Skip to main content

Analysis of Gene Networks in Cerebellar Development

  • Reference work entry
Handbook of the Cerebellum and Cerebellar Disorders
  • 713 Accesses

Abstract

The purpose of this chapter is to provide a brief overview of the major gene networks that control cerebellum development. To simplify this task, all developmental control genes relevant to the cerebellum have been grouped into four categories based on 13 spontaneous mouse mutations with cerebellar developmental defects and for which the aberrant gene has been identified. These categories include genetic switch genes and genes for morphogenesis, physiology, and metabolism. Three distinct gene targetome studies are discussed in order to introduce some signature networks of major importance to cerebellum development based on the genetic switches En2, Atoh1 (Math1), and Rora (RORα). Similarly, array approaches have begun to reveal gene expression changes due to mutations in physiology and metabolism genes, such as Kcnj6 (Girk2) and Agtpbp1 (Nna1), respectively. These studies are revealing the interplay between transcription, morphogenetic factors, physiology, and metabolism during development. Lastly, genomics and informatics approaches are uncovering new markers of all cerebellar cell types at all stages that will be useful in the future for further clarifying the complex and often reciprocal nature of developmental mechanisms in the nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Ackerman SL, Kozak LP, Przyborski SA, Rund LA, Boyer BB, Knowles BB (1997) The mouse rostral cerebellar malformation gene encodes an UNC-5-like protein. Nature 386:838–842

    Article  PubMed  CAS  Google Scholar 

  • Baader SL, Vogel MW, Sanlioglu S, Zhang X, Oberdick J (1999) Selective disruption of “late onset” sagittal banding patterns by ectopic overexpression of Engrailed-2 in cerebellar Purkinje cells. J Neurosci 19:5370–5379

    PubMed  CAS  Google Scholar 

  • Ben-Arie N, McCall AE, Berkman S, Eichele G, Bellen HJ, Zoghbi HY (1996) Evolutionary conservation of sequence and expression of the bHLH protein Atonal suggests a conserved role in neurogenesis. Hum Mol Genet 5:1207–1216

    Article  PubMed  CAS  Google Scholar 

  • Ben-Arie N, Bellen HJ, Armstrong DL, McCall AE, Gordadze PR, Guo Q, Matzuk MM, Zoghbi HY (1997) Math1 is essential for genesis of cerebellar granule neurons. Nature 390:169–172

    Article  PubMed  CAS  Google Scholar 

  • Boukhtouche F, Doulazmi M, Frederic F, Dusart I, Brugg B, Mariani J (2006) RORα, a pivotal nuclear receptor for Purkinje neuron survival and differentiation: from development to ageing. Cerebellum 5:97–104

    Article  PubMed  CAS  Google Scholar 

  • Broccoli V, Boncinelli E, Wurst W (1999) The caudal limit of Otx2 expression positions the isthmic organizer. Nature 401:164–168

    Article  PubMed  CAS  Google Scholar 

  • Brown D, Yu BD, Joza N, Bénit P, Meneses J, Firpo M, Rustin P, Penninger JM, Martin GR (2006) Loss of Aif function causes cell death in the mouse embryo, but the temporal progression of patterning is normal. Proc Natl Acad Sci USA 103:9918–9923

    Article  PubMed  CAS  Google Scholar 

  • Caddy KW, Biscoe TJ (1979) Structural and quantitative studies on the normal C3H and Lurcher mutant mouse. Philos Trans R Soc Lond B Biol Sci 287:167–201

    Article  PubMed  CAS  Google Scholar 

  • Carletti B, Rossi F (2008) Neurogenesis in the cerebellum. Neuroscientist 14:91–100

    Article  PubMed  Google Scholar 

  • Caviness V, Rakic P (1978) Mechanisms of cortical development: a view from mutations in mice. Annu Rev Neurosci 1:297–326

