Skip to main content

Asymptotic Behavior in Time

  • Reference work entry
Encyclopedia of Thermal Stresses
  • 70 Accesses

Synonyms

Decay rate; Longtime behavior in thermoelasticity

Overview

We are interested to study the longtime behavior for a linear one-dimensional thermoelastic system where the hyperbolic elastic system is joined with the parabolic heat equation. By some results in semigroup theory, we prove the exponential decay of the solutions related to the associated initial boundary value problem. For a detailed study in more general cases, some references are given at the end of this section.

A Simple Model in Thermoelasticity

The One-Dimensional Linear Thermoelastic System

For \( T\,> 0 \), we consider the following one-dimensional linear thermoelastic system:

$$ {u_{tt }}-\alpha {\,}{u_{xx }}+\gamma {\,}{\theta_x}=0\quad \quad \mathrm{ in}\,\,(0,\ell )\times (0,T) $$
(1)
$$ {\theta_t}-k{\,}{\theta_{xx }}+\gamma {\,}{u_{xt }}=0\quad \quad \mathrm{ in}\,(0,\ell )\times (0,T) $$
(2)

supplemented with initial conditions

$$ u(x,0)={u_0}(x),\quad {u_t}(x,0)={u_1}(x)\quad \quad \mathrm{ in}\,(0,\ell...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 3,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burns JA, Liu Z, Zheng S (1993) On the energy decay of a linear thermoelastic bar. J Math Anal Appl 179(2):574–591

    MATH  Google Scholar 

  2. Carlson DE (1972) Linear thermoelasticity. In: Truesdell C (ed) Handbuch der Physik, vol VIA/2. Springer, Berlin, pp 297–345

    Google Scholar 

  3. Chiriţă S (1987) On the asymptotic partition of energy in linear thermoelasticity. Quart Appl Math 45(2):327–340

    MATH  Google Scholar 

  4. Dafermos CM (1968) On the existence and the asymptotic stability of solutions to the equations of linear thermoelasticity. Arch Ration Mech Anal 29:241–271

    MATH  Google Scholar 

  5. Dassios G, Grillakis M (1984) Dissipation rates and partition of energy in thermoelasticity. Arch Ration Mech Anal 87(1):49–91

    MATH  Google Scholar 

  6. Friedman A (1969) Partial differential equations. Holt Rinehart and Winston, New York

    MATH  Google Scholar 

  7. Hansen SW (1992) Exponential energy decay in a linear thermoelastic rod. J Math Anal Appl 167(2):429–442

    MATH  Google Scholar 

  8. Henry DB, Perissinitto A Jr, Lopes O (1993) On the essential spectrum of a semigroup of thermoelasticity. Nonlinear Anal 21(1):65–75

    MATH  Google Scholar 

  9. Huang FL (1985) Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces. Annu Differ Equ 1(1):43–56

    MATH  Google Scholar 

  10. Jiang S (1992) Global solutions of the Neumann problem in one-dimensional nonlinear thermoelasticity. Nonlinear Anal 19(2):107–121

    Google Scholar 

  11. Jiang S (1998) Global existence and exponential decay of spherically symmetric solutions to thermoelasticity equations. Chinese Ann Math Ser A 19(5):629–640

    MATH  Google Scholar 

  12. Jiang S, Racke R (2000) Evolution equations in thermoelasticity, vol 112, Chapman & Hall/CRC monographs and surveys in pure and applied mathematics. Chapman & Hall/CRC, Boca Raton

    MATH  Google Scholar 

  13. Jiang S, Muñoz Rivera JE, Racke R (1998) Asymptotic stability and global existence in thermoelasticity with symmetry. Quart Appl Math 56(2):259–275

    MATH  Google Scholar 

  14. Kawashima S, Shibata Y (1995) On the Neumann problem of one-dimensional nonlinear thermoelasticity with time-independent external forces. Czechoslovak Math J 45(1):39–67

