Mathematics in Egypt: Mathematical Leather Roll

  • Milo Gardner
Living reference work entry

Henry Rhind purchased the 10 × 17′′ Egyptian mathematical leather roll (EMLR) and the Rhind Mathematical Papyrus (RMP) on the streets of Cairo, Egypt, in 1858. Upon his untimely death, the EMLR and the RMcP were both gifted to the British Museum in 1864. The RMP was published in 1879 and reported as fully decoded in 1927 (Chace, 1927). In 1927 the EMLR was chemically softened and unrolled (Scott & Hall, 1927).

Middle Kingdom hieratic characters were written right to left. There are 26 rational numbers listed. Each rational number was followed by a series of equivalent unit fractions. This entry records the data from left to right for ease of reading.

There are ten binary rational numbers: 1/2, 1/4 (twice), 1/8 (thrice), 1/16 (twice), 1/32, and 1/64. There are seven other even rational numbers: 1/6 (twice – but wrong once), 1/10, 1/12, 1/14, 1/20, and 1/30. Finally, there are nine odd rational numbers: 2/3, 1/3 (twice), 1/5, 1/7, 1/9, 1/11, 1/13, and 1/15.

The British Museum examiners...


Rational Number British Museum Numeration System Unit Fraction Decimal Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Bönning, A., Hilton, P., & Pedersen, J. (2002). Writing a rational number in Egyptian form. The Mathematical Gazette, 86, 432–436.CrossRefGoogle Scholar
  2. Boyer, C. B. (1968). A history of mathematics. New York: Wiley.Google Scholar
  3. Brown, K. S. (1995). Egyptian unit fractions.
  4. Bruckheimer, M., & Salomon, Y. (1977). Some comments on R. J. Gillings’ analysis of the 2/n table in the Rhind Papyrus. Historia Mathematica, 4, 445–452.CrossRefGoogle Scholar
  5. Bruins, E. M. (1953). Fontes Matheseos: Hoofdpunten van Het Prae-Griekse en Griekse Wiskundig Denken. Leiden: Brill.Google Scholar
  6. Bruins, E. M. (1975). Platon et la table égyptienne 2/n. Janus, 46, 253–263.Google Scholar
  7. Bruins, E. M. (1981a). Egyptian arithmetic. Janus, 68, 33–52.Google Scholar
  8. Bruins, E. M. (1981b). Reducible and trivial decompositions concerning Egyptian arithmetics. Janus, 68, 281–297.Google Scholar
  9. Burton, D. M. (2003). History of mathematics: An introduction. Providence: Brown University Press.Google Scholar
  10. Chace, A. B., Bull, L.; Manning, H.P.; and Archibald, R.C. (1927). The Rhind Mathematical Papyrus. Oberlin: Mathematical Association of America.Google Scholar
  11. Collier, M., & Quirke, S. (Eds.). (2004). Lahun papyri: Religious, literary, legal, mathematical and medical. Oxford: Archae press.Google Scholar
  12. Cooke, R. (1997). The history of mathematics. A brief course. New York: Wiley.Google Scholar
  13. Couchoud, S. (1993). Mathématiques égyptiennes. Recherches sur les connaissances mathématiques de l’Egypte pharaonique. Paris: Le Léopard d’Or.Google Scholar
  14. Daressy, G. (1901). Akhmim wood tablets. Le Caire Imprimerie de l’Institut Francais d’Archeologie Orientale, 95–96Google Scholar
  15. Eves, H. (1961). An introduction to the history of mathematics. New York: Holt, Rinehart & Winston.Google Scholar
  16. Fowler, D. H. (1999). The mathematics of Plato’s academy: A new reconstruction. New York: Clarendon Press.Google Scholar
  17. Gardner, M. (2002). The Egyptian mathematical leather roll, attested short term and long term. In G.-. G. Ivor & B. C. Yadav (Eds.), History of the mathematical sciences (pp. 119–134). New Delhi: Hindustan Book Agency.Google Scholar
  18. Gardner, M. (2007). Egyptian Mathematical Leather Roll.
  19. Gardner, M. (2008a). An ancient Egyptian problem and its innovative arithmetic solution (Ganita Bharati, Bulletin of the Society for History of Mathematics, vol 28, pp. 157–173). New Delhi: MD Publications.Google Scholar