    Article  PubMed  Google Scholar 

  • Chen L, Chetkovich DM, Petralia RS, Sweeney NT, Kawasaki Y, Wenthold RJ, Bredt DS, Nicoll RA (2000) Stargazin regulates synaptic targeting of AMPA receptors by two distinct mechanisms. Nature 408:936–943

    Article  PubMed  CAS  Google Scholar 

  • Chung S, Leung A, Han BS, Chang MY, Moon JI, Kim CH, Hong S, Pruszak J, Isacson O, Kim KS (2009) Wnt1-lmx1a forms a novel autoregulatory loop and controls midbrain dopaminergic differentiation synergistically with the SHH-FoxA2 pathway. Cell Stem Cell 5:646–658

    Article  PubMed  CAS  Google Scholar 

  • Danielian PS, McMahon AP (1996) Engrailed-1 as a target of the Wnt-1 signalling pathway in vertebrate midbrain development. Nature 383:332–334

    Article  PubMed  CAS  Google Scholar 

  • Díaz E, Ge Y, Yang YH, Loh KC, Serafini TA, Okazaki Y, Hayashizaki Y, Speed TP, Ngai J, Scheiffele P (2002) Molecular analysis of gene expression in the developing pontocerebellar projection system. Neuron 36:417–434

    Article  PubMed  Google Scholar 

  • Donato R, Page KM, Koch D, Nieto-Rostro M, Foucault I, Davies A, Wilkinson T, Rees M, Edwards FA, Dolphin AC (2006) The ducky(2 J) mutation in Cacna2d2 results in reduced spontaneous Purkinje cell activity and altered gene expression. J Neurosci 26:12576–12586

    Article  PubMed  CAS  Google Scholar 

  • Doulazmi M, Frederic F, Lemaigre-Dubreuil Y, Hadj-Sahraoui N, Delhaye-Bouchaud N, Mariani J (1999) Cerebellar Purkinje cell loss during life span of the heterozygous staggerer mouse (RORα+/sg) is gender-related. J Comp Neurol 411:267–273

    Article  PubMed  CAS  Google Scholar 

  • Doyle JP, Dougherty JD, Heiman M, Schmidt EF, Stevens TR, Ma G, Bupp S, Shrestha P, Shah RD, Doughty ML, Gong S, Greengard P, Heintz N (2008) Application of a translational profiling approach for the comparative analysis of CNS cell types. Cell 135:749–762

    Article  PubMed  CAS  Google Scholar 

  • Dumesnil-Bousez N, Sotelo C (1992) Early development of the Lurcher cerebellum: Purkinje cell alterations and impairment of synaptogenesis. J Neurocytol 21:506–529

    Article  PubMed  CAS  Google Scholar 

  • Dussault L, Fawcett D, Matthyssen A, Bader JA, Giguere V (1998) Orphan nuclear receptor ROR alpha-deficient mice display the cerebellar defects of staggerer. Mech Dev 70:147–153

    Article  PubMed  CAS  Google Scholar 

  • Falconer DS (1951) Two new mutants, “trembler” and “reeler”, with neurological actions in the house mouse (Mus Musculus L). J Genet 50:192–201

    Article  Google Scholar 

  • Fernandez-Gonzalez A, La Spada AR, Treadaway J, Higdon JC, Harris BS, Sidman RL, Morgan JI, Zuo J (2002) Purkinje cell degeneration (pcd) phenotypes caused by mutations in the axotomy-induced gene, Nna1. Science 295:1904–1906

    Article  PubMed  CAS  Google Scholar 

  • Fletcher CF, Lutz CM, O'Sullivan TN, Shaughnessy JD, Hawkes R, Frankel WN, Copeland NG, Jenkins NA (1996) Absence epilepsy in tottering mutant mice is associated with calcium channel defects. Cell 87:607–617

    Article  PubMed  CAS  Google Scholar 

  • Flora A, Klisch TJ, Schuster G, Zoghbi HY (2009) Deletion of Atoh1 disrupts Sonic Hedgehog signaling in the developing cerebellum and prevents medulloblastoma. Science 326:1424–1427

