Cerebellar Development and Neurogenesis in Zebrafish

  • Jan Kaslin
  • Michael Brand


Cerebellar organization and function have been studied in numerous species of fish. Fish models such as goldfish and weakly electric fish have led to important findings about the cerebellar architecture, cerebellar circuit physiology, and brain evolution. However, most of the studied fish models are not well suited for developmental and genetic studies of the cerebellum. The rapid transparent ex uterodevelopment in zebrafish allows direct access and precise visualization of all the major events in cerebellar development. The superficial position of the cerebellar primordium and cerebellum further facilitates in vivo imaging of cerebellar structures and developmental events. Furthermore, zebrafish is amenable to high-throughput screening techniques and forward genetics because of its fecundity and easy keeping. Forward genetics screens in zebrafish have resulted in several isolated cerebellar mutants and substantially contributed to the understanding of the genetic...


Granule Cell Granule Cell Layer Purkinje Neuron Ventricular Zone Deep Cerebellar Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adolf B, Bellipanni G, Huber V, Bally-Cuif L (2004) atoh1.2 and beta3.1 are two new bHLH-encoding genes expressed in selective precursor cells of the zebrafish anterior hindbrain. Gene Expr Patterns 5:35–41PubMedCrossRefGoogle Scholar
  2. Alonso JR, Arevalo R, Brinon JG, Lara J, Weruaga E, Aijon J (1992) Parvalbumin immunoreactive neurons and fibres in the teleost cerebellum. Anat Embryol (Berl) 185:355–361CrossRefGoogle Scholar
  3. Altman J, Bayer SA (1997) Development of the cerebellar system: in relation to its evolution, structure, and functions. CRC Press, Boca RatonGoogle Scholar
  4. Alvarado-Mallart RM (2005) The chick/quail transplantation model: discovery of the isthmic organizer center. Brain Res Brain Res Rev 49:109–113PubMedCrossRefGoogle Scholar
  5. Ambrosi G, Flace P, Lorusso L, Girolamo F, Rizzi A, Bosco L, Errede M, Virgintino D, Roncali L, Benagiano V (2007) Non-traditional large neurons in the granular layer of the cerebellar cortex. Eur J Histochem 51(Suppl 1):59–64PubMedGoogle Scholar
  6. Ampatzis K, Dermon CR (2007) Sex differences in adult cell proliferation within the zebrafish (Danio rerio) cerebellum. Eur J Neurosci 25:1030–1040PubMedCrossRefGoogle Scholar
  7. Bae YK, Kani S, Shimizu T, Tanabe K, Nojima H, Kimura Y, Higashijima S, Hibi M (2009) Anatomy of zebrafish cerebellum and screen for mutations affecting its development. Dev Biol 330:406–426PubMedCrossRefGoogle Scholar
  8. Bell CC (2002) Evolution of cerebellum-like structures. Brain Behav Evol 59:312–326PubMedCrossRefGoogle Scholar
  9. Bell CC, Han V, Sawtell NB (2008) Cerebellum-like structures and their implications for cerebellar function. Annu Rev Neurosci 31:1–24PubMedCrossRefGoogle Scholar
  10. Belting HG, Hauptmann G, Meyer D, Abdelilah-Seyfried S, Chitnis A, Eschbach C, Soll I, Thisse C, Thisse B, Artinger KB, Lunde K, Driever W (2001) spiel ohne grenzen/pou2 is required during establishment of the zebrafish midbrain-hindbrain boundary organizer. Development 128:4165–4176PubMedGoogle Scholar
  11. Ben-Arie N, Bellen HJ, Armstrong DL, McCall AE, Gordadze PR, Guo Q, Matzuk MM, Zoghbi HY (1997) Math1 is essential for genesis of cerebellar granule neurons. Nature 390:169–172PubMedCrossRefGoogle Scholar
  12. Brand M, Heisenberg CP, Jiang YJ, Beuchle D, Lun K, Furutani-Seiki M, Granato M, Haffter P, Hammerschmidt M, Kane DA, Kelsh RN, Mullins MC, Odenthal J, van Eeden FJ, Nusslein-Volhard C (1996) Mutations in zebrafish genes affecting the formation of the boundary between midbrain and hindbrain. Development 123:179–190PubMedGoogle Scholar
