Lesion-Symptom Mapping of the Human Cerebellum

  • Dagmar Timmann
  • Michael Küper
  • Elke R. Gizewski
  • Beate Schoch
  • Opher Donchin
Reference work entry


Although the function of the cerebellum cannot be inferred from lesion data alone, it is still of major scientific and clinical interest to assess whether lesions of a given cerebellar area lead to specific behavioral deficits. The introduction of high-resolution structural brain imaging and new analysis methods has lead to significant improvement in the ability to draw such conclusions. Lesion-symptom mapping is now possible with a spatial resolution at the level of individual lobules and nuclei of the cerebellum. The investigation of patients with defined focal lesions yields the greatest potential for obtaining meaningful correlations between lesion site and behavioral deficits. In smaller groups of patients, overlay plots and subtraction analysis are good options. If larger groups of patients are available, different statistical techniques have been introduced to compare behavior and lesion site on a voxel-by-voxel basis. Although localization in degenerative cerebellar disorders is less accurate because of the diffuse nature of the disease, certain information about the supposed function of larger subdivisions of the cerebellum can be gained. This review highlights the current developments of lesion-symptom mapping in human cerebellar lesion studies. Examples are given which show that meaningful correlations between lesion site and behavioral data can be obtained both in patients with degenerative as well as focal cerebellar disorders.


Diffusion Tensor Imaging Cerebellar Cortex Dentate Nucleus Cerebellar Nucleus Posterior Inferior Cerebellar Artery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abele M, Minnerop M, Urbach H et al (2007) Sporadic adult onset ataxia of unknown etiology: a clinical, electrophysiological and imaging study. J Neurol 254:1384–1389PubMedCrossRefGoogle Scholar
  2. Alcauter S, Barrios FA, Díaz R et al (2011) Gray and white matter alterations in spinocerebellar ataxia type 7: an in vivo DTI and VBM study. Neuroimage 55:1–7PubMedCrossRefGoogle Scholar
  3. Amarenco P (1991) The spectrum of cerebellar infarctions. Neurology 41:973–979PubMedCrossRefGoogle Scholar
  4. Amarenco P, Rosengart A, DeWitt LD et al (1993) Anterior inferior cerebellar artery territory infarcts. Mechanisms and clinical features. Arch Neurol 50:154–161PubMedCrossRefGoogle Scholar
  5. Anderson SW, Damasio H, Tranel D (1990) Neuropsychological impairments associated with lesions caused by tumor or stroke. Arch Neurol 47:397–405PubMedCrossRefGoogle Scholar
  6. Baier B, Dieterich M (2011) Incidence and anatomy of gaze-evoked nystagmus in patients with cerebellar lesions. Neurology 76:361–365PubMedCrossRefGoogle Scholar
  7. Baier B, Stoeter P, Dieterich M (2009) Anatomical correlates of ocular motor deficits in cerebellar lesions. Brain 132:2114–2124PubMedCrossRefGoogle Scholar
  8. Baier B, Dieterich M, Stoeter P et al (2010) Anatomical correlate of impaired covert visual attentional processes in patients with cerebellar lesions. J Neurosci 30:3770–3776PubMedCrossRefGoogle Scholar
  9. Barkhof F, Scheltens P (2002) Imaging of white matter lesions. Cerebrovasc Dis 2:21–30CrossRefGoogle Scholar
  10. Barth A, Bogousslavsky J, Regli F (1993) The clinical and topographic spectrum of cerebellar infarcts: a clinical-magnetic resonance imaging correlation study. Ann Neurol 33:451–456PubMedCrossRefGoogle Scholar
