Cerebellar Agenesis

  • Romina Romaniello
  • Renato Borgatti


Cerebellar agenesis is an extremely rare condition in which patients show minute cerebellar tissue, usually corresponding to remnants of the lower cerebellar peduncles, anterior vermal lobules, and flocculi. Clinical presentation of cerebellar agenesis may cover a broad phenotypic spectrum of disabilities including not only motor disorders but also cognitive abilities, language disabilities, and disorders of affect. Severity and range of motor, cognitive, and psychiatric impairments appears to be correlated with earliness, localization, and extent of the agenesis of cerebellum. Patients with congenital malformations present indeed a more severe and less specific impairment than patients with acquired cerebellar lesions in adult life. Patients with involvement of the phylogenetically most ancient structures (complete or partial cerebellar vermis agenesis) show the more severe clinical picture, in particular severe pervasive impairments in social and communication skills (autism or autistic-like behavior), in behavior modulation (self-injury and aggressiveness), and markedly delay in language acquisition, especially in language comprehension. On the contrary when the lesions are confined to phylogenetically more recent structures, such as cerebellar hemispheres, the clinical picture is characterized by mild cognitive impairment or borderline IQ, good social functioning, and context adjustment abilities with a more favorable prognosis.

In conclusion, it is possible to argue that cerebellar agenesis, in spite of extraordinary neuroradiological picture, is a clinical condition compatible with an honorable existence, although limited, especially if the affected person has the opportunity to undergo a rehabilitation program at an early stage of his life.


Cerebellar Hemisphere Cerebellar Lesion Cerebellar Hypoplasia Congenital Muscular Dystrophy Neonatal Diabetes Mellitus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aldinger KA, Lehmann OJ, Hudgins L et al (2009) FOXC1 is required for normal cerebellar development and is a major contributor to chromosome 6p24.3 Dandy-Walker malformation. Nat Genet 41:1037–1042PubMedCrossRefGoogle Scholar
  2. Altman NR, Naidich TP, Braffman BH (1992) Posterior fossa malformations. AJNR Am J Neuroradiol 13:691–724PubMedGoogle Scholar
  3. Anton E, Zingerle H (1914) Genaue Beschreibung eines. Falles von beiderseitigem. Kleinhimmangel. Arch Psychiatr Berl 54:8–75CrossRefGoogle Scholar
  4. Baker RC, Graves GO (1931) Cerebellar agenesis. Arch Neurol Psychiatr 25:548–555Google Scholar
  5. Ballarati L, Rossi E, Bonati MT et al (2007) 13q deletion and central nervous system anomalies: further insights from karyotype-phenotype analyses of 14 patients. J Med Genet 44:e60PubMedCrossRefGoogle Scholar
  6. Baraitser M (1990) Cerebellar syndromes. In: Baraitser M (ed) The genetics of neurological disorders, 2nd edn. Oxford University Press, New YorkGoogle Scholar
  7. Barkovich AJ, Frieden I, Williams M (1994) MR of neurocutaneous melanosis. AJNR Am J Neuroradiol 15:859–867PubMedGoogle Scholar
  8. Barkovich AJ (1998) Neuroimaging manifestations and classification of congenital muscular dystrophies. AJNR Am J Neuroradiol 19:1389–1396PubMedGoogle Scholar
  9. Barkovich AJ, Millen KJ, Dobyns WB (2009) A developmental and genetic classification for midbrain-hindbrain malformations. Brain 132:3199–3230PubMedCrossRefGoogle Scholar
  10. Bellini C, Massocco D, Serra G (2000) Prenatal cocain exposure and the expanding spectrum of brain malformations. Arch Intern Med 160:2393PubMedCrossRefGoogle Scholar