  13. Broccoli V, Boncinelli E, Wurst W (1999) The caudal limit of Otx2 expression positions the isthmic organizer. Nature 401:164–168PubMedCrossRefGoogle Scholar
  14. Buckles GR, Thorpe CJ, Ramel MC, Lekven AC (2004) Combinatorial Wnt control of zebrafish midbrain-hindbrain boundary formation. Mech Dev 121:437–447PubMedCrossRefGoogle Scholar
  15. Burgess S, Reim G, Chen W, Hopkins N, Brand M (2002) The zebrafish spiel-ohne-grenzen (spg) gene encodes the POU domain protein Pou2 related to mammalian Oct4 and is essential for formation of the midbrain and hindbrain, and for pre-gastrula morphogenesis. Development 129:905–916PubMedGoogle Scholar
  16. Butler AB, Hodos W (2005) Comparative vertebrate neuroanatomy, 2nd edn. Wiley, New YorkCrossRefGoogle Scholar
  17. Canning CA, Lee L, Irving C, Mason I, Jones CM (2007) Sustained interactive Wnt and FGF signaling is required to maintain isthmic identity. Dev Biol 305:276–286PubMedCrossRefGoogle Scholar
  18. Carletti B, Rossi F (2008) Neurogenesis in the cerebellum. Neuroscientist 14:91–100PubMedCrossRefGoogle Scholar
  19. Chaplin N, Tendeng C, Wingate RJ (2010) Absence of an external germinal layer in zebrafish and shark reveals a distinct, anamniote ground plan of cerebellum development. J Neurosci 30:3048–3057PubMedCrossRefGoogle Scholar
  20. Costagli A, Kapsimali M, Wilson SW, Mione M (2002) Conserved and divergent patterns of Reelin expression in the zebrafish central nervous system. J Comp Neurol 450:73–93PubMedCrossRefGoogle Scholar
  21. Crook J, Hendrickson A, Robinson FR (2006) Co-localization of glycine and gaba immunoreactivity in interneurons in Macaca monkey cerebellar cortex. Neuroscience 141:1951–1959PubMedCrossRefGoogle Scholar
  22. Dahmane N, Ruiz i Altaba A (1999) Sonic hedgehog regulates the growth and patterning of the cerebellum. Development 126:3089–3100PubMedGoogle Scholar
  23. Delgado L, Schmachtenberg O (2008) Immunohistochemical localization of GABA, GAD65, and the receptor subunits GABAAalpha1 and GABAB1 in the zebrafish cerebellum. Cerebellum 7:444–450PubMedCrossRefGoogle Scholar
  24. Devor A (2000) Is the cerebellum like cerebellar-like structures? Brain Res Brain Res Rev 34:149–156PubMedCrossRefGoogle Scholar
  25. Elsen GE, Choi LY, Millen KJ, Grinblat Y, Prince VE (2008) Zic1 and Zic4 regulate zebrafish roof plate specification and hindbrain ventricle morphogenesis. Dev Biol 314:376–392PubMedCrossRefGoogle Scholar
  26. Elsen GE, Choi LY, Prince VE, Ho RK (2009) The autism susceptibility gene met regulates zebrafish cerebellar development and facial motor neuron migration. Dev Biol 335:78–92PubMedCrossRefGoogle Scholar
  27. Englund C, Kowalczyk T, Daza RA, Dagan A, Lau C, Rose MF, Hevner RF (2006) Unipolar brush cells of the cerebellum are produced in the rhombic lip and migrate through developing white matter. J Neurosci 26:9184–9195PubMedCrossRefGoogle Scholar
  28. Finger TE (1978) Efferent neurons of the teleost cerebellum. Brain Res 153:608–614PubMedCrossRefGoogle Scholar
  29. Finger TE (1983) Organization of the teleost cerebellum. In: Northcutt RG, Davis R (eds) Fish neurobiology, vol 1, Brain stem and sense organs. University of Michigan press, Ann Arbor, pp 261–284Google Scholar
  30. Fink AJ, Englund C, Daza RA, Pham D, Lau C, Nivison M, Kowalczyk T, Hevner RF (2006) Development of the deep cerebellar nuclei: transcription factors and cell migration from the rhombic lip. J Neurosci 26:3066–3076PubMedCrossRefGoogle Scholar
  31. Folgueira M, Anadon R, Yanez J (2006) Afferent and efferent connections of the cerebellum of a salmonid, the rainbow trout (Oncorhynchus mykiss): a tract-tracing study. J Comp Neurol 497:542–565PubMedCrossRefGoogle Scholar
