Papyrus Wetlands

Reference work entry


Papyrus Cyperus papyrus is tropical wetland sedge that can grow up to a height of 5–6 m under optimal conditions. It is dominant vegetation in many wetlands in central, southern and eastern Africa, the Nile valley and in some parts of the Mediterranean in the Middle East and southern Europe. Papyrus is one of the most productive wetland sedge and is structurally and physiologically adapted to permanently and seasonally flooded wetlands. It propagates through both sexual and asexual reproduction. Wetlands dominated by papyrus are characterized by variable biotic diversity with 187 documented species in various African wetlands. These ecosystems also provide diverse ecosystem services ranging from provisioning, regulating and cultural that support livelihoods especially in sub-Saharan Africa. Like in many global wetlands, papyrus marshes are threatened by anthropogenic activities such as excessive biomass harvesting and conversion to agriculture and human settlement and climate change.


Tropical wetlands Macrophytes Biodiversity Ecosystem services Threats Conservation 


  1. Azza NGT. The dynamics of shoreline wetlands and sediments of Northern Lake Victoria. [dissertation]. Wageningen: Wageningen University and UNESCO-IHE Institute for Water Education; 2006. 170 p.Google Scholar
  2. Azza NGT, Kansiime F, Nalubega M. Differential permeability of papyrus and Miscanthidium root mats in Nakivubo swamp. Uganda Aquat Bot. 2000;67:169–78.CrossRefGoogle Scholar
  3. Balirwa JS. Lake Victoria wetlands and the ecology of the Nile Tilapia Oreochromis niloticus Linné. [dissertation]. Rotterdam: A.A. Balkema Publishers; 1998. 247 p.Google Scholar
  4. Behangana M, Arusi J. The distribution and diversity of amphibian fauna of Lake Nabugabo. Afr J Ecol. 2004;42 Suppl 1:6–13.CrossRefGoogle Scholar
  5. Boar RR. Responses of a fringing Cyperus papyrus L. swamp to changes in water level. Aquat Bot. 2006;84(2):85–92.CrossRefGoogle Scholar
  6. Boar RR, Harper DM, Adams CS. Biomass allocation in Cyperus papyrus in a tropical wetland, Lake Naivasha, Kenya. Biotropica. 1999;31(3):411–21.CrossRefGoogle Scholar
  7. Chale FMM. Effects of Cyperus papyrus L. swamp on domestic wastewater. Aquat Bot. 1985;23:185–9.CrossRefGoogle Scholar
  8. Chan SO, Eagleson PS. Water balance studies of the Bahr El Ghazal Swamp. Cambridge, MA: Department of Civil Engineering, Massachusetts Institute of Technology; 1980.Google Scholar
  9. Chapman LJ, Chapman CA, Branzeu DA, Mclaughlin B, Jordan M. Papyrus swamps, hypoxia, diversification: variation among populations of Barbus neumayeri. J Fish Biol. 1999;54:310–27.Google Scholar
  10. Chapman LJ, Balirwa J, Bugenyi FWB, Chapman C, Chrisman TL. Wetlands of East Africa: biodiversity, exploitation and policy perspectives. In: Gopal B, Junk WJ, Davis JA, editors. Biodiversity in wetlands: assessment, function and conservation, vol. 2. Leiden: Backhuys Publishers; 2001. p. 101–31.Google Scholar
  11. Davidson NC. How much wetland has the world lost? Long-term and recent trends in global wetland area. Mar Freshw Res. 2014;65(10):934–41.CrossRefGoogle Scholar
  12. Denny P. Wetland vegetation and associated plant lifeforms. In: Denny P, editor. The ecology and management of African wetland vegetation. Dordrecht: Dr. W. Junk Publishers; 1985. p. 1–18.CrossRefGoogle Scholar
  13. Dumont HJ. The Nile: origin, environments, limnology and human use. Dordrecht: Springer; 2009.CrossRefGoogle Scholar
  14. Gaudet JJ. Natural drawdown on Lake Naivasha, Kenya, and the formation of papyrus swamps. Aquat Bot. 1977;3:1–47.CrossRefGoogle Scholar
  15. Gaudet SC, Eagleson PS. Surface area variability of the Bahr el Ghazal swamp in the presence of perimeter canals. Cambridge, MA: Massachusetts Institute of Technology; 1984.Google Scholar