  11. Barth PG (2000) Pontocerebellar hypoplasia-how many types? Eur J Paediatr Neurol 4:161–162PubMedCrossRefGoogle Scholar
  12. Beaton A, Mariën P (2010) Language, cognition and cerebellum: grappling with an enigma. Cortex 46(7):811–820PubMedCrossRefGoogle Scholar
  13. Boland E, Clayton-Smith J, Woo VG et al (2007) Mapping of deletion and traslocation breakpoints in q44 implicates the serine/threonine kinase AKT3 in postnatal microcephaly and agenesis of corpus callosum. Am J Hum Genet 81:292–303PubMedCrossRefGoogle Scholar
  14. Boltshauser E (2004) Cerebellum-small brain but large confusion: a review of selected cerebellar malformations and disruptions. Am J Med Genet 126A:376–385PubMedCrossRefGoogle Scholar
  15. Boltshauser E (2008) Cerebellar hypoplasias. Disorders of segmentation of the neural tube. In: Sarnat HB, Curatolo P (eds) Malformation of the nervous system: handbook of clinical neurology. Elsevier, EdinburghGoogle Scholar
  16. Borgatti R, Tavano A, Cristofori G et al (2004) Language development in children with cerebellar malformations. In: Fabbro F (ed) Neurogenic language disorders in children. Elsevier, AmsterdamGoogle Scholar
  17. Borrell H (1884) Cerebellar agenesis. Arch f Psychiatr 15:286Google Scholar
  18. Botez MI, Botez T, Elié R et al (1989) Role of the cerebellum in complex human behavior. Ital J Neurol Sci 10:291–300PubMedCrossRefGoogle Scholar
  19. Botez-Marquard T, Leveillé J, Botez MI (1994) Neuropsychological functioning in unilateral cerebellar damage. Can J Neurol Sci 21:353–357PubMedGoogle Scholar
  20. Boyd JD (1940) A case of neocerebellar hypoplasia. J Anat 74:557Google Scholar
  21. Chang B, Piao X, Bodell A et al (2003) Bilateral frontoparietal polymicrogyria: clinical and radiological features in 10 families with linkage to chromosome 16. Ann Neurol 53:596–606PubMedCrossRefGoogle Scholar
  22. Chedda MG, Jc S, Schmahmann JD (2002) Neurology, psychiatric and cognitive manifestations in cerbellar agenesis. Neurology 58:A356Google Scholar
  23. Chen CP, Chen CP, Shih JC (2005) Association of partial trisomy 9p and the Dandy Walker malformation. Am J Med Genet 132A:111–112PubMedCrossRefGoogle Scholar
  24. Cohen I (1942) Agenesis of the cerebellum (verified by operation). J Mt Sinai Hosp 8:441–446Google Scholar
  25. Combettes M (1831) Absence complète du cervelet, des pédoncules postérieurs et de la protubérance cérébrale chez une jeune fille morte dans sa onzième anneé. Bull Soc Anat Paris 5:148–157Google Scholar
  26. Cordes SP (2001) Molecular genetics of cranial nerve development in mouse. Nat Rev Neurosci 2:611–623PubMedCrossRefGoogle Scholar
  27. Courchesne E, Townsend J, Akshoomoff NA et al (1994) Impairment in shifting attention in autistic and cerebellar patients. Behav Neurosci 108:848–865PubMedCrossRefGoogle Scholar
  28. Courchesne E (1997) Brainstem, cerebellar and limbic neuroanatomical abnormalities in autism. Curr Opin Neurobiol 7:269–278PubMedCrossRefGoogle Scholar
  29. Dhillon AS, Chapman S, Milford DV (2001) Cerebellar defect associated with Scimke immune-osseous dysplasia. Eur J Pediatr 160:372–374PubMedCrossRefGoogle Scholar
  30. Fabbro F (2000) Introduction to language and cerebellum. J Neuroling 13:83–94CrossRefGoogle Scholar
  31. Fabbro F, Tavano A, Corti S et al (2004) Long-term neuropsychological deficits after cerebellar infarctions in two young twins. Neuropsychologia 42:536–545PubMedCrossRefGoogle Scholar
  32. Ferrier D (1876) The functions of the brain. Chapter VI. In: Functions of the cerebellum. Smith, Elder, LondonGoogle Scholar
  33. Fiez JA, Petersen SE, Cheney MK et al (1992) Impaired non-motor learning and error detection associated with cerebellar damage. Brain 115:155–168PubMedCrossRefGoogle Scholar