  11. Bates E, Wilson SM, Saygin AP et al (2003) Voxel-based lesion-symptom mapping. Nat Neurosci 6:448–450PubMedGoogle Scholar
  12. Brain Development Cooperative Group (2011) Total and regional brain volumes in a population-based normative sample from 4 to 18 years: the NIH MRI study of normal brain development. Cereb Cortex 22:1–12CrossRefGoogle Scholar
  13. Brandauer B, Hermsdörfer J, Beck A et al (2008) Impairments of prehension kinematics and grasping forces in patients with cerebellar degeneration and the relationship to cerebellar atrophy. Clin Neurophysiol 119:2528–2537PubMedCrossRefGoogle Scholar
  14. Brett M, Leff AP, Rorden C et al (2001) Spatial normalization of brain images with focal lesions using cost function masking. Neuroimage 14:486–500PubMedCrossRefGoogle Scholar
  15. Caplan LR (1996) Cerebellar infarcts. In: Caplan LR (ed) Posterior circulation disease: clinical findings, diagnosis, and management. Blackwell Scientific, Cambridge, MA, pp 492–543Google Scholar
  16. Chaves CJ, Caplan LR, Chung CS et al (1994) Cerebellar infarcts in the New England Medical Center Posterior Circulation Stroke Registry. Neurology 44:1385–1390PubMedCrossRefGoogle Scholar
  17. Chen R, Herskovits EH (2010) Voxel-based Bayesian lesion-symptom mapping. Neuroimage 49:597–602PubMedCrossRefGoogle Scholar
  18. Clausi S, Bozzali M, Leggio MG et al (2009) Quantification of gray matter changes in the cerebral cortex after isolated cerebellar damage: a voxel-based morphometry study. Neuroscience 162:827–835PubMedCrossRefGoogle Scholar
  19. Conway JE, Chou D, Clatterbuck RE et al (2001) Hemangioblastomas of the central nervous system in von Hippel–Lindau syndrome and sporadic disease. Neurosurgery 48:55–62PubMedGoogle Scholar
  20. Della-Maggiore V, Scholz J, Johansen-Berg H et al (2009) The rate of visuomotor adaptation correlates with cerebellar white-matter microstructure. Hum Brain Mapp 30:4048–4053PubMedCrossRefGoogle Scholar
  21. Deoni SC, Catani M (2007) Visualization of the deep cerebellar nuclei using quantitative T1 and rho magnetic resonance imaging at 3 Tesla. Neuroimage 37:1260–1266PubMedCrossRefGoogle Scholar
  22. Diedrichsen J (2006) A spatially unbiased atlas template of the human cerebellum. Neuroimage 33:127–138PubMedCrossRefGoogle Scholar
  23. Diedrichsen J, Balsters JH, Flavell J et al (2009) A probabilistic MR atlas of the human cerebellum. Neuroimage 46:39–46PubMedCrossRefGoogle Scholar
  24. Diedrichsen J, Maderwald S, Küper M et al (2011) Imaging the deep cerebellar nuclei: a probabilistic atlas and normalization procedure. Neuroimage 54:1786–1794PubMedCrossRefGoogle Scholar
  25. Dimitrova A, Weber J, Redies C et al (2002) MRI atlas of the human cerebellar nuclei. Neuroimage 17:240–255PubMedCrossRefGoogle Scholar
  26. Dimitrova A, Zeljko D, Schwarze F et al (2006) Probabilistic 3D MRI atlas of the human cerebellar dentate/interposed nuclei. Neuroimage 30:12–25PubMedCrossRefGoogle Scholar
  27. Donchin O, Rabe K, Diedrichsen J et al (2012) Cerebellar regions involved in adaptation to force field and visuomotor perturbation. J Neurophysiol 107:134–147PubMedCrossRefGoogle Scholar
  28. Dum RP, Strick PL (2003) An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. J Neurophysiol 89:634–639PubMedCrossRefGoogle Scholar
