitchell JF. Global change and freshwater ecosystems. Annu Rev Ecol Syst. 1992;23:119–39.CrossRefGoogle Scholar
  15. Cole S. The emergence of treatment wetlands. Environ Sci Technol. 1998;32:218–23.CrossRefGoogle Scholar
  16. Cowie ID, Werner PA. Alien plant species invasive in Kakadu National Park, tropical Northern Australia. Biol Conserv. 1993;63:127–35.CrossRefGoogle Scholar
  17. Davidson PJA. The biodiversity of the Tonle Sap Biosphere Reserve. 2005 status review. Technical report of the UNDP/GEF-funded Tonle Sap Conservation Project. Phnom Penh: UNDP; 2006. 76 pp.Google Scholar
  18. Dennis R, Erman A, Meijaard E. Fire in the Danau Sentarum landscape: historical, present perspectives. Borneo Res Bull. 2000;31:123–37.Google Scholar
  19. Denny P. Wetlands of Africa: introduction. In: Whigham DF, editor. Wetlands of the world: inventory, ecology & management. Volume I, Handbook of vegetation science, vol. 15/2. Dordrecht/Boston/London: Kluwer Academic Publishers; 1993a. p. 1–31.Google Scholar
  20. Denny P. Eastern Africa. In: Whigham DF, editor. Wetlands of the world: inventory, ecology & management. Volume I, Handbook of vegetation science, vol. 15/2. Dordrecht/Boston/London: Kluwer Academic Publishers; 1993b. p. 32–46.CrossRefGoogle Scholar
  21. Desbiez ALJ, Santos SA, Alvareza JM, Tomas WM. Forage use in domestic cattle (Bos indicus), capybara (Hydrochoerus hydrochaeris) and pampas deer (Ozotoceros bezoarticus) in a seasonal Neotropical wetland. Mamm Biol. 2011;76:351–7.CrossRefGoogle Scholar
  22. Dezzeo N, Herrera R, Escalante G, Chacón N. Deposition of sediments during a flood event on seasonally flooded forests of the lower Orinoco River and two of its black-water tributaries, Venezuela. Biogeochemistry. 2000;49:241–57.CrossRefGoogle Scholar
  23. Dudley RG. The fishery of Danau Sentarum. Borneo Res Bull. 2000;31:261–306.Google Scholar
  24. Eden MJ. The origin and status of savanna and grassland in Southern Papua. Trans Inst Br Geogr. 1974;63:47–110.Google Scholar
  25. Ferraz-Vicentini KR, Salgado-Labouriau ML. Palynological analysis of a palm swamp in Central Brazil. J South Am Earth Sci. 1996;9(3/4):207–19.CrossRefGoogle Scholar
  26. Finlayson CM. Plant ecology of Australia’s tropical floodplain wetlands: a review. Ann Bot. 2005;96:541–55.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Finlayson CM, Von Oertzen I. Northern (tropical) Australia. In: Whigham DF, editor. Wetlands of the world: inventory, ecology & management. Volume I, Handbook of vegetation science, vol. 15/2. Dordrecht/Boston/London: Kluwer Academic Publishers; 1993. p. 195–243.CrossRefGoogle Scholar
  28. Finlayson CM, Woodroffe CD. Wetland vegetation. In: Finlayson CM, Von Oertzen I, editors. Landscape and vegetation ecology of the Kakadu Region, Northern Australia. Dordrecht: Kluwer Academic Publishers; 1996. p. 81–112.CrossRefGoogle Scholar
  29. Finlayson CM, Lowry J, Bellio MG, Nou S, Pidgeon R, Walden D, Humphrey C, Fox G. Biodiversity of the wetlands of the Kakadu Region, Northern Australia. Aquat Sci. 2006;68:374–99.CrossRefGoogle Scholar
  30. Franklin DC, Brocklehurst PS, Lynch D, Bowman DMJS. Niche differentiation and regeneration in the seasonally flooded Melaleuca forests of Northern Australia. J Trop Ecol. 2007;23:457–67.CrossRefGoogle Scholar
  31. Friend GR, Cellier KM. Wetland herpetofauna of Kakadu National Park, Australia: seasonal richness trends, habitat preferences and the effects of feral ungulates. J Trop Ecol. 1990;6(2):131–52.CrossRefGoogle Scholar