  32. Foucher I, Mione M, Simeone A, Acampora D, Bally-Cuif L, Houart C (2006) Differentiation of cerebellar cell identities in absence of Fgf signalling in zebrafish Otx morphants. Development 133:1891–1900PubMedCrossRefGoogle Scholar
  33. Gibbs MA, Northmore DP (1996) The role of torus longitudinalis in equilibrium orientation measured with the dorsal light reflex. Brain Behav Evol 48:115–120PubMedCrossRefGoogle Scholar
  34. Goll MG, Anderson R, Stainier DY, Spradling AC, Halpern ME (2009) Transcriptional silencing and reactivation in transgenic zebrafish. Genetics 182:747–755PubMedCrossRefGoogle Scholar
  35. Gona AG (1976) Autoradiographic studies of cerebellar histogenesis in the bullfrog tadpole during metamorphosis: the external granular layer. J Comp Neurol 165:77–87PubMedCrossRefGoogle Scholar
  36. Grandel H, Kaslin J, Ganz J, Wenzel I, Brand M (2006) Neural stem cells and neurogenesis in the adult zebrafish brain: origin, proliferation dynamics, migration and cell fate. Dev Biol 295:263–277PubMedCrossRefGoogle Scholar
  37. Hans S, Kaslin J, Freudenreich D, Brand M (2009) Temporally-controlled site-specific recombination in zebrafish. PLoS ONE 4:e4640PubMedCrossRefGoogle Scholar
  38. Hoshino M (2006) Molecular machinery governing GABAergic neuron specification in the cerebellum. Cerebellum 5:193–198PubMedCrossRefGoogle Scholar
  39. Hoshino M, Nakamura S, Mori K, Kawauchi T, Terao M, Nishimura YV, Fukuda A, Fuse T, Matsuo N, Sone M, Watanabe M, Bito H, Terashima T, Wright CV, Kawaguchi Y, Nakao K, Nabeshima Y (2005) Ptf1a, a bHLH transcriptional gene, defines GABAergic neuronal fates in cerebellum. Neuron 47:201–213PubMedCrossRefGoogle Scholar
  40. Ikenaga T, Yoshida M, Uematsu K (2002) Efferent connections of the cerebellum of the goldfish, Carassius auratus. Brain Behav Evol 60:36–51PubMedCrossRefGoogle Scholar
  41. Ikenaga T, Yoshida M, Uematsu K (2005) Morphology and immunohistochemistry of efferent neurons of the goldfish corpus cerebelli. J Comp Neurol 487:300–311PubMedCrossRefGoogle Scholar
  42. Ikenaga T, Yoshida M, Uematsu K (2006) Cerebellar efferent neurons in teleost fish. Cerebellum 5:268–274PubMedCrossRefGoogle Scholar
  43. Ito H, Yoshimoto M (1990) Cytoarchitecture and fiber connections of the nucleus lateralis valvulae in the carp (Cyprinus carpio). J Comp Neurol 298:385–399PubMedCrossRefGoogle Scholar
  44. Jaszai J, Reifers F, Picker A, Langenberg T, Brand M (2003) Isthmus-to-midbrain transformation in the absence of midbrain-hindbrain organizer activity. Development 130:6611–6623PubMedCrossRefGoogle Scholar
  45. Joyner AL (1996) Engrailed, Wnt and Pax genes regulate midbrain–hindbrain development. Trends Genet 12:15–20PubMedCrossRefGoogle Scholar
  46. Kani S, Bae YK, Shimizu T, Tanabe K, Satou C, Parsons MJ, Scott E, Higashijima S, Hibi M (2010) Proneural gene-linked neurogenesis in zebrafish cerebellum. Dev Biol 343:1–17PubMedCrossRefGoogle Scholar
  47. Kaslin J, Ganz J, Geffarth M, Grandel H, Hans S, Brand M (2009) Stem cells in the adult zebrafish cerebellum: initiation and maintenance of a novel stem cell niche. J Neurosci 29:6142–6153PubMedCrossRefGoogle Scholar
  48. Katahira T, Sato T, Sugiyama S, Okafuji T, Araki I, Funahashi J, Nakamura H (2000) Interaction between Otx2 and Gbx2 defines the organizing center for the optic tectum. Mech Dev 91:43–52PubMedCrossRefGoogle Scholar
  49. Katsuyama Y, Oomiya Y, Dekimoto H, Motooka E, Takano A, Kikkawa S, Hibi M, Terashima T (2007) Expression of zebrafish ROR alpha gene in cerebellar-like structures. Dev Dyn 236:2694–2701PubMedCrossRefGoogle Scholar
  50. Kim CH, Bae YK, Yamanaka Y, Yamashita S, Shimizu T, Fujii R, Park HC, Yeo SY, Huh TL, Hibi M, Hirano T (1997) Overexpression of neurogenin induces ectopic expression of HuC in zebrafish. Neurosci Lett 239:113–116PubMedCrossRefGoogle Scholar
