Combinatorics in Indian Mathematics

  • Takao Hayashi
Living reference work entry
DOI: https://doi.org/10.1007/978-94-007-3934-5_9223-2
Having prescribed the rule
$$ {C}_n^r={\displaystyle \prod_{k=1}^r\frac{n-k+1}{k}} $$

Keywords

Human Life Serial Number Ancient Time Specific Field Tabular Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

References

  1. Alsdorf, L. (1933) Die Pratyayas. Ein Beitrag zur indischen Mathematik. Zeitschrift für Indologie und Iranistik, 9, 97–153. (Translated into English with notes by S. R. Sarma. The Pratyayas: Indian Contribution to Combinatorics. Indian Journal of History of Science, 26 (1991), 17–61).Google Scholar
  2. Bag, A. K. (1966). Binomial theorem in ancient India. Indian Journal of History of Science, 1, 68–74.Google Scholar
  3. Chakravarti, G. (1932). Growth and development of permutations and combinations in India. Bulletin of the Calcutta Mathematical Society, 24(2), 79–88.Google Scholar
  4. Das, L. R. (1932). La théorie des permutations et des combinations dans le gaṇita hindou. Periodico di matimatiche, 12, 133–140.Google Scholar
  5. Datta, B. (1935). Mathematics of Nemicandra. The Jaina Antiquary, 1(2), 25–44.Google Scholar
  6. Datta, B. & Singh, A. N. (1992). Use of permutations and combinations in India. Revised by K. S. Shukla. Indian Journal of History of Science, 27, 231–249.Google Scholar
  7. Gupta, R. C. (1992). Varāhamihira’s calculation of n C r and Pascal’s triangle. Gaṇita Bhāratī, 14, 45–49.Google Scholar
  8. Hayashi, T. (1979). Permutations, combinations, and enumerations in ancient India (in Japanese). Kagakusi Kenkyu, Ser. II 18.131, 158–171.Google Scholar
  9. Kusuba, T. (1993). Combinatorics and magic squares in India. A study of Nārāyaṇa Paṇḍita’s Gaṇitakaumudī. Chapters 13–14. Ph.D. dissertation, Brown University, Providence, RI.Google Scholar
  10. Kusuba, T., & Plofker, K. (2013). Indian combinatorics. In R. J. Wilson & J. J. Watkins (Eds.), Combinatorics: Ancient & modern (pp. 41–64). Oxford: Oxford University Press.Google Scholar
  11. Patte, F. (2012). Rythme et algorithmes: Le génie mathematique indien. In J. M. Delire (Ed.), Astronomy and mathematics in Ancient India (pp. 159–173). Leuven: Peeters.Google Scholar
  12. Singh, P. (1981). Nārāyaṇa’s treatment of net of numbers. Gaṇita Bhāratī, 3, 16–31.Google Scholar
  13. Singh, P. (1983). Contributions of some Jain Ācāryas to combinatorics. Vaishali Institute Research Bulletin, 4, 90–110.Google Scholar
  14. Singh, P. (1985). The so-called Fibonacci numbers in ancient and medieval India. Historia Mathematica, 12, 229–244.CrossRefGoogle Scholar
  15. Singh, P. (2001). The Gaṇita Kaumudī of Nārāyaṇa Paṇḍita, Chapter XIII: English translation with notes. Gaṇita Bhāratī, 23, 18–82.Google Scholar
  16. Sridharan, R., Sridharan, R., & Srinivas, M. D. (2010). Combinatorial methods in Indian music: Pratyayas in Saṅgītaratnākara of Sārṅgadeva. In C. S. Seshadri (Ed.), Studies in the history of Indian Mathematics (pp. 55–112). New Delhi: Hindustan Book Agency.Google Scholar
  17. Sridharan, R., Sridharan, R., & Srinivas, M. D. (2012). Nārāyaṇa Paṇḍita’s enumeration of combinations and associated representation of numbers as sums of binomial coefficients. Indian Journal of History of Science, 47, 607–631.Google Scholar
  18. Wujastyk, D. (2000). The combinatorics of tastes and humours in classical Indian medicine and mathematics. Journal of Indian Philosophy, 28, 479–495.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Doshisha UniversityKyoto CityJapan