  32. Gichuki J, Triest L, Dehairs F. The use of stable carbon isotopes as tracers of ecosystem functioning in contrasting wetland ecosystems of Lake Victoria, Kenya. Hydrobiologia. 2001;458:91–7.CrossRefGoogle Scholar
  33. Giesen W. Danau Sentarum wildlife reserve: inventory, ecology and management guidelines. Bogor: WWF/PHPA; 1987, 284 pp.Google Scholar
  34. Giesen W. Vegetation of the Sungai Negara wetlands. In: Zieren M, Permana T, editors. Proceedings of the workshop on “Integrating wetland conservation with land-use development, Sungai Negara, Barito Basin, Indonesia”; 1989 Mar. Banjarbaru, South Kalimantan; 1989.Google Scholar
  35. Giesen W. Checklist of Indonesian freshwater aquatic herbs (including an introduction to freshwater aquatic vegetation). PHPA/AWB Sumatra Wetland Project Report No. 27, Bogor; 1992, 38 pp.Google Scholar
  36. Giesen W. The state of natural wetlands in Sumatra. Implications for conservation, and the general trend in Indonesia. Case study presented at the Workshop on Tropical Environmental Management: Biodiversity for Sustainable Development in SE Asia. Wallace Research University, Dumoga Bone, North Sulawesi, 8–18 Feb 1993; 39 pp.Google Scholar
  37. Giesen W. Habitat types of the Danau Sentarum Wildlife Reserve, West Kalimantan, Indonesia. UK-Indonesia Tropical Forest Management Programme. Project 5 Conservation. Work Plan Activity B.1.1. For Wetlands International Indonesia Programme/Ministry of Forestry – PHPA, Bogor; 1996, 97 pp.Google Scholar
  38. Giesen W. Flora and vegetation of Danau Sentarum: unique lake and swamp forest ecosystem of West Kalimantan. Borneo Res Bull. 2000;31:89–122.Google Scholar
  39. Giesen W, Aglionby J. Introduction to Danau Sentarum National Park, West Kalimantan, Indonesia. Borneo Res Bull. 2000;31:5–28.Google Scholar
  40. Githaiga JM, Red R, Muchiru AN, Van Dijk S. Survey of water quality changes with land use type in the Loitokitok area, Kajiado District, Kenya, LUCID working paper series, vol. 35. Nairobi: International Livestock Research Institute; 2003, 28 pp.Google Scholar
  41. Gopal B, Krishnamurthy K. Wetlands of South Asia. In: Whigham DF, editor. Wetlands of the world: inventory, ecology & management. Volume I, Handbook of vegetation science, vol. 15/2. Dordrecht/Boston/London: Kluwer Academic Publishers; 1993;15:345–414.CrossRefGoogle Scholar
  42. Gottgens JF, Fortney RH, Meyer J, Perry JE, Rood BE. The case of the Paraguay-Paraná waterway (“Hidrovia”) and its impact on the Pantanal of Brazil: a summary report to the society of wetlands scientists. Wetl Bull. 1998;15:12–8.Google Scholar
  43. Gottgens JF, Perry JE, Fortney RH, Meyer JE, Benedict M, Rood BE. The Paraguay–Paraná Hidrovía: protecting the Pantanal with lessons from the past. BioScience. 2001;51(4):301–8.CrossRefGoogle Scholar
  44. Hannah L, Midgley GF, Millar D. Climate change-integrated conservation strategies. Glob Ecol Biogeogr. 2002;11:485–95.CrossRefGoogle Scholar
  45. Heads M. Regional patterns of biodiversity in New Guinea animals. J Biogeogr. 2002;29:285–94.CrossRefGoogle Scholar
  46. Heinl M, Frost P, Vanderpost C, Sliva J. Fire activity on drylands and floodplains in the southern Okavango Delta, Botswana. J Arid Environ. 2007;68:77–87.CrossRefGoogle Scholar
  47. Hughes RH, Hughes JS. A directory of African wetlands. With a chapter on Madagascar by G. Bernacsek. Gland/Nairobi/Cambridge, UK: IUCN – The World Conservation Union/UNEP – The United Nations Environment Programme/WCMC – The World Conservation Monitoring Centre; 1992, xxxiv + 820 pp.Google Scholar