  29. Durr A (2010) Autosomal dominant cerebellar ataxias: polyglutamine expansions and beyond. Lancet Neurol 9:885–894PubMedCrossRefGoogle Scholar
  30. Eckmiller R, Westheimer G (1983) Compensation of oculomotor deficits in monkeys with neonatal cerebellar ablations. Exp Brain Res 49:315–326PubMedCrossRefGoogle Scholar
  31. Exner C, Weniger G, Irle E (2004) Cerebellar lesions in the PICA but not SCA territory impair cognition. Neurology 63:2132–2135PubMedCrossRefGoogle Scholar
  32. Fiez JA, Damasio H, Grabowski TJ (2000) Lesion segmentation and manual warping to a reference brain: intra- and interobserver reliability. Hum Brain Mapp 9:192–211PubMedCrossRefGoogle Scholar
  33. Frank RJ, Damasio H, Grabowski TJ (1997) Brainvox: an interactive, multimodal visualization and analysis system for neuroanatomical imaging. Neuroimage 5:13–30PubMedCrossRefGoogle Scholar
  34. Gerwig M, Dimitrova A, Kolb FP et al (2003) Comparison of eyeblink conditioning in patients with superior and posterior inferior cerebellar lesions. Brain 126:71–94PubMedCrossRefGoogle Scholar
  35. Giedd JN, Snell JW, Lange N et al (1996) Quantitative magnetic resonance imaging of human brain development: ages 4–18. Cereb Cortex 6:551–560PubMedCrossRefGoogle Scholar
  36. Granziera C, Schmahmann JD, Hadjikhani N et al (2009) Diffusion spectrum imaging shows the structural basis of functional cerebellar circuits in the human cerebellum in vivo. PLoS One 4:e5101PubMedCrossRefGoogle Scholar
  37. Grodd W, Hülsmann E, Lotze M et al (2001) Sensorimotor mapping of the human cerebellum: fMRI evidence of somatotopic organization. Hum Brain Mapp 13:55–57PubMedCrossRefGoogle Scholar
  38. Habas C, Cabanis EA (2007) Cortical projection to the human red nucleus: complementary results with probabilistic tractography at 3 T. Neuroradiol 49:777–784CrossRefGoogle Scholar
  39. Ilg M, Giese MA, Gizewski ER et al (2008) The influence of focal cerebellar lesions on the control and adaptation of gait. Brain 131:2913–2927PubMedCrossRefGoogle Scholar
  40. Jernigan TL, Tallal P (1990) Late childhood changes in brain morphology observable with MRI. Dev Med Child Neurol 32:379–385PubMedCrossRefGoogle Scholar
  41. Jissendi P, Baudry S, Balériaux D (2008) Diffusion tensor imaging (DTI) and tractography of the cerebellar projections to prefrontal and posterior parietal cortices: a study at 3 T. J Neuroradiol 35:42–50PubMedCrossRefGoogle Scholar
  42. Karnath HO, Steinbach JP (2011) Do brain tumors allow valid conclusions on the localization of human brain functions? – objections. Cortex 47:1004–1006PubMedCrossRefGoogle Scholar
  43. Karnath HO, Himmelbach M, Rorden C (2002) The subcortical anatomy of human spatial neglect: putamen, caudate nucleus and pulvinar. Brain 125:350–360PubMedCrossRefGoogle Scholar
  44. Karnath HO, Zopf R, Johannsen L et al (2005) Normalized perfusion MRI to identify common areas of dysfunction: patients with basal ganglia neglect. Brain 128:2462–2469PubMedCrossRefGoogle Scholar
  45. Kase CS, Norrving B, Levine SR et al (1993) Cerebellar infarction. Clinical and anatomic observations in 66 cases. Stroke 24:76–83PubMedCrossRefGoogle Scholar
  46. Kimberg DY, Coslett HB, Schwartz MF (2007) Power in voxel-based lesion-symptom mapping. J Cogn Neurosci 19:1067–1080PubMedCrossRefGoogle Scholar
  47. Kinkingnéhun S, Volle E, Pélégrini-Issac M et al (2007) A novel approach to clinical-radiological correlations: Anatomo-Clinical Overlapping Maps (AnaCOM): method and validation. Neuroimage 37:1237–1249PubMedCrossRefGoogle Scholar
