Estuarine Marsh: An Overview

Reference work entry


Estuarine marshes commonly called “salt and brackish marshes” are tidal wetlands associated with the world’s estuaries where salinities range from well above sea strength to nearly freshwater. Subject to frequent tidal flooding, plant communities are dominated by halophytic (salt-tolerant) herbs, subshrubs, and/or succulent-leaved shrubs. Not uniformly distributed along the world’s sea coasts, tidal marshes tend to be the dominant plant community of the intertidal zone at middle and higher latitudes. The global extent of estuarine marshes is not well documented and this contributes to conservative estimates of their soil carbon stores. Most regions report significant historical and on-going loss of estuarine marshes by 1) human developments that in-part reflect a shift from an agrarian to industrial society and 2) natural events. Economic and cultural values set by society determine how estuarine marshes functions that yield many benefits to people and the estuarine aquatic ecosystem are valued. Estuarine marshes are increasingly being recognized among the world’s most valuable ecosystems and, given their location between land and the sea, are especially vulnerable to human development and the effects of climate change.


Brackish marsh Climate change effect on estuarine marsh Coastal wetland Ecosystem services - estuarine marsh Estuarine marsh Plant diversity - estuarine marsh Salt marsh Tidal wetland Wetland distribution - estuarine marsh Wetland functions - estuarine marsh Wetland threats - estuarine marsh Wetland trends - estuarine marsh 


  1. Adam P. Saltmarsh ecology. Great Britain: Cambridge University Press; 1990.CrossRefGoogle Scholar
  2. Adam P. Saltmarsh in a time of change. Environ Conserv. 2002;29(1):39–61.CrossRefGoogle Scholar
  3. Adam P. Saltmarsh. In: Kennish MJ, editor. Encyclopedia of estuaries. Dordrecht: Springer Science+Business Media; 2016. p. 515–35. doi:10.1007/978-94-017-8801-4.CrossRefGoogle Scholar
  4. Adam P, Bertness MD, Davy AJ, Zedler JR. Saltmarsh. In: Polunin NVC, editor. Aquatic ecosystems. Cambridge, UK: Cambridge University Press; 2008. p. 157–71. Chapter 11.CrossRefGoogle Scholar
  5. Ainsworth EA, Long SP. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol. 2005;165:351–72.CrossRefPubMedGoogle Scholar
  6. Auer SK, King DI. Ecological and life-history traits explain recent boundary sifts in elevation and latitude of western North American songbirds. Glob Ecol Biogeogr. 2014;23:867–75.CrossRefGoogle Scholar
  7. Baily B, Pearson AW. Change detection mapping and analysis of salt marsh areas of central southern England from Hurst castle Spit to Pagham Harbour. J Coast Res. 2007;23(6):1549–64.CrossRefGoogle Scholar
  8. Balletto JH, Heimbuch MV, Mahoney HJ. Delaware Bay salt marsh restoration: mitigation for a power plant cooling water system in New Jersey, USA. Ecol Eng. 2005;25:204–13.CrossRefGoogle Scholar
  9. Beeftink WG. Salt marshes. In: Barnes RSK, editor. The coastline. London: Wiley; 1977. p. 93–121.Google Scholar
  10. Bortolus A, Schwindt E, Bouza PJ, Idaszkin YL. A characterization of Patagonian salt marshes. Wetlands. 2009;29:772–80.CrossRefGoogle Scholar
  11. Bridgham SD, Megonigal JP, Kellet JK, Bliss NB, Trettin C. The carbon balance of North American wetlands. Wetlands. 2006;26:889–916.CrossRefGoogle Scholar
  12. Burd F. Erosion and vegetation change on the saltmarshes of Essex and orth Kent between 1973 and 1988. Research and survey in nature conservation No. 42. Peterborough, UK: Nature Conservancy Council; 1992. Available from:
  13. Camacho-Valdez V, Ruiz-luna A, Ghermandi A, Berlanga-Robles CA, Nunes PALD. Effects of land use changes on the ecosystem service values of coastal wetlands. Environ Manag. 2014;54:852–64.CrossRefPubMedGoogle Scholar