    Article  PubMed  CAS  Google Scholar 

  • Ford GD, Ford BD, Steele EC Jr, Gates A, Hood D, Matthews MA, Mirza S, Macleish PR (2008) Analysis of transcriptional profiles and functional clustering of global cerebellar gene expression in PCD3J mice. Biochem Biophys Res Commun 377:556–561

    Article  PubMed  CAS  Google Scholar 

  • Friedman GC, O’Leary DDM (1996) Retroviral misexpression of engrailed genes in the chick optic tectum perturbs the topographic targeting of retinal axons. J Neurosci 16:5498–5509

    PubMed  CAS  Google Scholar 

  • Gharani N, Benayed R, Mancuso V, Brzustowicz LM, Millonig JH (2004) Association of the homeobox transcription factor ENGRAILED 2,3 with autism spectrum disorder. Mol Psychiatry 9:474–484

    Article  PubMed  CAS  Google Scholar 

  • Gold DA, Baek SH, Schork NJ, Rose DW, Larsen DD, Sachs BD, Rosenfeld MG, Hamilton BA (2003) RORalpha coordinates reciprocal signaling in cerebellar development through sonic hedgehog and calcium-dependent pathways. Neuron 40:1119–1131

    Article  PubMed  CAS  Google Scholar 

  • Hamilton BA, Frankel WN, Kerrebrock AW, Hawkins TL, FitzHugh W, Kusumi K, Russell LB, Mueller KL, van Berkel V, Birren BW, Kruglyak L, Lander ES (1996) Disruption of the nuclear hormone receptor RORalpha in staggerer mice. Nature 379:736–739

    Article  PubMed  CAS  Google Scholar 

  • Heckroth JA, Goldowitz D, Eisenman LM (1990) Olivocerebellar fiber maturation in normal and lurcher mutant mice: defective development in lurcher. J Comp Neurol 291:415–430

    Article  PubMed  CAS  Google Scholar 

  • Herrup K, Mullen RJ (1979) Staggerer chimeras: intrinsic nature of Purkinje cell defects and implications for normal cerebellar development. Brain Res 178:443–457

    Article  PubMed  CAS  Google Scholar 

  • Herrup K, Wilczynski SL (1982) Cerebellar cell degeneration in the leaner mutant mouse. Neuroscience 7:2185–2196

    Article  PubMed  CAS  Google Scholar 

  • Hoebeek FE, Khosrovani S, Witter L, De Zeeuw CI (2008) Purkinje cell input to cerebellar nuclei in tottering: ultrastructure and physiology. Cerebellum 7:547–558

    Article  PubMed  Google Scholar 

  • Holst MI, Maercker C, Pintea B et al (2008) Engrailed-2 regulates genes related to vesicle formation and transport in cerebellar Purkinje cells. Mol Cell Neurosci 38:495–504

    Article  PubMed  CAS  Google Scholar 

  • Hoshino M, Nakamura S, Mori K, Kawauchi T, Terao M, Nishimura YV, Fukuda A, Fuse T, Matsuo N, Sone M, Watanabe M, Bito H, Terashima T, Wright CV, Kawaguchi Y, Nakao K, Nabeshima Y (2005) Ptf1a, a bHLH transcriptional gene, defines GABAergic neuronal fates in cerebellum. Neuron 47:201–213

    Article  PubMed  CAS  Google Scholar 

  • Isaacs KR, Abbott LC (1992) Development of the paramedian lobule of the cerebellum in wild-type and tottering mice. Dev Neurosci 14:386–393

    Article  PubMed  CAS  Google Scholar 

  • Iscru E, Serinagaoglu Y, Schilling K, Tian J, Bowers-Kidder SL, Zhang R, Morgan JI, DeVries AC, Nelson RJ, Zhu MX, Oberdick J (2009) Sensorimotor enhancement in mouse mutants lacking the Purkinje cell-specific Gi/o modulator, Pcp2(L7). Mol Cell Neurosci 40:62–75