  16. Gaudet JJ, Muthuri FM. Nutrient relationships in shallow water in an African lake, Lake Naivasha, Kenya. Oecologia. 1981;49:109–18.CrossRefPubMedGoogle Scholar
  17. Gichuki J, Guebas FD, Mugo J, Rabuor CO, Triest L, Dehairs F. Species inventory and the local uses of the plants and fishes of the Lower Sondu Miriu wetland of Lake Victoria, Kenya. Hydrobiologia. 2001;458:99–106.CrossRefGoogle Scholar
  18. Jones MB. The photosynthetic characteristics of papyrus in a tropical swamp. Oecologia. 1987;71:355–9.CrossRefPubMedGoogle Scholar
  19. Jones MB. Photosynthetic responses of C3 and C4 wetland species in a tropical swamp. J Ecol. 1988;76:253–62.CrossRefGoogle Scholar
  20. Jones MB, Muthuri FM. Standing biomass and carbon distribution in a papyrus (Cyperus papyrus) swamp on Lake Naivasha, Kenya. J Trop Ecol. 1997;13(3):347–58.CrossRefGoogle Scholar
  21. Kansiime F, Nalubega M. Wastewater treatment by a natural wetland: the Nakivubo Swamp Uganda: processes and implications. [dissertation]. Delft: IHE-Delft and Delft University of Technology; 1999. 300 p.Google Scholar
  22. Kipkemboi J, Kansiime F, Denny P. The response of Cyperus papyrus (L.) and Miscanthidium violaceum (K. Schum.) Robyns to eutrophication in natural wetlands of Lake Victoria, Uganda. Afri J Aquat Sci. 2002;27:11–20.CrossRefGoogle Scholar
  23. Maclean IMD, Hassal M, Boar RR, Lake IR. Effects of disturbance and habitat loss on papyrus-dwelling passerines. Biol Conserv. 2006;131:349–58.CrossRefGoogle Scholar
  24. Maclean IMD, Bird JP, Hassal M. Papyrus swamp drainage and the conservation status of their avifauna. Wetl Ecol Manag. 2014. doi:10.1007/s11273-013-9335-1.CrossRefGoogle Scholar
  25. Mburu N, Rousseau DPL, van Bruggen JJA. Use of macrophyte Cyperus papyrus in wastewater treatment. In: Vymazal J, editor. The role of natural and constructed wetlands in nutrient cycling and retention on the landscape. Dordrecht: Springer; 2015. p. 293–314.Google Scholar
  26. McClanahan TR, Young TP, editors. East African ecosystems and their conservation. New York: Oxford University Press; 1996.Google Scholar
  27. Mefit-Babtie Sr. Range ecology study, livestock investigation and water supply. First interim report. Khartoum: National Council for the Development of the Jonglei Canal Area (Sudan); 1980.Google Scholar
  28. Mnaya B, Asaeda T, Kiwango Y, Ayubu E. Primary production in papyrus (Cyperus papyrus L.) of Rubondo Island, Lake Victoria, Tanzania. Wetl Ecol Manag. 2007;15:269–75. doi:10.1007/s11273-006-9027-1.CrossRefGoogle Scholar
  29. Mohamed YA. The Nile hydroclimatology: impact of the Sudd wetland. [PhD dissertation]. Delft: UNESCO-IHE Institute for water Education/Delft University of Technology; 2005. 129 p.Google Scholar
  30. Muthuri FM, Jones MB. Nutrient distribution in a papyrus swamp. Lake Naivasha, Kenya. Aquat Bot. 1997;56:35–50.CrossRefGoogle Scholar
  31. Muthuri FM, Jones MB, Imbamba SK. Primary productivity of papyrus (Cyperus papyrus) in a tropical swamp; Lake Naivasha, Kenya. Biomass. 1989;18:1–14.CrossRefGoogle Scholar
  32. Mwagona PC. Determination of macroinvertebrate community structure along different habitat types in Nyando wetland. [dissertation]. Njoro: Egerton University; 2013. 59 p.Google Scholar
  33. Mwaura FB, Widdowson D. Nitrogenase activity in the papyrus swamps of Lake Naivasha, Kenya. Hydrobiologia. 1992;232:23–30.CrossRefGoogle Scholar
  34. Nasongo SA, Zaal F, Dietz T, Okeyo-Owuor JB. Institutional pluralism, access and use of wetland resources in the Nyando Papyrus Wetland, Kenya. J Ecol Nat Environ. 2015;7(3):56–71.CrossRefGoogle Scholar