    MATH  Google Scholar 

  15. Kim JU (1992) On the energy decay of a linear thermoelastic bar and plate. SIAM J Math Anal 23(4):889–899

    MATH  Google Scholar 

  16. Lebeau G, Zuazua E (1997) Sur la décroissance non uniforme de l’énergie dans le système de la thermoélasticité linéaire. C R Acad Sci Paris Sér I Math 324(4):409–415

    MATH  Google Scholar 

  17. Lebeau G, Zuazua E (1999) Decay rates for the three-dimensional linear system of thermoelasticity. Arch Ration Mech Anal 148(3):179–231

    MATH  Google Scholar 

  18. Liu Z, Zheng S (1993) Exponential stability of the semigroup associated with a thermoelastic system. Quart Appl Math 51(3):535–545

    MATH  Google Scholar 

  19. Liu Z, Zheng S (1999) Semigroups associated with dissipative systems, vol 398, Chapman & Hall/CRC research notes in mathematics. Chapman & Hall/CRC, Boca Raton

    MATH  Google Scholar 

  20. Marzocchi A, Muñoz Rivera JE, Naso MG (2003) Transmission problem in thermoelasticity with symmetry. IMA J Appl Math 68(1):23–46

    MATH  Google Scholar 

  21. Muñoz Rivera JE (1992) Energy decay rates in linear thermoelasticity. Funkcial Ekvac 35(1):19–30

    MATH  Google Scholar 

  22. Muñoz Rivera JE (1997) Asymptotic behaviour in n-dimensional thermoelasticity. Appl Math Lett 10(5):47–53

    MATH  Google Scholar 

  23. Muñoz Rivera JE, Naso MG (2007) About asymptotic behavior for a transmission problem in hyperbolic thermoelasticity. Acta Appl Math 99(1):1–27

    MATH  Google Scholar 

  24. Nirenberg L (1959) On elliptic partial differential equations. Ann Scuola Norm Sup Pisa 13(3):115–162

    MATH  Google Scholar 

  25. Prüss J (1984) On the spectrum of C0-semigroups. Trans Amer Math Soc 284(2):847–857

    MATH  Google Scholar 

  26. Racke R (1988) Initial boundary value problems in one-dimensional nonlinear thermoelasticity. Math Methods Appl Sci 10(5):517–529

    MATH  Google Scholar 

  27. Racke R, Shibata Y (1991) Global smooth solutions and asymptotic stability in one-dimensional nonlinear thermoelasticity. Arch Ration Mech Anal 116(1):1–34

    MATH  Google Scholar 

  28. Racke R, Shibata Y, Zheng S (1993) Global solvability and exponential stability in one-dimensional nonlinear thermoelasticity. Quart Appl Math 51(4):751–763

    MATH  Google Scholar 

  29. Slemrod M (1981) Global existence, uniqueness, and asymptotic stability of classical smooth solutions in one-dimensional nonlinear thermoelasticity. Arch Ration Mech Anal 76(2):97–133

    MATH  Google Scholar 

  30. Wyler A (1994) Stability of wave equations with dissipative boundary conditions in a bounded domain. Differ Integral Equ 7(2):345–366

    MATH  Google Scholar 

Further Reading

  • Avalos G, Lasiecka I (1996) Exponential stability of a thermoelastic system without mechanical dissipation. Rend Istit Mat Univ Trieste 28(Suppl):1–28 (1997), dedicated to the memory of Pierre Grisvard

    MATH  Google Scholar 

  • Avalos G, Lasiecka I (1998) Exponential stability of a thermoelastic system with free boundary conditions without mechanical dissipation. SIAM J Math Anal 29(1):155–182 (electronic)

    MATH  Google Scholar 

  • Avalos G, Lasiecka I (1998) Exponential stability of an uncontrolled thermoelastic system with varying boundary conditions. Appl Anal 68(1–2):31–49

    MATH  Google Scholar 

  • Avalos G, Lasiecka I (1998) Uniform decays in nonlinear thermoelastic systems. In: Optimal control (Gainesville, FL, 1997), vol 15, Applied optimization. Kluwer, Dordrecht, pp 1–23