    Article  PubMed  CAS  Google Scholar 

  • Jarvis CI, Staels B, Brugg B, Lemaigre-Dubreuil Y, Tedgui A, Mariani J (2002) Age-related phenotypes in the staggerer mouse expand the RORα nuclear receptor’s role beyond the cerebellum. Mol Cell Endocrinol 186:1–5

    Article  PubMed  CAS  Google Scholar 

  • Kallen JA, Schlaeppi JM, Bitsch F, Geisse S, Geiser M, Delhon I, Fournier B (2002) X-ray structure of the hRORalpha LBD at 1.63 A: structural and functional data that cholesterol or a cholesterol derivative is the natural ligand of RORalpha. Structure 10:1697–1707

    Article  PubMed  CAS  Google Scholar 

  • Kano M, Hashimoto K, Kurihara H, Watanabe M, Inoue Y, Aiba A, Tonegawa S (1997) Persistent multiple climbing fiber innervation of cerebellar Purkinje cells in mice lacking mGluR1. Neuron 18:71–79

    Article  PubMed  CAS  Google Scholar 

  • Kerjan G, Dolan J, Haumaitre C, Schneider-Maunoury S, Fujisawa H, Mitchell KJ, Chédotal A (2005) The transmembrane semaphorin Sema6A controls cerebellar granule cell migration. Nat Neurosci 8:1516–1524

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita-Kawada M, Oberdick J, Zhu MX (2004) A Purkinje cell specific GoLoco domain protein, L7/Pcp-2, modulates receptor-mediated inhibition of Cav2.1 Ca2+ channels in a dose-dependent manner. Brain Res Mol Brain Res 132:73–86

    Article  PubMed  CAS  Google Scholar 

  • Klein JA, Longo-Guess CM, Rossmann MP, Seburn KL, Hurd RE, Frankel WN, Bronson RT, Ackerman SL (2002) The harlequin mouse mutation downregulates apoptosis-inducing factor. Nature 419:367–374

    Article  PubMed  CAS  Google Scholar 

  • Klisch TJ, Xi Y, Flora A, Wang L, Li W, Zoghbi HY (2011) In vivo Atoh1 targetome reveals how a proneural transcription factor regulates cerebellar development. Proc Natl Acad Sci USA 108:3288–3293

    Article  PubMed  CAS  Google Scholar 

  • Koibuchi N (2008) The role of thyroid hormone on cerebellar development. Cerebellum 7:530–533

    Article  PubMed  CAS  Google Scholar 

  • Landis DM, Sidman RL (1978) Electron microscopic analysis of postnatal histogenesis in the cerebellar cortex of staggerer mutant mice. J Comp Neurol 179:831–863

    Article  PubMed  CAS  Google Scholar 

  • Laurie DJ, Wisden W, Seeburg PH (1992) The distribution of thirteen GABAA receptor subunit mRNAs in the rat brain. III. Embryonic and postnatal development. J Neurosci 12:4151–4172

    PubMed  CAS  Google Scholar 

  • Lawrence PA, Struhl G (1982) Further studies of the engrailed phenotype in Drosophila. EMBO J 1:827–833

    PubMed  CAS  Google Scholar 

  • Lein ES et al (2007) Genome-wide atlas of gene expression in the adult mouse brain. Nature 445:168–176. doi:10.1038/nature05453

    Article  PubMed  CAS  Google Scholar 

  • Li G, Post J, Koibuchi N, Sajdel-Sulkowska EM (2004) Impact of thyroid hormone deficiency on the developing CNS: cerebellar glial and neuronal protein expression in rat neonates exposed to antithyroid drug propylthiouracil. Cerebellum 3:100–106