  48. Hughes R, Adnan S, Dalal-Clayton DB. Floodplains or floodplans: a review of approaches to water management in Bangladesh. London/Dhaka: International Institute for Environment and Development (IIED)/Research and Advisory Services (RAS); 1994.Google Scholar
  49. Humphries MS, Kindness A, Ellery WN, Hughes JC, Bond JK, Barnes KB. Vegetation influences on groundwater salinity and chemical heterogeneity in a freshwater, recharge floodplain wetland, South Africa. J Hydrol. 2011;411:130–9.CrossRefGoogle Scholar
  50. Irwin RJ, Van Mouwerik M, Stevens L, Basham W. Environmental contaminants Encyclopedia: mercury. National Park Service. Fort Collins, Colorado, USA: Water Resources Division, Water Operations Branch; 1997. 108 ppGoogle Scholar
  51. IUCN. The Fly River catchment, Papua New Guinea – a regional development assessment. Published in collaboration with the Department of Environment and Conservation, Boroko, Papua New Guinea. Gland/Cambridge, UK: IUCN; 1995, x + 86 pp.Google Scholar
  52. Jeanes K, Meijaard E. Danau Sentarum’s wildlife, part 1: biodiversity value and global importance. Borneo Res Bull. 2000;31:150–229.Google Scholar
  53. John DM, Lévêque C, Newton LE. Western Africa. In: Whigham DF, editor. Wetlands of the world: inventory, ecology & management. Volume I, Handbook of vegetation science, vol. 15/2. Dordrecht/Boston/London: Kluwer Academic Publishers; 1993. p. 47–78.CrossRefGoogle Scholar
  54. Jones MB, Humphries SW. Impacts of the C4 sedge Cyperus papyrus L. on carbon and water fluxes in an African wetland. Hydrobiologia. 2002;488:107–13.CrossRefGoogle Scholar
  55. Jones MB, Muthuri FM. Standing biomass and carbon distribution in a papyrus (Cyperus papyrus L.) swamp on Lake Naivasha, Kenya. J Trop Ecol. 1997;13(3):347–56.CrossRefGoogle Scholar
  56. Junk WJ. Wetlands of tropical South America. In: Whigham DF, editor. Wetlands of the world: inventory, ecology & management. Volume I, Handbook of vegetation science, vol. 15/2. Dordrecht/Boston/London: Kluwer Academic Publishers; 1993. p. 679–739.CrossRefGoogle Scholar
  57. Kadlec RH. Wetlands for water polishing: free water surface wetlands. In: Mitsch WJ, editor. Global wetlands old world and new. Ohio State University conference, 1992 Sep 13–18. Amsterdam/Lausanne/New York/Oxford/Shannon/Tokyo: Elsevier publishing; 1994, p. 335–349.Google Scholar
  58. Kadlec R, Knight R, Vymazal J, Brix H, Cooper P, Haberl R. Constructed wetlands for pollution control processes, performance, design and operation. ISBN: 9781900222051; 2000, 156 pp.Google Scholar
  59. Kairu JK. Wetland use and impact on Lake Victoria, Kenya region. Lakes & Reservoirs: Research and Management. 2001;6:117–25.CrossRefGoogle Scholar
  60. Lamberts D. Tonlé Sap fisheries: a case study on floodplain gillnet fisheries, RAP Publication 2001/11. Bangkok: FAO; 2001, 101 pp.Google Scholar
  61. Li KY, Coe MT, Ramankutty N, De Jong R. Modeling the hydrological impact of land-use change in West Africa. J Hydrol. 2007;337:258–68.CrossRefGoogle Scholar
  62. Lind EM, Morrison MES. East African vegetation. London: Longman; 1974, 257 pp.Google Scholar
  63. Lowe-McConnell RH. Ecological studies in tropical fish communities, Cambridge tropical biology series. Cambridge: Cambridge University Press; 1987, 387 pp.CrossRefGoogle Scholar
  64. Marshall AJ, Beehler BM. The ecology of Papua. Parts 1 & 2. Singapore: Periplus Editions; 2007, 784 + 768 pp.Google Scholar
  65. Mata DI, Moreno-Casasola P, Madero-Vega C. Litterfall of tropical forested wetlands of Veracruz in the coastal floodplains of the Gulf of Mexico. Aquat Bot. 2012;98:1–11.CrossRefGoogle Scholar