  34. Freeze HH (2001) Update and perspective on congenital doisorders of glycosylation. Glycobiology 11:129R–143RPubMedCrossRefGoogle Scholar
  35. Fusari R (1891) Note sur quelques cas d’atrophie et d’hypertrophie ducervelet. Mem Accad sc Inst Bologna 2:643–658Google Scholar
  36. Gardner RJM, Coleman LT, Mitchell LA et al (2001) Near-total absence of the cerebellum. Neuropediatrics 32:62–68PubMedCrossRefGoogle Scholar
  37. Gilbert C, Coleman M (1992) The biology of the autistic syndromes. McKeit Press, LondonGoogle Scholar
  38. Glickstein M (1994) Cerebellar agenesis. Brain 117:1209–1212PubMedCrossRefGoogle Scholar
  39. Goldowitz D, Hamre K (1998) The cells and molecules that make a cerebellum. Trends Neurosci 21:375–382PubMedCrossRefGoogle Scholar
  40. Gordon N (2007) The cerebellum and cognition. Eur J Paediatr Neurol 11:232–234PubMedCrossRefGoogle Scholar
  41. Grinberg I, Millen KJ (2005) The ZIC gene family in development and disease. Clin Genet 67:290–296PubMedCrossRefGoogle Scholar
  42. Herholz K, Thiel A, Wienhard W et al (1996) Individual functional anatomy of verb generation. Neuroimage 3:185–194PubMedCrossRefGoogle Scholar
  43. Hill AD, Chang BS, Hill RS et al (2007) A 2-Mb critical region implicated in the microcephaly associated with terminal 1q deletion syndrome. Am J Med Genet 143A:1692–1698PubMedCrossRefGoogle Scholar
  44. Hong SE, Shugart YY, Huang DT et al (2000) Autosomal recessive lissencephaly with cerebellar hypoplasia (LCH) is associated with human reelin gene mutations. Nat Genet 26:93–96PubMedCrossRefGoogle Scholar
  45. Hoveyda N, Shield JP, Garrett C et al (1999) Neonatal diabetes mellitus and cerbellar hypoplasia/agenesis: report of a new recessive syndrome. J Med Genet 36:700–704PubMedGoogle Scholar
  46. Jalali A, Aldinger J, Chary A et al (2008) Linkage to chromosome 2q36.1 in autosomal dominat Dandy-Walker malformation with occipital cephalocele and evidence for genetic heterogeneity. Hum Genet 123:237–245PubMedCrossRefGoogle Scholar
  47. Jansen A, Floel A, Van Randenborgh J et al (2005) Crossed cerebro-cerebellar language dominance. Hum Brain Mapp 24:165–172PubMedCrossRefGoogle Scholar
  48. Kier G, Winchester BG, Clayton P (1999) Carbohydrate deficient glycoprotein syndromes: inborn errors of protein glycosylation. Ann Clin Biochem 36:20–36Google Scholar
  49. Kim SG, Ugurbil K, Strick PL (1994) Activation of a cerebellar output nucleus during cognitive processing. Science 265:949–951PubMedCrossRefGoogle Scholar
  50. Leech RW, Johnson SH, Brumback RA (1997) Agenesis of cerebellum associated with arrihinencephaly. Clin Neuropathol 16:90–97PubMedGoogle Scholar
  51. Leiner HC, Leiner AL, Dow RS (1991) The human cerebro-cerebellar system: its computing, cognitive and language skills. Behav Brain Res 44:113–128PubMedCrossRefGoogle Scholar
  52. Leestma JE, Torres JV (2000) Unappreciated agenesis of cerebellum in an adult. Am J Forensic Med Pathol 21:155–161PubMedCrossRefGoogle Scholar
  53. Levisohn L, Cronin-Golomb A, Schmahmann JD (2000) Neuropsychological consequences of cerebellar tumor resection in children. Cerebellar cognitive affective syndrome in a paediatric population. Brain 123:1041–1050PubMedCrossRefGoogle Scholar
  54. Leyden E (1876) Ueber Hydromyelus und Syringomyelie. Archiv für pathologische Anatomie und Physiologie und für klinische Medizin 68:1–26Google Scholar
  55. Loeser JD, Lemire RJ, Alvord J (1972) The development of the folia in the human cerebellar vermis. Anat Rec 173:109–114PubMedCrossRefGoogle Scholar