    Article  PubMed  CAS  Google Scholar 

  • Li J, Ma Y, Teng YD, Zheng K, Vartanian TK, Snyder EY, Sidman RL (2006) Purkinje neuron degeneration in nervous (nr) mutant mice is mediated by a metabolic pathway involving excess tissue plasminogen activator. PNAS 103:7847–7852

    Article  PubMed  CAS  Google Scholar 

  • Li J, Gu X, Ma Y, Calicchio ML, Kong D, Teng YD, Yu L, Crain AM, Vartanian TK, Pasqualini R, Arap W, Libermann TA, Snyder EY, Sidman RL (2010) Nna1 mediates Purkinje cell dendritic development via lysyl oxidase propeptide and NF-κB signaling. Neuron 68:45–60

    Article  PubMed  CAS  Google Scholar 

  • Liu AQ, Losos K, Joyner AL (1999) FGF8 can activate Gbx2 and transform regions of the rostral mouse brain into a hindbrain fate. Development 126:4827–4838

    PubMed  CAS  Google Scholar 

  • Lu W, Tsirka SE (2002) Partial rescue of neural apoptosis in the Lurcher mutant mouse through elimination of tissue plasminogen activator. Development 129:2043–2050

    PubMed  CAS  Google Scholar 

  • Machold R, Fishell G (2005) Math1 is expressed in temporally discrete pools of cerebellar rhombic-lip neural progenitors. Neuron 48:17–24

    Article  PubMed  CAS  Google Scholar 

  • McMahon AP, Bradley A (1990) The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell 62:1073–1085

    Article  PubMed  CAS  Google Scholar 

  • Meyer T, Kneissel M, Mariani J, Fournier B (2000) In vitro and in vivo evidence for orphan nuclear receptor RORα function in bone metabolism. Proc Natl Acad Sci 97:9197–9202

    Article  PubMed  CAS  Google Scholar 

  • Miao GG, Smeyne RJ, D’Arcangelo G, Copeland NG, Jenkins NA, Morgan JI, Curran T (1994) Isolation of an allele of reeler by insertional mutagenesis. Proc Natl Acad Sci USA 91:11050–11054

    Article  PubMed  CAS  Google Scholar 

  • Millen KJ, Hui C, Joyner AL (1995) A role for En-2 and other murine homologues of Drosophila segment polarity genes in regulating positional information in the developing cerebellum. Development 121:3935–3945

    PubMed  CAS  Google Scholar 

  • Millonig JH, Millen KJ, Hatten ME (2000) The mouse Dreher gene Lmx1a controls formation of the roof plate in the vertebrate CNS. Nature 403:764–769

    Article  PubMed  CAS  Google Scholar 

  • Morales D, Hatten ME (2006) Molecular markers of neuronal progenitors in the embryonic cerebellar anlage. J Neurosci 26:12226–12236

    Article  PubMed  CAS  Google Scholar 

  • Murtomäki S, Trenkner E, Wright JM, Saksela O, Liesi P (1995) Increased proteolytic activity of the granule neurons may contribute to neuronal death in the weaver mouse cerebellum. Dev Biol 168:635–648

    Article  PubMed  Google Scholar 

  • Nicholson JL, Altman J (1972) The effect of early hypo- and hyperthyroidism on the development of rat cerebellar cortex. I. Cell proliferation and differentiation. Brain Res 44:13–23

    Article  PubMed  CAS  Google Scholar 

  • Nordquist DT, Kozak CA, Orr HT (1988) cDNA cloning and characterization of three genes uniquely expressed in cerebellum by Purkinje neurons. J Neurosci 8:4780–4789

    PubMed  CAS  Google Scholar 

  • Oberdick J, Levinthal F, Levinthal C (1988) A Purkinje cell differentiation marker shows a partial DNA sequence homology to the cellular sis/PDGF2 gene. Neuron 1:367–376

