Patagonian Peatlands (Argentina and Chile)

Reference work entry

Abstract

Peatlands are present in humid areas of Patagonia, reaching a latitudinal distribution along 2,000 km, from the Chiloe Island to the Tierra del Fuego archipelago. Deglaciation and postglacial processes that occurred after the Last Glacial Maximum favoured the conditions for peatlands development. In addition, the strong negative west-east humidity gradient that the Andes mountain range induces is a substantial factor for peatland distribution, determining the location of the more extensive peatland complexes at the west of the Andes and in the Tierra del Fuego archipelago. However, peatlands are also present as small minerogenic units in the oriental Andean foothill and occasionally in the driest extra-Andean Patagonia.Climatic and latitudinal gradients, in addition to the local drainage conditions gave rise to the conformation of several peatland complex types and subtypes that show differences on their dominant flora and morphological patterns. Particular regional names as “tepual”, “pomponal”, “mallín”, “vega”, etc., are utilized by the local people to identify different peatlands types.

Main Patagonian peatland complexes,favoured by their isolated situation,remain in an almost pristine state, but peat mining is an increasing activity in both Argentina and Chile, affecting peatlands accessible by roads. Numerous minerogenic peatlands of the extra-Andean Patagonia present degradation signs produced by overgrazing and drainage to favouring cattle raising.

The Patagonian peatlands provide significant environmental functions. They constitute the main carbon sink and carbon storage in the extratropical Southern Hemisphere, so they contribute to climate change mitigation. In addition, they give support to the biodiversity, offer a tourist attraction as components of the landscape, contribute to the hydrological regulation and provide freshwater. The wise use of these wetlands is a challenge for the peatlands management in Patagonia.

Keywords

Peatland distribution Peatland complex Patagonian wetlands Ecological gradients Peatland functions Peatland management Peat mining Andes Argentina Chile 

References

  1. Aravena JC, Luckman BH. Spatio-temporal rainfall patterns in southern South America. Int J Climatol. 2009;29(14):2106–20.CrossRefGoogle Scholar
  2. Arroyo MTK, Mihoc P, Pliscoff P, Arroyo M. The Magellanic moorland. In: Fraser LH, Keddy PA, editors. The World’s largest wetlands. New York: Cambridge University Press; 2005. p. 425–45.Google Scholar
  3. Blanco DE, de la Balze VM. Los Turbales de la Patagonia: bases para su inventario y la conservación de su biodiversidad. Buenos Aires: Wetlands International; 2004.Google Scholar
  4. Buono G, Oesterheld M, Nakamatsu V, Paruelo JM. Spatial and temporal variation of primary production of Patagonian wet meadows. J Arid Environ. 2010;74:1257–61.CrossRefGoogle Scholar
  5. Collantes MB, Anchorena J, Stoffella S, Escartín C, Rauber R. Wetlands of the Magellanic Steppe (Tierra del Fuego. Argentina). Folia Geobot. 2009;44:227–45.CrossRefGoogle Scholar
  6. Collantes MB, Escartín C, Braun K, Cingolani AM, Anchorena JA. Grazing and grazing exclusion along a resource gradient in magellanic meadows of Tierra del Fuego. Rangel Ecol Manag. 2013;66:688–99.CrossRefGoogle Scholar
  7. Domínguez E. Manual de buenas prácticas para el uso sostenido del musgo Sphagnum magellanicum en Magallanes, Chile. Instituto de Investigaciones Agropecuarias. Centro Regional de Investigación Kampenaike. Punta Arenas. Boletín INIA; 2014. No 276. 113 p.Google Scholar
  8. Heusser CJ. Three late quaternary pollen diagrams from Southern Patagonia and their paleocological implications. Paleogeogr Paleoclim Paleocol. 1995;118:1–24.CrossRefGoogle Scholar
  9. Holdgate MW. Vegetation and soils in the South Chilean Islands. J Ecol. 1961;49(3):559–80.CrossRefGoogle Scholar
  10. Iturraspe R, Urciuolo AB, Iturraspe RJ. Spatial analysis and description of eastern peatlands of Tierra del Fuego, Argentina. In: Heikkilä R, Lindholm T, editors. Mires from pole to pole, The Finnish Environment, vol. 38. 2012. p. 385–99.Google Scholar
  11. Joosten HD, Clarke D. Wise use of mires and peatlands. Saarijärvi: IMCG-IPS; 2002. 304 p.Google Scholar
  12. Kleinebecker T, Hölzer N, Vogel A. Gradients of continentality and moisture in South Patagonian peatland vegetation. Folia Geobot. 2007;42:363–82.CrossRefGoogle Scholar
  13. Malvarez AI, Kandus P, Carbajo A. Distribución regional de los turbales en Patagonia. In: Blanco DE, de la Balze VM, editors. Los turbales de la Patagonia. Bases para su inventario y la conservación de su biodiversidad. Buenos Aires: Wetlands International; 2004. p. 22–9.Google Scholar
  14. Markgraf V, Huber UM. Late and postglacial vegetation and fire history in Southern Patagonia and Tierra del Fuego. Palaeogeogr Palaeoclim Palaeoecol. 2010;297:351–66.CrossRefGoogle Scholar
  15. Mazzoni E, Rabassa J. Types and internal hydro-geomorphologic variability of mallines (wet-meadows) of Patagonia: emphasis on volcanic plateaus. J South Am Earth Sci. 2013;46:170–82.CrossRefGoogle Scholar
  16. Moore DM. Southern oceanic wet-healthland (including Magellanic moorland). In: Spech RI, Goodhall DW, editors. Ecosystems of the World, vol. 9A. Amsterdam: Elsevier Science; 1979.Google Scholar
  17. Pisano E. The magellanic tundra complex. In: Gore A, editor. Mires:swamp, Bog, Fen and Moor. B. Regional studies. Amsterdam: Elsevier; 1983. p. 295–329.Google Scholar
  18. Richardson R. A registry of productive peat bogs in the lake region. Hemispherics Polar Stud J. 2011;2(4):249–66.Google Scholar
  19. Roig FA. La Vegetación de la Patagonia. In: Correa MN, editor. Flora Patagónica, Colecc. Ci. INTA. 1988;8(1):48–166.Google Scholar
  20. Ruiz y Doberty Ltda. Catastro y Caracterización de los Turbales de Magallanes. Sernageomin. BIP N°20196401-0, Chile. 2005. 123 p.Google Scholar
  21. Veblen TT, Schlegel FM. Reseña ecológica de los bosques del sur de Chile. Bosque. 1982;4(2):73–115.CrossRefGoogle Scholar
  22. Villagran C. A model for the history of vegetation of the coastal range of central-southern Chile: Darwin’s glacial hypothesis. Rev Chil Hist Nat. 2001;74:793–803.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Universidad Nacional de Tierra del FuegoUshuaiaArgentina

Personalised recommendations