  66. Matthews E, Fung I. Methane emission from natural wetlands: global distribution, area, and environmental characteristics of sources. Global Biogeochemical Cycles. 1987;1:61–86.CrossRefGoogle Scholar
  67. McGregor S, Lawson V, Christophersen P, Kennett R, Boyden J, Bayliss P, Liedloff A, McKaige B, Andersen AN. Indigenous wetland burning: conserving natural and cultural resources in Australia’s World Heritage-listed Kakadu National Park. Hum Ecol. 2010;38:721–9.CrossRefGoogle Scholar
  68. Melack JM, Hess LL. Remote sensing of the distribution and extent of wetlands in the Amazon Basin. In: Junk WJ et al., editors. Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management, Ecological studies, vol. 210. Dordrecht, Heidelberg, London & New York: Springer Science + Business Media B.V; 2010. p. 43–59.Google Scholar
  69. Michels GH, Vieira EM, Nogueira de Sá F. Short- and long-term impacts of an introduced large herbivore (Buffalo, Bubalus bubalis L.) on a neotropical seasonal forest. Eur J Forest Res. 2012;131:965–76.CrossRefGoogle Scholar
  70. Mitsch WJ. The nonpoint source pollution control function of natural and constructed riparian wetlands. In: Mitsch WJ, editors Global wetlands old world and new. Ohio State University conference, 1992 Sep 13–18. Amsterdam/Lausanne/New York/Oxford/Shannon/Tokyo: Elsevier publishing; 1994, p. 351–361.Google Scholar
  71. Mitsch WJ, Gosselink JG. Wetlands. 3rd ed. New York/Chichester/Weinheim/Brisbane/Singapore/Toronto: Wiley; 2000, 920 pp.Google Scholar
  72. Mitsch WJ, Nahlik A, Wolski P, Bernal B, Zhang L, Ramberg L. Tropical wetlands: seasonal hydrologic pulsing, carbon sequestration, and methane emissions. Wetl Ecol Manag. 2010;18:573–86.CrossRefGoogle Scholar
  73. Mitsch WJ, Bernal B, Nahlik M, Mander U, Zhang L, Anderson CJ, Jørgensen SE, Brix H. Wetlands, carbon, and climate change. Landsc Ecol. 2012. Online submission, doi: 10.1007/s10980-012-9758-8, 15 pp.CrossRefGoogle Scholar
  74. Morison JIL, Piedade MTF, Müller E, Long SP, Junk WJ, Jones MB. Very high productivity of the C4 aquatic grass Echinochloa polystachya in the Amazon floodplain confirmed by net ecosystem CO2 flux measurements. Oecologia. 2000;125:400–11.CrossRefPubMedGoogle Scholar
  75. Mulder V, Heri V, Wickham T. Traditional honey and wax collection with Apis dorsata in the Upper Kapuas Lake Region, West Kalimantan. Borneo Res Bull. 2000;31:246–60.Google Scholar
  76. Nasir SM, Akbar G. Effect of River Indus flow on low riparian ecosystems of Sindh: a review paper. Rec Zool Surv Pakistan. 2012;21:86–9.Google Scholar
  77. Nesbitt M. Grains. In: Prance G, Nesbitt M, editors. The cultural history of plants. New York/London: Routledge; 2005. p. 45–60, 452 pp.Google Scholar
  78. Northwest Hydraulic Consultants, EVS Environmental Consultants and Asian Wetland Bureau. Preliminary hydro-ecological investigation of Duri Canal and swamp forest near Rantaubais. Prepared for Duri Steamflood Project and PT. Caltex Pacific Indonesia. Edmonton/Montreal/Bogor: NHC/EVS/AWB; 1994, 95 pp.Google Scholar
  79. Osborne PL. Wetlands of Papua New Guinea. In: Whigham DF, editor. Wetlands of the world: inventory, ecology & management. Volume I, Handbook of vegetation science, vol. 15/2. Dordrecht/Boston/London: Kluwer Academic Publishers; 1993. p. 305–44.CrossRefGoogle Scholar
  80. Paijmans K, editor. New Guinea vegetation. Canberra: CSIRO and Australian University Press; 1976, 213 pp.Google Scholar
  81. Parolin P, Ferreira LV, Albernaz ALKM, Almeida SS. Tree species distribution in Varzea forests of Brazilian Amazonia. Folia Geobot. 2004;39:371–83.CrossRefGoogle Scholar