    Article  PubMed  CAS  Google Scholar 

  • Pascual M, Abasolo I, Mingorance-Le M, Martínez A, Del Rio JA, Wright CV, Real FX, Soriano E (2007) Cerebellar GABAergic progenitors adopt an external granule cell-like phenotype in the absence of Ptf1a transcription factor expression. Proc Natl Acad Sci USA 104:5193–5198

    Article  PubMed  CAS  Google Scholar 

  • Patil N, Cox DR, Bhat D, Faham M, Myers RM, Peterson AS (1995) A potassium channel mutation in weaver mice implicates membrane excitability in granule cell differentiation. Nat Genet 11:126–129

    Article  PubMed  CAS  Google Scholar 

  • Price MG, Davis CF, Deng F, Burgess DL (2005) The alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionate receptor trafficking regulator “stargazin” is related to the claudin family of proteins by Its ability to mediate cell-cell adhesion. J Biol Chem 280:19711–19720

    Article  PubMed  CAS  Google Scholar 

  • Qiao X, Hefti F, Knusel B, Noebels JL (1996) Selective failure of brain-derived neurotrophic factor mRNA expression in the cerebellum of stargazer, a mutant mouse with ataxia. J Neurosci 16:640–648

    PubMed  CAS  Google Scholar 

  • Qiao X, Chen L, Gao H, Bao S, Hefti F, Thompson RF, Knusel B (1998) Cerebellar brain-derived neurotrophic factor-TrkB defect associated with impairment of eyeblink conditioning in Stargazer mutant mice. J Neurosci 18:6990–6999

    PubMed  CAS  Google Scholar 

  • Rakic P, Sidman RL (1973) Weaver mutant mouse cerebellum: defective neuronal migration secondary to abnormality of Bergmann glia. Proc Natl Acad Sci USA 70:240–244

    Article  PubMed  CAS  Google Scholar 

  • Retaux S, McNeill L, Harris WA (1996) Engrailed, retinotectal targeting, and axonal patterning in the midbrain during Xenopus development: an antisense study. Neuron 16:63–75

    Article  PubMed  CAS  Google Scholar 

  • Rhyu IJ, Abbott LC, Walker DB, Sotelo C (1999) An ultrastructural study of granule cell/Purkinje cell synapses in tottering (tg/tg), leaner (tg(la)/tg(la)) and compound heterozygous tottering/leaner (tg/tg(la)) mice. Neuroscience 90:717–728

    Article  PubMed  CAS  Google Scholar 

  • Rossi P, DeFilippi G, Armano S, Taglietti V, D’Angelo E (1998) The weaver mutation causes a loss of inward rectifier current regulation in premigratory granule cells of the mouse cerebellum. J Neurosci 18:3537–3547

    PubMed  CAS  Google Scholar 

  • Sato TK, Panda S, Miraglia LJ, Reyes TM, Rudic RD, McNamara P, Naik KA, FitzGerald GA, Kay SA, Hogenesch JB (2004) A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron 43:527–537

    Article  PubMed  CAS  Google Scholar 

  • Schilling K, Oberdick J (2009) The treasury of the commons: making use of public gene expression resources to better characterize the molecular diversity of inhibitory interneurons in the cerebellar cortex. Cerebellum 8:477–489

    Article  PubMed  CAS  Google Scholar 

  • Schulz A, Geissler KJ, Kumar S, Leichsenring G, Morrison H, Baader SL (2010) Merlin inhibits neurite outgrowth in the CNS. J Neurosci 30:10177–10186

    Article  PubMed  CAS  Google Scholar 

  • Seeds NW, Basham ME, Haffke SP (1999) Neuronal migration is retarded in mice lacking the tissue plasminogen activator gene. Proc Natl Acad Sci USA 96:14118–14123

    Article  PubMed  CAS  Google Scholar 

  • Seeds NW, Basham ME, Ferguson JE (2003) Absence of tissue plasminogen activator gene or activity impairs mouse cerebellar motor learning. J Neurosci 23:7368–7375

