Advertisement

Freshwater Marshes and Swamps

Reference work entry

Abstract

Freshwater swamps and marshes comprise a large variety of nontidal forested and non-forested wetlands. They have hydric soils and do not accumulate large amounts of peat (noting that the definition of peatlands comprises wetlands with at least 30% dry mass of dead organic material and greater than 30 cm deep). A swamp is dominated by trees and a marsh by emergent herbaceous plants, with both containing a wide variety of submerged and floating-leaved plants. However, the terms have not been used consistently in different parts of the world and many wetlands may contain both treed and non-treed components.

Keywords

Swamps Marshes Papyrus Phragmites Sustainable 

References

  1. Abell R, Thieme M, Revenga C, Bryer M, Kottelat M, Bogutskaya N, Coad B, et al. Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. Bioscience. 2008;58:403–14.CrossRefGoogle Scholar
  2. Balian EV, Leveque C, Segers H, Martens K, editors. Freshwater animal diversity assessment. Dordrecht: Springer; 2008.Google Scholar
  3. Costanza R, de Groot R, Sutton P, van der Ploe S, Anderson SJ, Kubiszewski I, Farber S, Turner RK. Changes in the global value of ecosystem services. Glob Environ Chang. 2014;26:152–8.CrossRefGoogle Scholar
  4. Darwall WRT, Smith KG, Allen DJ, Holland RA, Harrison I, Brooks EGE, editors. The diversity of life in African freshwaters: under water, under threat. An analysis of the status and distribution of freshwater species throughout mainland Africa. Cambridge/Gland: IUCN; 2011.Google Scholar
  5. Davidson NC. How much wetland has the world lost? Long-term and recent trends in global wetland area. Mar Freshw Res. 2014;65:934–41.CrossRefGoogle Scholar
  6. Finlayson CM. Forty years of wetland conservation and wise use. Aquat Conserv Mar Freshwat Ecosyst. 2012;22:139–43.CrossRefGoogle Scholar
  7. Finlayson CM. Climate change and the wise use of wetlands – information from Australian wetlands. Hydrobiologia. 2013;708:145–52.CrossRefGoogle Scholar
  8. Finlayson CM, van der Valk AG. Wetlands classification and inventory: a summary. Vegetatio. 1995;118:185–92.CrossRefGoogle Scholar
  9. Finlayson CM, Lowry J, Bellio MG, Walden D, Nou S, Fox G, Humphrey CL, Pidgeon R. Comparative biology of large wetlands: Kakadu National Park. Aust Aquat Sci. 2006;68:374–99.CrossRefGoogle Scholar
  10. Finlayson CM, Davis JA, Gell PA, Kingsford RT, Parton KA. The status of wetlands and the predicted effects of global climate change: the situation in Australia. Aquat Sci. 2013;75:73–93.CrossRefGoogle Scholar
  11. Gardner R, Barchiesi S, Beltrame C, Finlayson CM, Galewski T, Harrison I, Paganini M, Perennou C, Pritchard DE, Rosenqvist A, Walpole M. State of the world’s wetlands and their services to people: a compilation of recent analyses. Gland: Ramsar Convention Secretariat; 2015.Google Scholar
  12. Giessen W. Tropical freshwater swamps (Mineral soils). In: Finlayson CM, Milton GR, Prentice RC, Davidson NC, editors. The wetland book II: distribution, description, and conservation. Dordrecht: Springer; 2018.Google Scholar
  13. Groombridge B, Jenkins MD. Global biodiversity: earth’s living resources in the 21st century. Cambridge: World Conservation Press; 2000. 246 p.Google Scholar
  14. Junk WJ, Brown M, Campbell IC, Finlayson CM, Gopal B, Ramberg L, Warner BG. Comparative biodiversity of large wetlands: a synthesis. Aquat Sci. 2006;68:400–14.CrossRefGoogle Scholar
  15. Junk WJ, An S, Finlayson CM, Gopal B, Květ J, Mitchell SA, Mitsch WJ, Robarts RD. Current state of knowledge regarding the world’s wetlands and their future under global climate change: a synthesis. Aquat Sci. 2013;75:151–67.CrossRefGoogle Scholar
  16. Lehner B, Döll P. Development and validation of a global database of lakes, reservoirs and wetlands. J Hydrol. 2004;296:1–22.CrossRefGoogle Scholar
  17. McCartney M, Finlayson CM, de Silva S. Sustainable development and ecosystem services. In: van der Bliek J, McCornick P, Clarke J, editors. On target for people and planet: setting and achieving water–related sustainable development goals. Colombo: International Water Management Institute; 2014. p. 29–32.Google Scholar
  18. McComb AJ, Davis JA, editors. Wetlands for the future. Adelaide: Gleneagles Publishing; 1998.Google Scholar
  19. MEA (Millennium Ecosystem Assessment). Ecosystems and human well-being: wetlands and water synthesis. Washington, DC: World Resources Institute; 2005.Google Scholar
  20. Mitsch WJ, editor. Global wetlands: old world and new. Amsterdam: Elsevier; 1994.Google Scholar
  21. Mitsch WJ, Gosselink JG, Anderson CJ, Zhang L. Wetland ecosystems. Hoboken: Wiley; 2009.Google Scholar
  22. Polunin NVC, editor. Aquatic ecosystems: trends and global prospects. Cambridge: Cambridge University Press; 2008.Google Scholar
  23. Rebelo L-M, McCartney MP, Finlayson CM. Wetlands of Sub-Saharan Africa: distribution and contribution of agriculture to livelihoods. Wetl Ecol Manag. 2010;18:557–72.CrossRefGoogle Scholar
  24. Thieme ML, Abell R, Stiassny ML, Skelton P, Lehner B, Teugels GG, Dinerstein E, Kamden Tohan A, Burgess N, Olson D. Freshwater ecoregions of Africa and Madagascar. Washington, DC: Island Press; 2005.Google Scholar
  25. Thompson J, Finlayson CM. Wetlands. In: Warren A, French JR, editors. Conservation and the physical environment. London: Wiley; 2001. p. 147–78.Google Scholar
  26. Whigham DF, Dykyjova D, Hejny S, editors. Wetlands of the world: Inventory, ecology and management, vol. 1. Dordrecht: Kluwer; 1993.Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Land, Water and SocietyCharles Sturt UniversityAlburyAustralia
  2. 2.UNESCO-IHEThe Institute for Water EducationDelftThe Netherlands

Personalised recommendations