Skip to main content

Aerothermoelastic Behavior of Flat and Curved Panels

  • Reference work entry
  • 248 Accesses

Synonyms

Aerothermoelasticity; Edge movability; Hypersonic speed; Lyapunov first quantity; Nonlinear aerothermoelastic analysis; Piston aerodynamic theory; Stable/unstable LCO; Thermal loading and degradation

Definitions

Aeroelasticity (AE) is the science which studies the mutual interactions among inertial, elastic, and aerodynamic forces acting on structural members exposed to an airstream, and the influence of this study on design.

Aerothermoelasticity (ATE) is the science that studies the mutual interactions among inertial, elastic, and aerodynamic forces acting on structural members under the combined effect of aerodynamic heating and loading.

Overview

The panel flutter is a form of dynamic aeroelastic instability resulting from the interaction between the motion of a high-speed aerospace vehicle’s skin panel, typical of spacecrafts and missiles, and the aerodynamic loads exerted on that panel by air flowing past one side at supersonic or hypersonic speed and to still air on the...

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-007-2739-7_869
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   4,499.99
Price excludes VAT (USA)
  • ISBN: 978-94-007-2739-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   5,000.00
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. Dowell EH, Edwards J, Strganac TW (2003) Non-linear aeroelasticity. J Aircr 5(40):857–874

    Google Scholar 

  2. Dowell EH (1974) Aeroelasticity of plates and shells. Kluwer, Dordrecht, pp 35–49

    Google Scholar 

  3. Dowell EH (1972) Panel flutter. NASA SP-8004

    Google Scholar 

  4. Librescu L, Marzocca P, Silva WA (2002) Supersonic/hypersonic flutter and postflutter of geometrically imperfect circular cylindrical panels. J Spacecr Rocket 39(5):802–812

    Google Scholar 

  5. Moon FC (1992) Chaotic and fractal dynamics. Wiley, New York

    Google Scholar 

  6. Gee DJ, Sipcic SR (1999) Coupled thermal model for non-linear panel flutter. AIAA J 37(5):624–649

    Google Scholar 

  7. Librescu L, Marzocca P, Silva WA (2004) Linear/non-linear supersonic panel flutter in a high-temperature field. J Aircr 41(4):918–924

    Google Scholar 

  8. Fung YC (1954) The static stability of a two dimensional curved panel in a supersonic flow with an application to panel flutter. J Aeronaut Sci 21:556–565

    MATH  Google Scholar 

  9. Houbolt JC (1965) A study of several aerothermoelastic problems of aircraft structures in high-speed flight, vol 5, Mitteilungen Aus Dem Institute fur Flugzeugstatik und Leichtbau. Verlag Leeman, Zurich

    Google Scholar 

  10. Schaeffer HG, Heard WL Jr (1965) Flutter of a flat panel subjected to a non-linear temperature distribution. AIAA J 8:1918–1923

    Google Scholar 

  11. Ventres CS, Dowell EH (1970) Comparison of theory and experiment for non-linear flutter of loaded plates. AIAA J 8:2022–2030

    MATH  Google Scholar 

  12. Yang TY, Han AD (1976) Flutter of thermally buckled finite element panels. AIAA J 14:975–977

    Google Scholar 

  13. Xue DY, Mei C (1993) Finite element non-linear panel flutter with arbitrary temperatures in supersonic flow. AIAA J 31(1):154–162

    MATH  Google Scholar 

  14. Zhou RC, Xue DY, Mei C (1994) Finite element time domain modal formulation for non-linear flutter of composite panels. AIAA J 32(10):2044–2052

    MATH  Google Scholar 

  15. Pourtakdoust SH, Fazelzadeh SA (2005) Non-linear aerothermoelastic behavior of skin panel with wall shear stress effect. J Therm Stresses 28:147–169

    Google Scholar 

  16. Bein T, Friedmann PP, Zhong X, Nydick I (1993) Hypersonic flutter of a curved shallow panel with aerodynamic heating. AIAA Paper 93-1318

    Google Scholar 

  17. Amabili M, Pellicano F (2001) Non-linear supersonic flutter of circular cylindrical shells. AIAA J 39(4):564–573

    Google Scholar 

  18. Kubenko VD, Koval’chuk PS (2004) Influence of initial geometric imperfections on the vibration and dynamic stability of elastic shells. Int Appl Mech 40(88):47–877

    Google Scholar 

  19. Walter JH, Gerald WB, Ronald OS (1971) The influence of a high velocity fluid environment on the static and dynamic stability of thin cylindrical shell structures. In: International association for shell structures, Pacific symposium on hydromechanically loaded shells: part I, Honolulu, 10–15 October 1971