    Google Scholar 

  • Bonfanti G, Muñoz Rivera JE, Naso MG (2008) Global existence and exponential stability for a contact problem between two thermoelastic beams. J Math Anal Appl 345(1):186–202

    MATH  Google Scholar 

  • Bonfanti G, Fabrizio M, Muñoz Rivera JE, Naso MG (2010) On the energy decay for a thermoelastic contact problem involving heat transfer. J Therm Stress 33(11):1049–1065

    Google Scholar 

  • Chiriƫă S, Ciarletta M (2008) On the structural stability of thermoelastic model of porous media. Math Methods Appl Sci 31(1):19–34

    Google Scholar 

  • Ciarletta M, Chiriƫă S (2002) Asymptotic partition in the linear thermoelasticity backward in time. In: Mathematical models and methods for smart materials: Cortona, 2001, vol 62, Series on advances in mathematics for applied sciences. World Scientific, River Edge, pp 31–41

    Google Scholar 

  • D’Apice C, Ciarletta M, Chiriƫă S (2011) Saint-Venant decay rates for an inhomogeneous isotropic linear thermoelastic strip. J Math Anal Appl 381(1):121–133

    MATH  Google Scholar 

  • Fabrizio M, Lazzari B, Muñoz Rivera JE (1999) Asymptotic behavior in linear thermoelasticity. J Math Anal Appl 232(1):138–165

    MATH  Google Scholar 

  • Fabrizio M, Lazzari B, Muñoz Rivera JE (2000) Asymptotic behaviour of a thermoelastic plate of weakly hyperbolic type. Differ Integral Equ 13(10–12):1347–1370

    MATH  Google Scholar 

  • Fabrizio M, Lazzari B, Muñoz Rivera JE (2007) Asymptotic behaviour for a twodimensional thermoelastic model. Math Methods Appl Sci 30(5):549–566

    MATH  Google Scholar 

  • Fatori LH, Muñoz Rivera JE (2001) Energy decay for hyperbolic thermoelastic systems of memory type. Quart Appl Math 59(3):441–458

    MATH  Google Scholar 

  • Giorgi C, Pata V (2001) Stability of abstract linear thermoelastic systems with memory. Math Models Methods Appl Sci 11(4):627–644

    MATH  Google Scholar 

  • Giorgi C, Naso MG, Pata V, Potomkin M (2009) Global attractors for the extensible thermoelastic beam system. J Differ Equ 246(9):3496–3517

    MATH  Google Scholar 

  • Grasselli M, Muñoz Rivera JE, Pata V (2005) On the energy decay of the linear thermoelastic plate with memory. J Math Anal Appl 309(1):1–14

    MATH  Google Scholar 

  • Lasiecka I (1999) Uniform decay rates for full von Karman system of dynamic thermoelasticity with free boundary conditions and partial boundary dissipation. Commun Partial Differ Equ 24(9–10):1801–1847

    MATH  Google Scholar 

  • Liu WJ, Zuazua E (2001) Uniform stabilization of the higher-dimensional system of thermoelasticity with a nonlinear boundary feedback. Q Appl Math 59(2):269–314

    Google Scholar 

  • Muñoz Rivera JE, Qin Y (2002) Global existence and exponential stability in one-dimensional nonlinear thermoelasticity with thermal memory. Nonlinear Anal Ser A Theory Methods 51(1):11–32

    MATH  Google Scholar 

  • Qin Y, Ma Z, Yang X (2010) Exponential stability for nonlinear thermoelastic equations with second sound. Nonlinear Anal Real World Appl 11(4):2502–2513

    MATH  Google Scholar 

  • Zhang X, Zuazua E (2003) Decay of solutions of the system of thermoelasticity of type III. Commun Contemp Math 5(1):25–83

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Grazia Naso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Naso, M.G. (2014). Asymptotic Behavior in Time. In: Hetnarski, R.B. (eds) Encyclopedia of Thermal Stresses. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2739-7_531

Download citation

Publish with us

Policies and ethics