  56. Mariën P, Engelborghs S, Fabbro F et al (2001) The lateralized linguistic cerebellum: a review and a new hypothesis. Brain Lang 79:580–600PubMedCrossRefGoogle Scholar
  57. McCormack WM, Shen JJ, Curry SM et al (2003) Partial deletions of the long arm of chromosome 13 associated wiyh holoprosencephaly and the Dandy-Walker malformation. Am J Med Genet 118A:384–389PubMedGoogle Scholar
  58. Melaragno MI, Brunoni D, Patricio FR et al (1992) A patient with tetrasomy 9p, Dandy-Walker cyst and Hirschsprung disease. Ann Génét 35:79–84PubMedGoogle Scholar
  59. Millen KJ, Gleeson JG (2008) Cerebellar development and disease. Curr Opin Neurobiol 18:12–19PubMedCrossRefGoogle Scholar
  60. Miyata H, Chute DJ, Fink J et al (2004) Lissencephaly with agenesis of corpus callosum and rudimentary dysplastic cerebellum: a subtype of lissencephaly with cerebellar hypoplasia. Acta Neuropathol 107:69–81PubMedCrossRefGoogle Scholar
  61. Molinari M, Leggio MG, Silveri MC (1997) Verbal fluency and agrammatism. In: Schmahmann JD (ed) The cerebellum and cognition, International Review of Neurobiology, vol 41. Academic Press, San DiegoGoogle Scholar
  62. Murdoch BE (2010) The cerebellum and language: historical perspective and review. Cortex 46(7):858–868PubMedCrossRefGoogle Scholar
  63. Najm J, Horn D, Wimplinger I et al (2008) Mutation of CASK cause an X-linked brain malformation phenotype with microcephaly and hypoplasia of the brainstem and cerebellum. Nat Genet 40:1065–1067PubMedCrossRefGoogle Scholar
  64. Niesen CE (2002) Malformations of the posterior fossa: current perspectives. Semin Pediatr Neurol 9:320–334PubMedCrossRefGoogle Scholar
  65. Nowak DA, Timmann D, Hermsdorfer J (2007) Dexterity in cerebellar agenesis. Neuropsychologia 45:696–703PubMedCrossRefGoogle Scholar
  66. Parisi MA, Dobyns WB (2003) Human malformations of the midbrain and hindbrain: review and proposed classification scheme. Mol Genet Metab 80:36–53PubMedCrossRefGoogle Scholar
  67. Patel S, Barkovich AJ (2002) Analysis and classification of cerebellar malformations. AJNR Am J Neuroradiol 23:1074–1087PubMedGoogle Scholar
  68. Petersen SE, Fox PT, Posner MI et al (1989) Positron emission tomographic studies of the processing of single words. J Cogn Neurosci 1:153–170CrossRefGoogle Scholar
  69. Petersen SE, Fiez JA (1993) The processing of single words studied with positron emission tomography. Annu Rev Neurosci 16:509PubMedCrossRefGoogle Scholar
  70. Philphot J, Pennock J, Cowan F et al (2000) Brain magnetic resonance imaging abnormalities in merosin-positive congenital muscular dystrophy. Eur J Paediatr Neurol 4:109–114CrossRefGoogle Scholar
  71. Poretti A, Wolf NI, Boltshauuser E (2008) Differential diagnosis of cerebellar atrophy in childhood. Eur J Paediatr Neurol 12(3):155–167PubMedCrossRefGoogle Scholar
  72. Poretti A, Prayer D, Boltshauser E (2009) Morphological spectrum of prenatal cerbellar disruption. Eur J Paediatr Neurol 13:397–407PubMedCrossRefGoogle Scholar
  73. Priestly DP (1920) Complete absence of the cerebellum. Lancet 2:1302CrossRefGoogle Scholar
  74. Reardon W, Donnai D (2007) Dysmorphology demystified. Arch Dis Child Fetal Neonatal Ed 92:F225–F229PubMedCrossRefGoogle Scholar
  75. Riccardi VM, Marcus ES (1978) Congenital hydrocephalus and cerebellar agenesis. Clin Genet 13:443–447PubMedCrossRefGoogle Scholar
  76. Richter S, Dimitrova A, Hein-Kropp C et al (2005) Cerebellar agenesis II: motor and language functions. Neurocase 11:103–113PubMedCrossRefGoogle Scholar
  77. Riva D, Giorgi C (2000) The cerebellum contributes to higher functions during development. Evidence from a series of children surgically treated for posterior fossa tumors. Brain 123:1051–1061PubMedCrossRefGoogle Scholar