  20. Gardner, M. (2008b). Breaking the RMP 2/nth table code.
  21. Gillings, R. J. (1962). The Egyptian mathematical leather roll. Australian Journal of Science, 24, 339–344.Google Scholar
  22. Gillings, R. J. (1972). Mathematics in the time of the Pharaohs. Cambridge, MA: MIT Press. New York: Dover, 1982.Google Scholar
  23. Gillings, R. J. (1974). The recto of the Rhind Mathematical Papyrus: How did the ancient Egyptian Scribe prepare it? Archive for History of Exact Sciences, 12, 291–298.CrossRefGoogle Scholar
  24. Gillings, R. J. (1979). The recto of the RMP and the EMLR. Historia Mathematica, 6, 442–447.CrossRefGoogle Scholar
  25. Gillings, R. J. (1981). The Egyptian Mathematical Leather Role – line 8. How did the scribe do it? Historia Mathematica, 8, 456–457Google Scholar
  26. Glanville, S. R. K. (1927). The mathematical leather roll in the British Museum. Journal of Egyptian Archaeology, 13, 232–238.CrossRefGoogle Scholar
  27. Griffith, F. L. (1898). The Petrie Papyri. Hieratic Papyri from Kahun and Gurob (Principally of the Middle Kingdom). London: Bernard Quaritch.Google Scholar
  28. Gunn, B. G. (1926). Review of “The Rhind Mathematical Papyrus” by T. E. Peet. The Journal of Egyptian Archaeology, 12, 123–137.CrossRefGoogle Scholar
  29. Hultsch, F. (1895). Die Elemente der Aegyptischen Theihungsrechmun 8, Ubersich uber die Lehre von den Zerlegangen, 169–171Google Scholar
  30. Imhausen, A. (2003). Egyptian mathematical texts and their contexts. Science in Context, 6, 367–389.Google Scholar
  31. Joseph, G. G. (1991). The crest of the Peacock: The Non-European roots of mathematics. New York: Penguin.Google Scholar
  32. Karpinski, L. C. (1923). Michigan Mathematical Papyrus Nr. 621. Isis, 5, 20–25.CrossRefGoogle Scholar
  33. Klee, V., & Wagon, S. (1991). Old and new unsolved problems in plane geometry and number theory. Washington, DC: Mathematical Association of America.Google Scholar
  34. Knorr, W. R. (1982). Techniques of fractions in ancient Egypt and Greece. Historia Mathematica, 9, 133–171.CrossRefGoogle Scholar
  35. Legon, J. A. R. (1992). A Kahun mathematical fragment. Discussions in Egyptology, 24, 21–24.Google Scholar
  36. Lüneburg, H. (1993). Zerlgung von Bruchen in Stammbruche. In Leonardi Pisani Liber Abbaci oder Lesevergnügen eines Mathematikers (pp. 81–85). Mannheim: Wissenschafts.Google Scholar
  37. Neugebauer, O. (1957). The exact sciences in antiquity. Providence: Brown University Press.Google Scholar
  38. Ore, O. (1948). Number theory and its history. New York: McGraw-Hill.Google Scholar
  39. Rees, C. S. (1981). Egyptian fractions. Mathematical Chronicle, 10, 13–33.Google Scholar
  40. Robins, G., & Shute, C. (1987). The Rhind Mathematical Papyrus: An ancient Egyptian text. London: British Museum Press.Google Scholar
  41. Robson, E., et al. (2003). The history of mathematical tables from sumer to spreadsheets. Oxford: Oxford University Press.Google Scholar
  42. Sarton, G. (1957). The study of the history of mathematics. New York: Dover.Google Scholar
  43. Scott, A., & Hall, H. R. (1927). Laboratory notes: Egyptian mathematical leather roll of the seventeenth century BC. British Museum Quarterly, 2, 56.CrossRefGoogle Scholar
  44. Sylvester, J. J. (1880). On a point in the theory of vulgar fractions. American Journal of Mathematics, 3, 332–335.CrossRefGoogle Scholar
  45. van der Waerden, B. L. (1954). Science awakening. Gottingen, Germany: Nordoff. English Transactions. Arnold Dresden.Google Scholar
  46. Vymazalova, H. (2002). The wooden tablets from Cairo: The use of the grain unit HK3T in ancient Egypt. Archives Orientalni, 70(1), 27–42.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.California State UniversityFullertonUSA
  2. 2.California State UniversityChicoUSA