  48. Kitamura K, Nakayama K, Kosaka S et al (2008) Diffusion tensor imaging of the cortico-ponto-cerebellar pathway in patients with adult-onset ataxic neurodegenerative disease. Neuroradiology 50:285–292PubMedCrossRefGoogle Scholar
  49. Klockgether T (2008) The clinical diagnosis of autosomal dominant spinocerebellar ataxias. Cerebellum 7:101–105PubMedCrossRefGoogle Scholar
  50. Konczak J, Schoch B, Dimitrova A et al (2005) Functional recovery of children and adolescents after cerebellar tumor resection. Brain 128:1428–1441PubMedCrossRefGoogle Scholar
  51. Küper M, Thürling M, Maderwald S et al (2010) Structural and functional magnetic resonance imaging of the human cerebellar nuclei. Cerebellum (Epub ahead of print)Google Scholar
  52. Küper M, Dimitrova A, Thürling M et al (2011a) Evidence for a motor and a non-motor domain in the human dentate nucleus–an fMRI study. Neuroimage 54:2612–2622PubMedCrossRefGoogle Scholar
  53. Küper M, Brandauer B, Thürling M et al (2011b) Impaired prehension is associated with lesions of the superior and inferior hand representation within the human cerebellum. J Neurophysiol 105:2018–2029PubMedCrossRefGoogle Scholar
  54. Lasek K, Lencer R, Gaser C et al (2006) Morphological basis for the spectrum of clinical deficits in spinocerebellar ataxia 17 (SCA17). Brain 129:2341–2352PubMedCrossRefGoogle Scholar
  55. Lechtenberg R, Gilman S (1978) Speech disorders in cerebellar disease. Ann Neurol 3:285–290PubMedCrossRefGoogle Scholar
  56. Leggio MG, Tedesco AM, Chiricozzi FR et al (2008) Cognitive sequencing impairment in patients with focal or atrophic cerebellar damage. Brain 131:1332–1343PubMedCrossRefGoogle Scholar
  57. Luft AR, Skalej M, Welte D et al (1998) A new semiautomated, three-dimensional technique allowing precise quantification of total and regional cerebellar volume using MRI. Magn Reson Med 40:143–151PubMedCrossRefGoogle Scholar
  58. Lukas C, Schöls L, Bellenberg B et al (2006) Dissociation of grey and white matter reduction in spinocerebellar ataxia type 3 and 6: a voxel-based morphometry study. Neurosci Lett 408:230–235PubMedCrossRefGoogle Scholar
  59. Lukas C, Bellenberg B, Köster O et al (2011) A new sulcus-corrected approach for assessing cerebellar volume in spinocerebellar ataxia. Psychiatry Res 193:123–130PubMedCrossRefGoogle Scholar
  60. Makris N, Schlerf JE, Hodge SM et al (2005) MRI-based surface-assisted parcellation of human cerebellar cortex: an anatomically specified method with estimate of reliability. Neuroimage 25:1146–1160PubMedCrossRefGoogle Scholar
  61. Marinkovic S, Kovacevic M, Gibo H et al (1995) The anatomical basis for the cerebellar infarcts. Surg Neurol 44:450–460PubMedCrossRefGoogle Scholar
  62. Mason R, Miller LE, Baker JF et al (1998) Organization of reaching and grasping movements in the primate cerebellar nuclei as revealed by focal muscimol inactivations. J Neurophysiol 79:537–544PubMedGoogle Scholar
  63. Medina J, Kimberg DY, Chatterjee A et al (2010) Inappropriate usage of the Brunner-Munzel test in recent voxel-based lesion-symptom mapping studies. Neuropsychologia 48:341–343PubMedCrossRefGoogle Scholar
  64. Pfefferbaum A, Mathalon DH, Sullivan EV et al (1994) A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood. Arch Neurol 51:874–887PubMedCrossRefGoogle Scholar
