Astronomy in Mesoamerica

Living reference work entry

Latest version View entry history

DOI: https://doi.org/10.1007/978-94-007-3934-5_10270-2

Astronomy in Mesoamerica developed in apparent isolation from the cultural traditions outside of the Americas and its unique advancement provides an important comparison with parallel developments of astronomical science elsewhere in the world. Containing hundreds of distinct ethnic groups and indigenous languages, the Mesoamerican culture area extends south from central Mexico into Belize, Guatemala, Honduras, El Salvador, and Nicaragua. While highly diverse, many of the cultures and language groups in this region share innovations such as intensive maize agriculture, stratified urban development, megalithic architecture, and an elaborate calendrical system consisting of a unique, repeating cycle of 260 days and a cycle of 365 days that estimates the length of the year. Together, these cycles combine to form the 52-year Calendar Round, historically shared by more than 50 linguistic groups in Mesoamerica.

It is clear that the development of writing in Mesoamerica was deeply interwoven...

Keywords

Fixed Cycle Maya Area Distance Number Maya Site Lunar Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

References

  1. Aimers, J. J., & Rice, P. (2006). Astronomy, ritual, and the interpretation of Maya “E-Group” architectural assemblages. Ancient Mesoamerica, 17, 79–96.CrossRefGoogle Scholar
  2. Aldana, G. V. (2011). The Maya calendar correlation problem. In J. M. Steele (Ed.), Calendars and years II: Astronomy and time in the ancient and medieval world. Oxford: Oxbow Books.Google Scholar
  3. Aveni, A. F. (2001). Skywatchers. Austin, TX: University of Texas Press.Google Scholar
  4. Aveni, A. F., Bricker, H. M., & Bricker, V. R. (2003). Seeking the sidereal: Observable planetary stations and the ancient Maya record. Journal for the History of Astronomy, 34, 145–161.CrossRefGoogle Scholar
  5. Bricker, V. R. (2001). A method for dating Venus almanacs in the Borgia Codex. Journal for the History of Astronomy, 26, 21–44.CrossRefGoogle Scholar
  6. Bricker, H. M., & Bricker, V. R. (1983). Classic Maya prediction of solar eclipses. Current Anthropology, 24, 1–23.CrossRefGoogle Scholar
  7. Broda, J. (2006). Zenith observations and the conceptualization of geographical latitude in ancient Mesoamerica: A historical interdisciplinary approach. In Viewing the sky through past and present cultures: Selected papers from the Oxford VII international conference on archaeoastronomy. Phoenix, AZ: Pueblo Grande Museum Anthropological Papers.Google Scholar
  8. Closs, M., Aveni, A. F., & Crowley, B. (1984). The planet Venus and Temple 22 at Copan. Indiana, Berlin, 9, 221–247.Google Scholar
  9. Coggins, C. C. (1983). The Stucco decoration and architectural assemblage of Structure 1-sub, Dzibilchaltun, Yucatan, Mexico, Middle American Research Institute, Publication 49. New Orleans, LA: Tulane University.Google Scholar
  10. Girard, R. (1948). El calendario Maya-Mexica: Origen, función, desarrollo y lugar de procedencia. Mexico City: Editorial Stylo.Google Scholar
  11. Girard, R. (1949). Los chortis ante el problema maya (Vol. 2). Mexico City: Editorial Stylo.Google Scholar
  12. Girard, R. (1962). Los mayas eternos. Mexico City: Libro Mex Editores.Google Scholar
  13. Goodman, J. T. (1897). The archaic Maya inscriptions. In A. P. Maudslay (Ed.), Appendix to Biologia Centrali-Americana (Archaeology) VI. London: Porter http://www.jstor.org/stable/1624039.Google Scholar
  14. Grofe, M. J. (2003, June 5). Calculations of the tropical year and precessional cycles: Two bone fragments from Tikal Burial 116. Archives of the Maya Hieroglyphic Database Project.Google Scholar
  15. Grofe, M. J. (2007). The serpent series: Precession in the Maya Dresden Codex. Dissertation for the Department of Native American Studies, University of California at Davis.Google Scholar
  16. Grofe, M. J. (2011a). Measuring deep time: The sidereal year and the tropical year in Maya inscriptions. In C. Ruggles (Ed.), Ethnoastronomy and archaeoastronomy: Proceedings from the ninth Oxford international symposium on archaeoastronomy (pp. 214–230). Cambridge, UK: Cambridge University Press.Google Scholar