  78. Robertson IH, Murre JM (1999) Rehabilitation of brain damage: brain plasticity and principles of guided recovery. Psychol Bull 125:544–575PubMedCrossRefGoogle Scholar
  79. Robertson IH (2000) Compensations for brain deficits. Br J Psychiatry 176:412–413PubMedCrossRefGoogle Scholar
  80. Ross ME, Swanson K, Dobyns WB (2001) Lissencephaly with cerebellar hypoplasia (LCH): a heterogeneous group of cortical malformations. Neuropediatrics 32:256–263PubMedCrossRefGoogle Scholar
  81. Schmahmann ID (1991) An emerging concept: the cerebellar contribution to higher function. Arch Neurol 48:1178–1187PubMedCrossRefGoogle Scholar
  82. Schmahmann JD (1996) From movement to though: anatomic substrates of the cerebellar contribution to cognitive processing. Hum Brain Mapp 4:174–198PubMedCrossRefGoogle Scholar
  83. Schmahmann JD (1997) The cerebellum and cognition. International Review of Neurobiology, vol 41., vol 41. Academic Press, San DiegoGoogle Scholar
  84. Schmahmann JD (2010) The role of the cerebellum in cognition and emotion: personal reflections since 1982 on the dysmetria of thought hypothesis, and its historical evolution from theory to therapy. Neuropsychol Rev 20:236–260PubMedCrossRefGoogle Scholar
  85. Schmahmann JD, Sherman JC (1998) The cerebellar cognitive affective syndrome. Brain 121:561–579PubMedCrossRefGoogle Scholar
  86. Scott RB, Stoodley CJ, Anslow P et al (2001) Lateralized cognitive deficits in children following cerebellar lesions. Dev Med Child Neurol 43:685–691PubMedCrossRefGoogle Scholar
  87. Sellick GS, Barker KT, Stolte-Dijkstra I et al (2004) Mutations in PTF1A cause pancreatic and cerebellar agenesis. Nat Genet 36:1301–1305PubMedCrossRefGoogle Scholar
  88. Sener RN, Jinkins JR (1993) Subotal agenesis of the cerebellum in an adult. MRI demonstration. Neuroradiology 35:286–287PubMedCrossRefGoogle Scholar
  89. Sener RN (1995) Cerebellar agenesis versus vanishing cerebellum in Chiari II malformation. Comput Med Imaging Graph 19:491–494PubMedCrossRefGoogle Scholar
  90. Silveri C, Leggio MG, Molinari M (1993) The cerebellum contributes to language production: a case of agrammatic speech following a right cerebellar lesion. Neurology 44:2047–2050CrossRefGoogle Scholar
  91. Silveri MC, Di Betta AM, Filippini V et al (1998) Verbal short-term store-rehearsal system and the cerebellum. Evidence from a patient with a right cerebellar lesion. Brain 121:2175–2187PubMedCrossRefGoogle Scholar
  92. Squier W, Hope PL, Lindenbaum RH (1990) Neocerebellar hypoplasia in a neonate following intra-uterine exposure to anticonvulsivants. Dev Med Child Neurol 32:737–742PubMedCrossRefGoogle Scholar
  93. Steinlin M, Styger M, Boltshauser E (1999) Cognitive impairments in patients with congenital nonprogressive cerebellar ataxia. Neurology 53:966–973PubMedCrossRefGoogle Scholar
  94. Steinlin M, Zangger B, Boltshauser E (1998) Non-progressive congenital ataxia with or without cerebellar hypoplasia: a review of 34 subjects. Dev Med Child Neurol 40:148–154PubMedCrossRefGoogle Scholar
  95. Sternberg C (1912) Ueber vollstandigen Defekt des Kleinhirnes. Verhandl Deutsch Path Gesellsch 15:359–363Google Scholar
  96. Stewart RM (1956) Cerebellar agenesis. J Ment Sci 102:67–77PubMedGoogle Scholar
  97. Tavano A, Fabbro F, Borgatti R (2004) Speaking without the cerebellum. Proct Int Lang Cogn Conf, Coffs HarbourGoogle Scholar
  98. Tavano A, Fabbro F, Borgatti R (2007a) Speaking without the cerebellum: language skills in a young adult with near total absence of the cerebellum. In: Schalley A, Khlentzos D (eds) Mental states: evolution, function, nature. John Benjamin, AmsterdamGoogle Scholar