  14. Chapman VJ. Salt marshes and salt deserts of the world. New York: Interscience; 1960.Google Scholar
  15. Chapman VJ, editor. Wet coastal ecosystems. Amsterdam: Elsevier Scientific; 1977.Google Scholar
  16. Chmura GL. What do we need to assess the sustainability of the tidal salt marsh carbon sink. Ocean Coast Manag. 2013;83:25–31.CrossRefGoogle Scholar
  17. Chmura GL, Anisfeld S, Cahoon D, Lynch J. Global carbon sequestration in tidal, saline wetland soils. Global Biogeochem Cycles. 2003;17:1–12.CrossRefGoogle Scholar
  18. Costanza R, dArge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, Oneill RV, Paruelo J, Raskin RG, Sutton P, van den Belt M. The value of the world’s ecosystem services and natural capital. Nature. 1997;387:253–60.CrossRefGoogle Scholar
  19. Costanza R, Wilson M, Troy A, Voinov A, Liu S, D’Agostino J. The value of New Jersey’s ecosystem services and natural capital. Burlington: Gund Institute for Ecological Economics, University of Vermont; 2006. Available from: Accessed 23 June 2016.Google Scholar
  20. Costanza R, Pérez-Maqueo O, Martinez ML, Sutton P, Anderson SJ, Mulder K. The value of coastal wetlands for hurricane protection. Ambio. 2008;37:241–8.CrossRefPubMedGoogle Scholar
  21. Costanza R, de Groot R, Sutton P, van der Ploeg S, Anderson SJ, Kubiszewski I, Farber S, Turner RK. Changes in the global value of ecosystem services. Glob Environ Chang. 2014;26:152–8.CrossRefGoogle Scholar
  22. Davidson NC. How much wetland has the world lost? Long-term and recent trends in global wetland area. Mar Freshw Res. 2014;65:934–41.CrossRefGoogle Scholar
  23. Davy AJ, Bakker JP, Figueroa ME. Human modification of European salt marshes. Chapter 16. In: Silliman BR, Grosholz ED, Bertness MD, editors. Human impacts on salt marshes: a global perspective. Berkeley: University of California Press; 2009. p. 311–35.Google Scholar
  24. Duarte CM, Middelburg J, Caraco N. Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences. 2005;2:1–8.CrossRefGoogle Scholar
  25. Duarte CM, Dennison WC, Orth RJW, Carruthers TJB. The charisma of coastal ecosystems: addressing the imbalance. Estuar Coasts. 2008;31:233–8.CrossRefGoogle Scholar
  26. Gedan KB, Bertness MD. Experimental warming causes rapid loss of plant diversity in New England marshes. Ecol Lett. 2009;12:842–8.CrossRefPubMedGoogle Scholar
  27. Gedan KB, Silliman BR. Patterns of salt marsh loss within coastal regions of North America. In: Silliman BR, Grosholz ED, Bertness MD, editors. Human impacts on salt marshes: a global perspective. Berkeley: University of California Press; 2009. p. 253–83.Google Scholar
  28. Gedan KB, Silliman BR, Bertness MD. Centuries of human-driven change in salt marsh ecosystems. Ann Rev Mar Sci. 2009;1:117–41.CrossRefPubMedGoogle Scholar
  29. Gosselink JG, Odum EP, Pope RM. The value of the tidal marsh. Gainesville: Urban and Regional Development Center, University of Florida; 1973. Work paper no. 3.Google Scholar
  30. Gosselink JG, Odum EP, Pope RM. The value of the tidal marsh. Baton Rouge: Center for Wetland Resources, Louisiana State University; 1974. Publication no. LSU-SG-74-03.Google Scholar
  31. Hatvany MG. ‘Wedded to the Marshes’: salt marshes and socio-economic differentiation in Early Prince Edward Island’. Acadiensis. 2001;30(2):40–55.Google Scholar
  32. Hitch AT, Leberg PL. Breeding distributions of North American bird species moving north as a result of climate change. Conserv Biol. 2007;21:534–9.CrossRefPubMedGoogle Scholar
  33. Hoozemans FMJ, Marchand M, Pennekamp HA. Delft hydraulics. Sea level rise: a global vulnerability assessment: vulnerability assessment for population, coastal wetlands and rice production on a global scale. 2nd ed. Delft: Delft Hydraulics; 1993.Google Scholar