  51. Koster RW, Fraser SE (2001) Direct imaging of in vivo neuronal migration in the developing cerebellum. Curr Biol 11:1858–1863PubMedCrossRefGoogle Scholar
  52. Koster RW, Fraser SE (2006) FGF signaling mediates regeneration of the differentiating cerebellum through repatterning of the anterior hindbrain and reinitiation of neuronal migration. J Neurosci 26:7293–7304PubMedCrossRefGoogle Scholar
  53. Laine J, Axelrad H (1994) The candelabrum cell: a new interneuron in the cerebellar cortex. J Comp Neurol 339:159–173PubMedCrossRefGoogle Scholar
  54. Langenberg T, Dracz T, Oates AC, Heisenberg CP, Brand M (2006) Analysis and visualization of cell movement in the developing zebrafish brain. Dev Dyn 235:928–933PubMedCrossRefGoogle Scholar
  55. Lekven AC, Buckles GR, Kostakis N, Moon RT (2003) Wnt1 and wnt10b function redundantly at the zebrafish midbrain-hindbrain boundary. Dev Biol 254:172–187PubMedCrossRefGoogle Scholar
  56. Leucht C, Stigloher C, Wizenmann A, Klafke R, Folchert A, Bally-Cuif L (2008) MicroRNA-9 directs late organizer activity of the midbrain-hindbrain boundary. Nat Neurosci 11:641–648PubMedCrossRefGoogle Scholar
  57. Liu A, Joyner AL (2001) Early anterior/posterior patterning of the midbrain and cerebellum. Annu Rev Neurosci 24:869–896PubMedCrossRefGoogle Scholar
  58. Louvi A, Alexandre P, Metin C, Wurst W, Wassef M (2003) The isthmic neuroepithelium is essential for cerebellar midline fusion. Development 130:5319–5330PubMedCrossRefGoogle Scholar
  59. Lumsden A, Krumlauf R (1996) Patterning the vertebrate neuraxis. Science 274:1109–1115PubMedCrossRefGoogle Scholar
  60. Lun K, Brand M (1998) A series of no isthmus (noi) alleles of the zebrafish pax2.1 gene reveals multiple signaling events in development of the midbrain-hindbrain boundary. Development 125:3049–3062PubMedGoogle Scholar
  61. Machold R, Fishell G (2005) Math1 is expressed in temporally discrete pools of cerebellar rhombic-lip neural progenitors. Neuron 48:17–24PubMedCrossRefGoogle Scholar
  62. Martinez S, Alvarado-Mallart RM (1989) Rostral cerebellum originates from the caudal portion of the so-called “Mesencephalic” vesicle: a study using chick/quail chimeras. Eur J Neurosci 1:549–560PubMedCrossRefGoogle Scholar
  63. McFarland KA, Topczewska JM, Weidinger G, Dorsky RI, Appel B (2008) Hh and Wnt signaling regulate formation of olig2+ neurons in the zebrafish cerebellum. Dev Biol 318:162–171PubMedCrossRefGoogle Scholar
  64. Meek J (1983) Functional anatomy of the tectum mesencephali of the goldfish. An explorative analysis of the functional implications of the laminar structural organization of the tectum. Brain Res 287:247–297PubMedGoogle Scholar
  65. Meek J (1992) Comparative aspects of cerebellar organization. From mormyrids to mammals. Eur J Morphol 30:37–51PubMedGoogle Scholar
  66. Meek J (1998) Holosteans and teleosts. In: Nieuwenhuys R, Donkelaar HJ, Nicholson C (eds) The central nervous system of vertebrates. Springer, BerlinGoogle Scholar
  67. Meek J, Yang JY, Han VZ, Bell CC (2008) Morphological analysis of the mormyrid cerebellum using immunohistochemistry, with emphasis on the unusual neuronal organization of the valvula. J Comp Neurol 510:396–421PubMedCrossRefGoogle Scholar
  68. Millet S, Campbell K, Epstein DJ, Losos K, Harris E, Joyner AL (1999) A role for Gbx2 in repression of Otx2 and positioning the mid/hindbrain organizer. Nature 401:161–164PubMedCrossRefGoogle Scholar
  69. Mugnaini E, Sekerkova G, Martina M (2011) The unipolar brush cell: a remarkable neuron finally receiving the deserved attention. Brain Res Rev 66(1–2):220–245PubMedCrossRefGoogle Scholar
  70. Murakami T, Morita Y (1987) Morphology and distribution of the projection neurons in the cerebellum in a teleost, Sebastiscus marmoratus. J Comp Neurol 256:607–623PubMedCrossRefGoogle Scholar