    Google Scholar 

  20. Bolotin VV, Grishko AA, Kounadis AN, Gantes CJ (1998) Non-linear panel flutter in remote post-critical domains. Int J Nonlinear Mech 33(5):753–764

    MATH  Google Scholar 

  21. Bolotin VV (1963) Stability of elastic bodies in a gas flow. In: Herrmann G (ed) Nonconservative problems of the theory of elastic stability, 1st edn. Corrected and Authorized edn. Pergamon, New York, pp 199–306 (translated from Russian)

    Google Scholar 

  22. Fazelzadeh SA (2004) Chaotic analysis of non-linear curved-panel flutter under supersonic flow. In: Seventh international symposium transport noise and vibration, Petersburg, 8–10 June 2004

    Google Scholar 

  23. Nowacki W (1986) Thermo-elasticity. Pergamon, New York

    Google Scholar 

  24. Bolotin VV, Grishko AA, Panov MY (2002) Effect of damping on the postcritical behaviour of autonomous non-conservative systems. Int J Nonlinear Mech 37(7):1163–1179

    MATH  Google Scholar 

  25. Ellen CH (1968) Influence of structural damping on panel flutter. AIAA J 6:2169–2174

    Google Scholar 

  26. Drozdov A (1998) Viscoelastic structures: mechanics of growth and aging. Academic, New York

    MATH  Google Scholar 

  27. Lottati I (1985) The role of damping on supersonic panel flutter. AIAA J 23:1640–1642

    Google Scholar 

  28. Hilton HH (2001) Implications and constraints of time-independent poisson ratios in linear isotropic and anisotropic viscoelasticity. J Elast 63(3):221–251

    MATH  Google Scholar 

  29. Ashley H, Zartarian G (1956) Piston theory – a new aerodynamic tool for the aeroelastician. J Aerosp Sci 23(10):1109–1118

    Google Scholar 

  30. Resende HB (1993) Hypersonic panel flutter in a rarefied atmosphere. NASA Contractor Report 4514, Grant NGL-05-020-243, May 1993

    Google Scholar 

  31. Librescu L (1965/1967) Aeroelastic stability of orthotropic heterogeneous thin panels in the vicinity of the flutter critical boundary. J Méc Pt I 4(1):51; Pt II 6(1):133

    Google Scholar 

  32. Librescu L, Marzocca P, Silva WA (2002) Post-flutter instability of a shell type structures in hypersonic flow field. J Spacecr Rockets 39(5):802

    Google Scholar 

  33. Dowell EH (1969) Non-linear flutter of curved plates, Part 1. AIAA J 7(3):424–431

    MATH  Google Scholar 

  34. Dowell EH (1970) Non-linear flutter of curved plates, Part 2. AIAA J 8(2):259–261

    Google Scholar 

  35. William LK (1996) Analysis of hypersonic aircraft hat-stiffened panels with varying face sheet geometry and fiber orientation. NASA Technical Memorandum 4770, December 1996

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laith K. Abbas .

Editor information

Editors and Affiliations

Appendix A: Dimensionless Parameters

Appendix A: Dimensionless Parameters

\( \overline{W} = w/a{ \ } \)
\( \hat{\overline{W}} = \hat{w}/a{ \ } \)
\( \xi = x/a{ \ } \)
\( \bar{t} = t{\Omega_0}{ \ } \)
\( {\Omega_0} = {{(\pi /a)}^2}\sqrt {{D/{\rho_m}h}} { \ } \)
\( {\bar{\Omega}} = {\Omega_0}a/{c_{\infty }} \)
\( \bar{h} = h/a{ \ } \)
\( \hat{h} = h/{\Re_x} \)
\( P_z^{stat } = {\Delta}P_z^{stat }(x){a^4}/{D_0}h \)
\( {T_{cr }} = {D_0}/Eh{a^2}{\alpha_0}{ \ } \)
\( \bar{\rho } = ({\rho_m}/{\rho_{\infty }}) \)
\( H \approx {a^2}/(8{\Re_x}) \)
\( \mathop{\tau}\limits^{* } = \mathop{T}\limits^{* } /{T_{cr}}\)
\(\mathop T\limits^* = \mathop{\tau}\limits^{* } \cos (\pi \xi)\)

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Abbas, L.K., Xiaoting, R., Marzocca, P. (2014). Aerothermoelastic Behavior of Flat and Curved Panels. In: Hetnarski, R.B. (eds) Encyclopedia of Thermal Stresses. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2739-7_869

Download citation