  34. IPCC. In: Hiraishi T, Krug T, Tanabe K, Srivastava N, Baasansuren J, Fukuda M, Troxler TG, editors. 2013 supplement to the 2006 IPCC guidelines for national greenhouse gas inventories: wetlands. Geneva: IPCC; 2014a. Available from: Accessed 29 June 2016.Google Scholar
  35. IPCC. In: Core Writing Team, Pachauri RK, Meyer LA, editors. Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. Geneva: IPCC; 2014b. 151 p.Google Scholar
  36. Kirwan ML, Guntenspergen GR, Morris JT. Latitudinal trends in Spartina alterniflora productivity and the response of coastal marshes to global change. Glob Chang Biol. 2009;15:1982–9.CrossRefGoogle Scholar
  37. Laffoley D, Grimsditch GD. The management of natural coastal carbon sinks. Gland: IUCN; 2009.Google Scholar
  38. Langley JA, McKee KL, Cahoon DR, Cherry JA, Megonigal JP. Elevated CO2 stimulates marsh elevation gain, counterbalancing sea-level rise. Proc Natl Acad Sci. 2009;106(15):6182–6. doi:10.1073/pnas0807695106.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Leadley PW, Krug CB, Alkemade R, Pereira HM, Sumaila UR, Walpole M, Marques A, Newbold T, Teh LSL, van Kolck J, Bellard C, Januchowski-Hartley SR, Mumby PJ. Progress towards the Aichi biodiversity targets: an assessment of biodiversity trends, policy scenarios and key actions. Montreal: Secretariat of the Convention on Biological Diversity; 2014. CBD Technical Series No. 78. Available from: Accessed 24 June 2016.
  40. Lotze HK, Lenizan HS, Bourque BJ, Bradbury RH, Cooke RG, Kay MC, Kidwell SM, Kirby MX, Peterson CH, Jackson JBC. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science. 2006;312:1806–9.CrossRefPubMedGoogle Scholar
  41. MacKinnon J, Verkuil YI, Murray N. IUCN situation analysis on East and Southeast Asian intertidal habitats, with particular reference to the Yellow Sea (including the Bohai Sea). Occasional paper of the IUCN species survival commission no. 47. Gland/Cambridge, UK: IUCN; 2012. ii + 70 pp.Google Scholar
  42. Mates W. Valuing New Jersey’s natural capital: an assessment of the economic value of the State’s natural resources. Part 1: overview. Trenton: New Jersey Department of Environmental Protection; 2007. Available from: Accessed 23 June 2016.Google Scholar
  43. McDonald KW, McClure CJW, Rolek B, Hill GE. Diversity of birds in eastern North America shifts north with global warming. Ecol Evol. 2012;2:3052–60.CrossRefPubMedPubMedCentralGoogle Scholar
  44. McFadden L, Spencer T, Nicholls RJ. Broad-scale modelling of coastal wetlands: what is required? Hydrobiologia. 2007;577:5–15.CrossRefGoogle Scholar
  45. Mcleod E, Chmura GL, Björk M, Bouillon S, Duarte CM, Lovelock C, Salm R, Schlesinger W, Silliman B. A blueprint for Blue carbon: towards an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front Ecol Environ. 2011;9:552–60.CrossRefGoogle Scholar
  46. Nicholls RJ, Hoozemans FMJ, Marchand M. Increasing flood risk and wetland losses due to global sea-level rise: regional and global analyses. Glob Environ Chang. 1999;9:S69–87.CrossRefGoogle Scholar
  47. Pendleton L, Donato DC, Murray BC, Crooks S, Jenkins WA, Sifleet S, Craft C, Fourqurean JW, Kaufman JB, Marbà N, Megonigal P, Pidgeon E, Herr D, Gordon D, Baldera A. Estimating global “Blue Carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PLoS One. 2012;7(9):e43542. doi:10.1371/journal.pone.0043542.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Reid WV, Mooney HA, Cropper A, Capistrano D, Carpenter SR, Chopra K, Dasgupta P, Dietz T, Duraiappah AK, Hassan R, Kasperson R, Leemans R, May RM, McMichael AJ, Pingali P, Samper C, Scholes R, Watson RT, Zakri AH, Shidong Z, Ash NJ, Bennett E, Kumar P, Lee MJ, Raudsepp-Hearne C, Simons H, Thonell J, Zurek MB. Ecosystems and human well-being: a framework for assessment. Washington, DC: Island Press; 2005.Google Scholar