  35. Osumba JJL, Okeyo-Owuor JB, Raburu PO. Effect of harvesting on temporal papyrus (Cyperus papyrus) biomass regeneration potential among swamps in Winam Gulf wetlands of Lake Victoria Basin, Kenya. Wetl Ecol Manag. 2010;18(3):333–41.CrossRefGoogle Scholar
  36. Owino AO, Ryan PG. Recent papyrus swamp habitat loss and conservation implications in western Kenya. Wetl Ecol Manag. 2007;15:1–12.CrossRefGoogle Scholar
  37. Rebelo L-M, McCartney M. Wetlands of the Nile Basin: distribution, functions and contribution to livelihoods. In: Awulachew SB, Smakhtin V, Molden D, Peden D, editors. The Nile River Basin: water, agriculture, governance and livelihoods. Abingdon: Routledge – Earthscan; 2012. p. 212–28.Google Scholar
  38. Rifaat HM, Márialigeti K, Kovács G. Investigations on rhizoplane Actinobacteria communities of papyrus (Cyperus papyrus) from an Egyptian wetland. Acta Microbiol Immunol Hung. 2002;49(4):423–32.CrossRefPubMedGoogle Scholar
  39. Rongoei PJ, Kipkemboi J, Kariuki ST, van Dam AA. Effects of water depth and livelihood activities on plant species composition and diversity in Nyando floodplain wetland, Kenya. Wetl Ecol Manag. 2014;22(2):177–89.CrossRefGoogle Scholar
  40. Saunders MJ, Jones MB, Kansiime F. Carbon and water cycles in tropical papyrus wetlands. Wetl Ecol Manag. 2007;15:489–98. doi:10.1007/s11273-007-9051-9.CrossRefGoogle Scholar
  41. Saunders MJ, Kansiime F, Jones MB. Reviewing the carbon cycle dynamics and carbon sequestration potential of Cyperus papyrus L. wetlands in tropical Africa. Wetl Ecol Manag. 2014;22(2):143–55.CrossRefGoogle Scholar
  42. Sutcliffe JV, Parks YP. Hydrological modelling of the Sudd and Jonglei Canal. Hydrol Sci. 1987;32(2):143–59.CrossRefGoogle Scholar
  43. Sutcliffe JV, Parks YP. Comparative water balances of selected African Wetlands. J Hydrol Sci. 1989;34(1,2):49–62.CrossRefGoogle Scholar
  44. Terer T, Triest L, Muthama MA. Effects of harvesting Cyperus papyrus in undisturbed wetland, Lake Naivasha, Kenya. Hydrobiol. 2012;680(1):135–48.CrossRefGoogle Scholar
  45. Thenya T. Analysis of macrophyte biomass productivity, utilization and its impacts on various ecotypes of Yala swamp, Lake Victoria basin, Kenya. In: Vlek PLG, Denich M, Martius C, Rodgers C, editors. Ecology and development series no. 48. Gottingen: Cuvillier Verlag; 2006. 207 p.Google Scholar
  46. Thompson K. Emergent plant of permanent and seasonally flooded wetlands. In: Denny P, editor. The ecology and management of African wetland vegetation. Dordrecht: Dr. W. Junk Publishers; 1985. p. 43–107.CrossRefGoogle Scholar
  47. van Dam AA, Kipkemboi J, Rahman MM, Gettel GM. Linking hydrology, ecosystem function, and livelihood outcomes in African papyrus wetlands using a Bayesian Network model. Wetlands. 2013;33(3):381–97.CrossRefGoogle Scholar
  48. van Dam AA, Kipkemboi J, Mazvimavi D, Irvine K. A synthesis of past, current and future research for protection and management of papyrus (Cyperus papyrus L.) wetlands in Africa. Wetl Ecol Manag. 2014. doi:10.1007/s11273-013-9335-1.CrossRefGoogle Scholar
  49. Zaroug MAH, Sylla MB, Giorgi F, Eltahir EAB, Aggarwal PK. A sensitivity study on the role of the swamps of southern Sudan in the summer climate of North Africa using a regional climate model. Theor Appl Climatol. 2012. doi:10.1007/s00704-012-0751-6.CrossRefGoogle Scholar
  50. Zsuffa I, van Dam AA, Kaggwa RC, Namaalwa S, Mahieu M, Cools J, Johnston R. Towards decision support-based integrated management planning of papyrus wetlands: a case study from Uganda. Wetl Ecol Manag. 2014;22(2):199–213.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biological SciencesEgerton UniversityEgerton, NjoroKenya
  2. 2.Aquatic Ecosystems Group, Department of Water Science and EngineeringUNESCO-IHE Institute for Water EducationDelftThe Netherlands

Personalised recommendations