  82. Peters CM, Giesen W. Balancing supply and demand: a case study of rattan in the Danau Sentarum National Park, West Kalimantan, Indonesia. Borneo Res Bull. 2000;31:138–49.Google Scholar
  83. Pettit NE, Bayliss P, Davies PM, Hamilton SK, Warfe DM, Bunn SE, Douglas MM. Seasonal contrasts in carbon resources and ecological processes on a tropical floodplain. Freshw Biol. 2011;56:1047–64.CrossRefGoogle Scholar
  84. Phillips O. The potential for harvesting fruits in tropical rainforests: new data from Amazonian Peru. Biodivers Conserv. 1993;2:18–38.CrossRefGoogle Scholar
  85. Pond AP, White SA, Milczarek M, Thompson TL. Accelerated weathering of biosolid-amended copper mine tailings. J Environ Qual. 2005;34(4):1293–301.CrossRefPubMedGoogle Scholar
  86. Pratolongo P, Vicari R, Kandus P, Malvárez I. A new method for evaluating net aboveground primary production (NAPP) of Scirpus Giganteus (Kunth). Wetlands. 2005;25(1):228–32.CrossRefGoogle Scholar
  87. Pringle CM, Freeman MC, Freeman BJ. Regional effects of hydrologic alterations on riverine macrobiota in the New World: tropical–temperate comparisons. BioScience. 2000;50(9):807–23.CrossRefGoogle Scholar
  88. Ramberg L, Hancock P, Lindholm M, Meyer T, Ringrose S, Sliva J, Van As J, VanderPost C. Species diversity of the Okavango Delta, Botswana. Aquat Sci. 2006;68:310–37.CrossRefGoogle Scholar
  89. Rejmánková E. Effect of experimental phosphorus enrichment on oligotrophic tropical marshes in Belize, Central America. Plant and Soil. 2001;236:33–53.CrossRefGoogle Scholar
  90. Riak KM. Sudd area as a Ramsar site: biophysical features. Key documents of the Ramsar Convention information sheet on Ramsar wetlands. Environmental workshop event co-sponsored by the United Nations Environment Programme (UNEP); 2006 Oct 31. Juba; 2006.Google Scholar
  91. Robinson CT, Tockner K, Ward JV. The fauna of dynamic riverine landscapes. Freshw Biol. 2002;47:661–77.CrossRefGoogle Scholar
  92. Rodin LE, Bazilevich NI, Rozov NN. Productivity of the world’s ecosystems. In: Reichle DE, Franklin J, Goodal DW, editors. Productivity of the world’s ecosystems, Washington, DC; 1975. p. 13–26.Google Scholar
  93. Saunders MJ, Jones MB, Kansiime F. Carbon and water cycles in tropical papyrus wetlands. Wetl Ecol Manag. 2007;15:489–98.CrossRefGoogle Scholar
  94. Schelle P, Pittock J. Restoring the Kafue Flats. A partnership approach to environmental flows in Zambia. In 8th International River Symposium; 2005 Sep. Brisbane; 2005, 10 pp.Google Scholar
  95. Scott DA. A directory of Asian wetlands. For WWF – World Wide Fund for Nature, IUCN – The World Conservation Union, ICBP – International Council for Bird Preservation and IWRB – International Waterfowl and Wetlands Research Bureau. Gland: IUCN; 1989, 1181 pp.Google Scholar
  96. Scott DA. A directory of wetlands in Oceania. For IWRB – International Waterfowl and Wetlands Research Bureau, AWB – Asian Wetland Bureau, SPREP – South Pacific Regional Environment Programme and Ramsar Convention Bureau. Slimbridge (UK) IWRB and J+Kuala Lumpur, Malaysia (AWB): AWB & IWRB; 1993, 444 pp.Google Scholar
  97. Scott DA, Carbonell M. A directory of neotropical wetlands. Cambridge, UK: IUCN Conservation Monitoring Centre; 1986, 684 pp.Google Scholar
  98. Shardendu, Ambasht RS. Relationship of nutrients in water with biomass and nutrient accumulation of submerged macrophytes of a tropical wetland. New Phytol. 1991;117(3):493–500.CrossRefGoogle Scholar
  99. Shuhaimi-Othman M, Lim C, Mushrifah I. Water quality changes in Chini Lake, Pahang, West Malaysia. Environ Monit Assess. 2007;131:279–92.CrossRefPubMedGoogle Scholar