  49. Richardson DM, Pyšek P, Rejmánek M, Barbour MG, Panetta FD, West C. Naturalization and invasion of alien plants: concepts and definitions. Divers Distrib. 2000;6:93–107.CrossRefGoogle Scholar
  50. Riley JL. Wetlands of the Ontario Hudson Bay Lowland: a regional overview. Toronto: Nature Conservancy of Canada; 2011. 156 p. app.Google Scholar
  51. Saenger P, Specht MM, Specht RL, Chapman VJ. Mangal and coastal salt-marsh communities in Australasia. Chapter 15. In: Chapman VJ, editor. Wet coastal ecosystems. Amsterdam: Elsevier Scientific; 1977. p. 293–345.Google Scholar
  52. Saintilan N, editor. Australian saltmarsh ecology. Collingwood: CSIRO Publishing; 2009.Google Scholar
  53. Saintilan N, Wilson NC, Rogers KL, Rajkaran A, Krauss KW. Mangrove expansion and salt marsh decline at mangrove poleward limits. Glob Chang Biol. 2014;20:147–57.CrossRefPubMedGoogle Scholar
  54. Schuyt K, Brander L. The economic values of the World’s Wetlands. Gland: World Wildlife Fund; 2004. Joint publication with Institute for Environmental Studies, Vrije Universiteit, Amsterdam I the Netherlands.Google Scholar
  55. Silliman BR, Grosholz ED, Bertness MD, editors. Human impacts on salt marshes: a global perspective. Berkeley: University of California Press; 2009.Google Scholar
  56. Spencer T, Schürch M, Nicholls RJ, Hinkel J, Vafeidis AT, Reef R, McFadden L, et al. Global coastal wetland change under sea-level rise and related stresses: The DIVA Wetland Change Model. Glob and Plan Chan. 2016;139:15–30.CrossRefGoogle Scholar
  57. Thannheiser D, Holland P. The plant communities of New Zealand salt meadows. Glob Ecol Biogeogr Lett. 1994;4:107–15.CrossRefGoogle Scholar
  58. Tiner RW. Field guide to coastal wetland plants of the Southeastern United States. Amherst: University of Massachusetts Press; 1999.Google Scholar
  59. Tiner RW. Field guide to tidal wetland plants of the Northeastern United States and neighboring Canada. Vegetation of beaches, tidal flats, rocky shores, marshes, swamps, and coastal ponds. Amherst: University of Massachusetts Press; 2009.CrossRefGoogle Scholar
  60. Tiner RW. Tidal wetlands primer: an introduction to their ecology, natural history, status, and conservation. Amherst: University of Massachusetts Press; 2013.Google Scholar
  61. Valiela I, Kinney E, Culbertson J, Peacock E, Smith S. Global losses of mangroves and salt marshes. In: Duarte CM, editor. Global loss of coastal habitats. Rates, causes, and consequences. Fundación BBVA; 2009. p. 109–42.
  62. Viereck LA, Dyrness CT, Batten AR, Wenzlik KJ. The Alaska vegetation classification system. Portland: USDA Forest Service, Pacific Northwest Research Station; 1992. General Technical Report PNW-GTR-286.CrossRefGoogle Scholar
  63. Warren RS, Niering WA. Vegetation change on a Northeast tidal marsh: interaction of sea-level rise and marsh accretion. Ecology. 1993;74:96–103.CrossRefGoogle Scholar
  64. West RC. Tidal salt-marsh and mangal formations of Middle and South America. Chapter 9. In: Chapman VJ, editor. Wet coastal ecosystems. Amsterdam: Elsevier Scientific; 1977. p. 193–213.Google Scholar
  65. Woodwell GM, Rich PH, Mall CSA. Carbon in estuaries. In: Woodwell GM, Pecari EV, editors. Carbon in the biosphere. US AEC. 1973. 22(1):240.Google Scholar
  66. Yang SL, Chen JY. Coastal salt marshes and mangrove swamps in China. Chinese J Oceanol Limnol. 1995;13:318–24.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Wetlands and Environmental Education and Research, Inc.LeverettUSA
  2. 2.Nova Scotia Department of Natural ResourcesKentvilleCanada

Personalised recommendations