  65. Rashidi M, DaSilva VR, Minagar A et al (2003) Nonmalignant pediatric brain tumors. Curr Neurol Neurosci Rep 3:200–205PubMedCrossRefGoogle Scholar
  66. Ravizza SM, McCormick CA, Schlerf JE et al (2006) Cerebellar damage produces selective deficits in verbal working memory. Brain 129:306–320PubMedCrossRefGoogle Scholar
  67. Raz N, Gunning-Dixon F, Head D et al (2001) Age and sex differences in the cerebellum and the ventral pons: a prospective MR study of healthy adults. AJNR Am J Neuroradiol 22:1161–1167PubMedGoogle Scholar
  68. Richter S, Dimitrova A, Maschke M et al (2005) Degree of cerebellar ataxia correlates with three-dimensional mri-based cerebellar volume in pure cerebellar degeneration. Eur Neurol 54:23–27PubMedCrossRefGoogle Scholar
  69. Riva D, Giorgi C (2000) The cerebellum contributes to higher functions during the development: evidence from a series of children surgically treated for posterior fossa tumors. Brain 123:1051–1061PubMedCrossRefGoogle Scholar
  70. Rorden C, Karnath HO (2004) Using human brain lesions to infer function: a relic from a past era in the fMRI age? Nat Rev Neurosci 5:813–819PubMedCrossRefGoogle Scholar
  71. Rorden C, Karnath HO, Bonilha L (2007) Improving lesion-symptom mapping. J Cogn Neurosci 19:1081–1088PubMedCrossRefGoogle Scholar
  72. Rorden C, Fridriksson J, Karnath HO (2009) An evaluation of traditional and novel tools for lesion behavior mapping. Neuroimage 44:1355–1362PubMedCrossRefGoogle Scholar
  73. Rüb U, Brunt ER, Petrasch-Parwez E et al (2006) Degeneration of ingestion-related brainstem nuclei in spinocerebellar ataxia type 2, 3, 6 and 7. Neuropathol Appl Neurobiol 32:635–649PubMedCrossRefGoogle Scholar
  74. Rueckriegel SM, Driever PH, Blankenburg F et al (2010) Differences in supratentorial damage of white matter in pediatric survivors of posterior fossa tumors with and without adjuvant treatment as detected by magnetic resonance diffusion tensor imaging. Int J Radiat Oncol Biol Phys 76:859–866PubMedCrossRefGoogle Scholar
  75. Sasaki H, Kojima H, Yabe I et al (1998) Neuropathological and molecular studies of spinocerebellar ataxia type 6 (SCA6). Acta Neuropathol (Berl) 95:199–204CrossRefGoogle Scholar
  76. Schmahmann JD, Doyon J, Toga AW et al (2000) MRI atlas of the human cerebellum. Academic Press, San DiegoGoogle Scholar
  77. Schoch B, Dimitrova A, Gizewski ER et al (2006) Functional localization in the human cerebellum based on voxelwise statistical analysis: a study of 90 patients. Neuroimage 30:36–51PubMedCrossRefGoogle Scholar
  78. Schöls L, Linnemann C, Globas C (2008) Electrophysiology in spinocerebellar ataxias: spread of disease and characteristic findings. Cerebellum 7:198–203PubMedCrossRefGoogle Scholar
  79. Schulz JB, Borkert J, Wolf S et al (2010) Visualization, quantification and correlation of brain atrophy with clinical symptoms in spinocerebellar ataxia types 1, 3 and 6. Neuroimage 49:158–168PubMedCrossRefGoogle Scholar
  80. Seghier ML, Ramlackhansingh A, Crinion J et al (2008) Lesion identification using unified segmentation-normalization models and fuzzy clustering. Neuroimage 41:1253–1266PubMedCrossRefGoogle Scholar
  81. Shallice T (1988) From neuropsychology to mental structure. Cambridge University Press, Cambridge/New York/MelbourneCrossRefGoogle Scholar
  82. Steinlin M, Imfeld S, Zulauf P et al (2003) Neuropsychological long-term sequelae after posterior fossa tumor resection during childhood. Brain 126:1998–2008PubMedCrossRefGoogle Scholar