  17. Grofe, M. J. (2011b). The sidereal year and the celestial caiman: Measuring deep time in Maya inscriptions. Archaeoastronomy: The Journal of Astronomy in Culture, XXIV, 56–101.Google Scholar
  18. Jenkins, J. M. (1998). Maya cosmogenesis 2012. Santa Fe, NM: Bear & Company, Inc..Google Scholar
  19. Kaufman, T., & Justeson, J. S. (2001). Epi-Olmec hieroglyphic writing and texts. Austin, TX: Texas Workshop Foundation.Google Scholar
  20. Lounsbury, F. G. (1978). Maya numeration, computation, and calendrical astronomy. In C. C. Gillespie (Ed.), Dictionary of scientific biography (Vol. 15, pp. 759–818). New York: Charles Scribner’s Sons.Google Scholar
  21. Lounsbury, F. G. (1983). The base of the Venus tables of the Dresden codex and its significance for the calendar-correlation problem. In A. F. Aveni & G. Brotherston (Eds.), The proceedings of the 44th international congress of Americanists, BAR international series 174 (pp. 1–26). London: Oxford University Press.Google Scholar
  22. MacLeod, B. (2008, March 2). The 3-11-Pik formula, Lecture delivered at UT Austin Maya meetings, University of Texas.Google Scholar
  23. Malmström, V. (1973). Origin of the Mesoamerican 260-day calendar. Science, 181(4103), 939–941.CrossRefGoogle Scholar
  24. Malmström, V. (1978). A reconstruction of the chronology of Mesoamerican calendrical systems. Journal for the History of Astronomy, 9, 105–116.CrossRefGoogle Scholar
  25. Malmström, V. (1997). Cycles of the Sun, mysteries of the Moon: The calendar in Mesoamerican civilization. Austin, TX: University of Texas Press.Google Scholar
  26. Malmström, V. (1999). An observation on correlating the Mesoamerican and European calendars [Electronic document]. Retrieved from www.dartmouth.edu/~izapa/correlation.html
  27. Martin, S., & Skidmore, J. (2012). Exploring the 584286 correlation between the Maya and European calendars. The PARI Journal, 13(2), 3–16.Google Scholar
  28. Mendez, A., Barnhart, E. L., Powell, C., & Karasik, C. (2005). Astronomical observations from the Temple of the Sun. Archaeoastronomy: The Journal of Astronomy in Culture, 19, 44–73.Google Scholar
  29. Merril, R. H. (1945). Maya sun calendar dictum disproved. American Antiquity, 10, 307–311.CrossRefGoogle Scholar
  30. Milbrath, S. (1988). Astronomical images and orientations in the architecture of Chichen Itza. In A. F. Aveni (Ed.), Proceedings of the 46th international congress of Americanists, BAR international series (pp. 57–80). Amsterdam: Oxford University Press.Google Scholar
  31. Milbrath, S. (1999). Star Gods of the Maya: Astronomy in art, folklore, and calendars. Austin, TX: University of Texas Press.Google Scholar
  32. Nuttall, Z. (1928). Nouvelles lumières sur les civilizations americaines et le système du calendrier. In Proceedings of the 22nd international congress of Americanists, Rome, pp. 119–148.Google Scholar
  33. Rice, P. M. (2007). Maya calendar origins: Monuments, mythistory, and the materialization of time. Austin, TX: University of Texas Press.Google Scholar
  34. Saturno, W., Stuart, D., Aveni, A. F., & Rossi, F. (2012). Ancient Maya astronomical tables from Xultun, Guatemala. Science, 336, 714–717.CrossRefGoogle Scholar
  35. Sprajc, I. (2009). Astronomical and cosmological aspects of Maya architecture and urbanism. In J. A. Rubiño-Martín, J. A. Belmonte, F. Prada, & A. Alberdi (Eds.), Cosmology across cultures, ASP conference series (Vol. 409). San Francisco: Astronomical Society of the Pacific.Google Scholar
  36. Tedlock, B. (1982). Time and the highland Maya. Albuquerque, New Mexico: University of New Mexico Press.Google Scholar
  37. Teeple, J. (1930). Maya astronomy. Contributions to American Archaeology, 1(2). (Washington, DC: Carnegie Publication No. 403, 29-116).Google Scholar
  38. Thompson, J. E. S. (1927). A correlation of the Mayan and European calendars. Anthropological Series, 27(1), 3–22. (Field Museum of Natural History Publication. No. 241).Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2016

Authors and Affiliations

  1. 1.Sacramento City CollegeSacramentoUSA