  99. Tavano A, Fabbro F, Borgatti R (2007b) Language and social communication in children with cerebellar dysgenesis. Folia Phoniatr Logop 59:201–209PubMedCrossRefGoogle Scholar
  100. Tavano A, Grasso R, Gagliardi C et al (2007c) Disorders of cognitive and affective development in cerbellar malformtions. Brain 130:2646–2660PubMedCrossRefGoogle Scholar
  101. Tavano A, Borgatti R (2010) Evidence for a link among cognition, language and emotion in cerebellar malformations. Cortex 46(7):907–918PubMedCrossRefGoogle Scholar
  102. Tennstedt A (1965) Kleinhirnaplaise beim Erwachsenen. Zentralbl allgemeine pathologie patholofische Anat 107:301–304Google Scholar
  103. Thach TW (1997) Context-response linkage. Int Rev Neurobiol 41:599–611PubMedCrossRefGoogle Scholar
  104. Timmann D, Dimitrova A, Hein-Kropp C et al (2003) Cerebellar agenesis: clinical, neuropsychological and MR findings. Neurocase 9(5):402–413PubMedCrossRefGoogle Scholar
  105. Titomanlio L, Romano A, Del Giudice E (2005) Cerebellar agenesis. Neurology 64:E21PubMedCrossRefGoogle Scholar
  106. Titomanlio L, De Brasi D, Romano A et al (2006) Partial cerebellar hypoplasia in a patient with Prader-Willi syndrome. Acta Paediatr 95:861–863PubMedCrossRefGoogle Scholar
  107. Trouillas P, Takayanagi T, Hallett M et al (1997) International Cooperative Ataxia Rating Scale for pharmacological assessment of the cerebellar syndrome. The Ataxia Neuropharmacology Committee of the World Federation of Neurology. J Neurol Sci 145(2):205–211PubMedCrossRefGoogle Scholar
  108. Tutak E, Satar M, Yapicioglu H et al (2009) A Turkish newborn infant with cerebellar agenesis/neonatal diabetes mellitus and PTF1A mutation. Genet Couns 20(2):147–152PubMedGoogle Scholar
  109. Uhl M, Pawlik H, Laudenberger J et al (1998) MR findings in pontocerebellar hypoplasia. Pediatr Radiol 28:547–551PubMedCrossRefGoogle Scholar
  110. Ullman M (1997) A neural dissociation within language: evidence that mental dictionary is part of declarative memory, and that grammatical rules are processed by the procedural system. J Cogn Neurosci 9:266–276CrossRefGoogle Scholar
  111. Van Bon BW, Da K, Borgatti R et al (2008) Clinical and molecular characteristics of 1qter microdeletion syndrome: delineating a critical region for corpus callosum agenesis/hypogenensis. J Med Genet 45:346–354PubMedCrossRefGoogle Scholar
  112. Van Coster RN, De Praeter CM, Vanhaesebrouck PJ et al (1998) MRI finding in a neonate with cerbellar agenesis. Pediatr Neurol 19:139–142PubMedCrossRefGoogle Scholar
  113. Van Hoof SC, Wilmink JT (1996) Cerebellar agenesis. J Belge Radiol 79:282PubMedGoogle Scholar
  114. Velioglu SK, Kuzelyli K, Zzmenoglu M (1998) Cerebellar agenesis: a case report with clinical MR imaging finding and a review of the literature. Eur J Neurol 5:503–506PubMedCrossRefGoogle Scholar
  115. Verdelli A (1874) Su un’anomalia del cervelletto in un cretino. Rivista Clinica di Bologna XIX:142–145Google Scholar
  116. Zaferiou DI, Vargiami E, Bolthsauser E (2004) Cerbellar agenesis and diabetes insipidus. Neuropediatrics 35:364–367CrossRefGoogle Scholar
  117. Zanni G, Saillour Y, Nagara M et al (2005) Oligophrenin 1 mutations frequently caus X-linked mental retardation with cerebellar hypoplasia. Neurology 65:1364–1369PubMedCrossRefGoogle Scholar
  118. Zettin M, Cappa SF, D’Amico A et al (1997) Agrammar speech production after a right cerebellar haemorrage. Neurocase 3:375–380CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Child Neuropsychiatry and NeurorehabilitationScientific Institute “Eugenio Medea”Bosisio Parini (LC)Italy

Personalised recommendations