  83. Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Georg Thieme, New YorkGoogle Scholar
  84. Tatu L, Moulin T, Bogousslavsky J et al (1996) Arterial territories of human brain: brainstem and cerebellum. Neurology 47:1125–1135PubMedCrossRefGoogle Scholar
  85. Thach WT, Kane SA, Mink JW et al (1992) Cerebellar output, multiple maps and modes of control in movement coordination. In: Llinas R, Sotelo C (eds) The cerebellum revisited. Springer, New York/Heidelberg, pp 283–300CrossRefGoogle Scholar
  86. Thompson RF, Steinmetz JE (2009) The role of the cerebellum in classical conditioning of discrete behavioral responses. Neuroscience 162:732–755PubMedCrossRefGoogle Scholar
  87. Thürling M, Küper M, Stefanescu R et al (2011) Activation of the dentate nucleus in a verb generation task: a 7 T MRI study. Neuroimage 57:1184–1191PubMedCrossRefGoogle Scholar
  88. Timmann D, Konczak J, Ilg W et al (2009) Current advances in lesion-symptom mapping of the human cerebellum. Neuroscience 162:836–851PubMedCrossRefGoogle Scholar
  89. Tohgi H, Takahashi S, Chiba K et al (1993) Cerebellar infarction. Clinical and neuroimaging analysis in 293 patients. The Tohoku Cerebellar Infarction Study Group. Stroke 24:1697–1670PubMedCrossRefGoogle Scholar
  90. Trouillas P, Takayanagi T, Hallett M et al (1997) International Cooperative Ataxia Rating Scale for pharmacological assessment of the cerebellar syndrome. The Ataxia Neuropharmacology Committee of the World Federation of Neurology. J Neurol Sci 145:205–211PubMedCrossRefGoogle Scholar
  91. Urban PP, Wicht S, Vukurevic G et al (2001) Dysarthria in acute ischemic stroke: lesion topography, clinicoradiologic correlation, and etiology. Neurology 56:1021–1027PubMedCrossRefGoogle Scholar
  92. Vogt O (1905) Die myelogenetische Gliederung des Cortex cerebelli. J Psychol Neurol Bd V, Heft 6:235–250Google Scholar
  93. Werner S, Bock O, Gizewski ER et al (2010) Visuomotor adaptive improvement and aftereffects are impaired differentially following cerebellar lesions in SCA and PICA territory. Exp Brain Res 201:429–439PubMedCrossRefGoogle Scholar
  94. Wilke M, de Haan B, Juenger H et al (2011) Manual, semi-automated, and automated delineation of chronic brain lesions: a comparison of methods. Neuroimage 56:2038–2046PubMedCrossRefGoogle Scholar
  95. Wintermark M, Albers GW, Alexandrov AV et al (2008) Acute stroke imaging research roadmap. Stroke 39:1621–1628PubMedCrossRefGoogle Scholar
  96. Yang Q, Hashizume Y, Yoshida M et al (2000) Morphological Purkinje cell changes in spinocerebellar ataxia type 6. Acta Neuropathol (Berl) 100:371–376CrossRefGoogle Scholar
  97. Zuzak TJ, Poretti A, Drexel B et al (2008) Outcome of children with low-grade cerebellar astrocytoma: long-term complications and quality of life. Childs Nerv Syst 24:1447–1455PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Dagmar Timmann
    • 1
  • Michael Küper
    • 1
  • Elke R. Gizewski
    • 2
  • Beate Schoch
    • 3
  • Opher Donchin
    • 4
  1. 1.Department of NeurologyUniversity of Duisburg-EssenEssenGermany
  2. 2.Departments of NeuroradiologyUniversity of Duisburg-Essen and Justus-Liebig-Universität GießenGießenGermany
  3. 3.Departments of NeurosurgeryUniversity of Duisburg-Essen and Stiftungsklinikum Mittelrhein GmbHKoblenzGermany
  4. 4.Department of Biomedical Engineering and Zlotowski Center for NeuroscienceBen-Gurion University of the NegevBe'er ShevaIsrael

Personalised recommendations