  100. Sharma N, Joshi SP, Pant HM. Restoration of Mothronwala Fresh water Swamp of Doon valley, Uttarakhand. 2010.
  101. Silvius MJ, Steeman APJM, Berczy ET, Djuharsa E, Taufik A. The Indonesian wetland inventory. A preliminary compilation of existing information on wetlands of Indonesia. Bogor: PHPA, AWB/INTERWADER, EDWIN; 1987, 2 vols, 121 & 268 p’s, & maps.Google Scholar
  102. Smardon RC. Chapter 4, The Kafue Flats in Zambia, Africa: a lost floodplain? In: Smardon RC, editor. Sustaining the world’s wetlands. New York: Springer; 2009. p. 93–123.CrossRefGoogle Scholar
  103. Sutcliffe JV. A hydrological study of the southern Sudd region of the upper Nile. Hydrol Sci Bull. 1974;19:237–55.CrossRefGoogle Scholar
  104. Tanner CC. Plants as ecosystem engineers in subsurface-flow treatment wetlands. Water Sci Technol. 2001;44(11):9–17.CrossRefPubMedGoogle Scholar
  105. Tockner K, Stanford JA. Riverine flood plains: present state and future trends. Environ Conserv. 2002;29(3):308–30.CrossRefGoogle Scholar
  106. UNEP. Global forum on artisanal and small-scale gold mining. Meeting in 7–9 Dec 2010, Manila. Final report: 2011, 18 pp.Google Scholar
  107. Van Steenis CGGJ. Outline of vegetation types in Indonesia and some adjacent regions. In Eighth Pacific Science Conference, 16–28 Nov. 1953, Quezon City, The Philippines, vol. IV Botany; 1957, p. 61–97.Google Scholar
  108. Van TK, Rayachhetry MB, Center TD, Pratt PD. Litter dynamics and phenology of Melaleuca quinquenervia in South Florida. J Aquat Plant Manag. 2002;40:22–7.Google Scholar
  109. Walter O. A study of hunting and trade of freshwater turtles and tortoises (order Chelonia) at Danau Sentarum. Borneo Res Bull. 2000;31:323–35.Google Scholar
  110. Welcomme RL. Fisheries ecology of floodplain rivers. London/New York: Longman Publishers; 1979, 317 pp.Google Scholar
  111. Wetlands International. Planting trees to eat fish. Field experiences in wetlands and poverty reduction. Wageningen: Wetlands International; 2009, 144 pp.Google Scholar
  112. Wetlands International. Impact of dams on the people of Mali. Wageningen: Wetlands International, The Netherlands: 2012. 12 pp.Google Scholar
  113. Winemiller KO, Jepsen DB. Effects of seasonality and fish movement on tropical river food webs. J Fish Biol. 1998;53(Supplement A):267–96.CrossRefGoogle Scholar
  114. Wittmann F, Junk WJ, Piedade MTF. The várzea forests in Amazonia: flooding and the highly dynamic geomorphology interact with natural forest succession. For Ecol Manage. 2004;196:199–212.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Euroconsult Mott MacDonaldArnhemThe Netherlands

Personalised recommendations