    PubMed  CAS  Google Scholar 

  • Serinagaoglu Y, Zhang R, Zhang Y, Zhang L, Hartt G, Young AP, Oberdick J (2007) A promoter element with enhancer properties, and the orphan nuclear receptor RORalpha, are required for Purkinje cell-specific expression of a Gi/o modulator. Mol Cell Neurosci 34:324–342

    Article  PubMed  CAS  Google Scholar 

  • Sgaier SK, Millet S, Villanueva MP, Berensteyn F, Song C, Joyner AL (2005) Morphogenetic and cellular movements that shape the mouse cerebellum: insights from genetic fate mapping. Neuron 45:27–40

    PubMed  CAS  Google Scholar 

  • Sidman RL, Lane PW, Dickie MM (1962) Staggerer, a new mutation in the mouse affecting the cerebellum. Science 137:610–612

    Article  PubMed  CAS  Google Scholar 

  • Sillitoe RV, Vogel MW, Joyner AL (2010) Engrailed homeobox genes regulate establishment of the cerebellar afferent circuit map. J Neurosci 30:10015–10024

    Article  PubMed  CAS  Google Scholar 

  • Sotelo C, Changeux JP (1974) Transsynaptic degeneration ‘en cascade’ in the cerebellar cortex of staggerer mutant mice. Brain Res 67:519–526

    Article  PubMed  CAS  Google Scholar 

  • Spitzer NC (1991) A developmental handshake: neuronal control of ionic currents and their control of neuronal differentiation. J Neurobiol 22:659–673

    Article  PubMed  CAS  Google Scholar 

  • Steinmayr M, Andre E, Conquet F, Rondi-Reig L, Delhaye-Bouchaud N, Auclair N, Daniel H, Crepel F, Mariani J, Sotelo C, Becker-Andre M (1998) staggerer phenotype in retinoid-related orphan receptor alpha-deficient mice. Proc Natl Acad Sci 95:3960–3965

    Article  PubMed  CAS  Google Scholar 

  • Thomas KR, Capecchi MR (1990) Targeted disruption of the murine int-1 proto-oncogene resulting in severe abnormalities in midbrain and cerebellar development. Nature 346:847–850

    Article  PubMed  CAS  Google Scholar 

  • Thomas KR, Musci TS, Neumann PE, Capecchi MR (1991) Swaying is a mutant allele of the proto-oncogene Wnt-1. Cell 67:969–976

    Article  PubMed  CAS  Google Scholar 

  • Vogel MW (2011) Cell death, Bcl-2, Bax, and the cerebellum. Cerebellum (in press)

    Google Scholar 

  • Wechsler-Reya RJ, Scott MP (1999) Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron 22:103–114

    Article  PubMed  CAS  Google Scholar 

  • Wilson SL, Kalinovsky A, Orvis GD, Joyner AL (2011) Spatially restricted and developmentally dynamic expression of Engrailed genes in multiple cerebellar cell types. Cerebellum 10 (in press) (e-pub, online first March 24, 2011)

    Google Scholar 

  • Wurst W, Auerbach AB, Joyner AL (1994) Multiple developmental defects in Engrailed-1 mutant mice: an early mid-hindbrain deletion and patterning defects in forelimbs and sternum. Development 120:2065–2075

    PubMed  CAS  Google Scholar 

  • Zuo J, De Jager PL, Takahashi KA, Jiang W, Linden DJ, Heintz N (1997) Neurodegeneration in Lurcher mice caused by mutation in delta2 glutamate receptor gene. Nature 388:769–773

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Oberdick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Oberdick, J. (2013). Analysis of Gene Networks in Cerebellar Development. In: Manto, M., Schmahmann, J.D., Rossi, F., Gruol, D.L., Koibuchi, N. (eds) Handbook of the Cerebellum and Cerebellar Disorders. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1333-8_8

Download citation

Publish with us

Policies and ethics