  71. Nieuwenhuys R, Pouwels E, Smulders-Kersten E (1974) The neuronal organization of cerebellar lobe C1 in the mormyrid fish Gnathonemus petersii (teleostei). Z Anat Entwicklungsgesch 144:315–336PubMedCrossRefGoogle Scholar
  72. Northmore DP, Williams B, Vanegas H (1983) The teleostean torus longitudinalis: responses related to eye movements, visuotopic mapping, and functional relations with the optic tectum. J Comp Physiol A 150:39–50CrossRefGoogle Scholar
  73. O’Hara FP, Beck E, Barr LK, Wong LL, Kessler DS, Riddle RD (2005) Zebrafish Lmx1b.1 and Lmx1b.2 are required for maintenance of the isthmic organizer. Development 132:3163–3173PubMedCrossRefGoogle Scholar
  74. Pascual M, Abasolo I, Mingorance-Le Meur A, Martinez A, Del Rio JA, Wright CV, Real FX, Soriano E (2007) Cerebellar GABAergic progenitors adopt an external granule cell-like phenotype in the absence of Ptf1a transcription factor expression. Proc Natl Acad Sci USA 104:5193–5198PubMedCrossRefGoogle Scholar
  75. Picker A, Brennan C, Reifers F, Clarke JD, Holder N, Brand M (1999) Requirement for the zebrafish mid-hindbrain boundary in midbrain polarisation, mapping and confinement of the retinotectal projection. Development 126:2967–2978PubMedGoogle Scholar
  76. Pouwels E (1978) On the development of the cerebellum of the trout, Salmo gairdneri. IV. Development of the pattern of connectivity. Anat Embryol (Berl) 153:55–65CrossRefGoogle Scholar
  77. Raible F, Brand M (2004) Divide et impera – the midbrain-hindbrain boundary and its organizer. Trends Neurosci 27:727–734PubMedCrossRefGoogle Scholar
  78. Reifers F, Bohli H, Walsh EC, Crossley PH, Stainier DY, Brand M (1998) Fgf8 is mutated in zebrafish acerebellar (ace) mutants and is required for maintenance of midbrain-hindbrain boundary development and somitogenesis. Development 125:2381–2395PubMedGoogle Scholar
  79. Reim G, Brand M (2002) Spiel-ohne-grenzen/pou2 mediates regional competence to respond to Fgf8 during zebrafish early neural development. Development 129:917–933PubMedGoogle Scholar
  80. Rhinn M, Brand M (2001) The midbrain–hindbrain boundary organizer. Curr Opin Neurobiol 11:34–42PubMedCrossRefGoogle Scholar
  81. Rhinn M, Lun K, Luz M, Werner M, Brand M (2005) Positioning of the midbrain-hindbrain boundary organizer through global posteriorization of the neuroectoderm mediated by Wnt8 signaling. Development 132:1261–1272PubMedCrossRefGoogle Scholar
  82. Rhinn M, Picker A, Brand M (2006) Global and local mechanisms of forebrain and midbrain patterning. Curr Opin Neurobiol 16:5–12PubMedCrossRefGoogle Scholar
  83. Rhinn M, Lun K, Ahrendt R, Geffarth M, Brand M (2009) Zebrafish gbx1 refines the midbrain-hindbrain boundary border and mediates the Wnt8 posteriorization signal. Neural Dev 4:12PubMedCrossRefGoogle Scholar
  84. Rieger S, Senghaas N, Walch A, Koster RW (2009) Cadherin-2 controls directional chain migration of cerebellar granule neurons. PLoS Biol 7:e1000240PubMedCrossRefGoogle Scholar
  85. Scott EK (2009) The Gal4/UAS toolbox in zebrafish: new approaches for defining behavioral circuits. J Neurochem 110:441–456PubMedCrossRefGoogle Scholar
  86. Sgaier SK, Millet S, Villanueva MP, Berenshteyn F, Song C, Joyner AL (2005) Morphogenetic and cellular movements that shape the mouse cerebellum; insights from genetic fate mapping. Neuron 45:27–40PubMedGoogle Scholar
  87. Sgaier SK, Lao Z, Villanueva MP, Berenshteyn F, Stephen D, Turnbull RK, Joyner AL (2007) Genetic subdivision of the tectum and cerebellum into functionally related regions based on differential sensitivity to engrailed proteins. Development 134:2325–2335PubMedCrossRefGoogle Scholar
  88. Simeone A (2000) Positioning the isthmic organizer where Otx2 and Gbx2meet. Trends Genet 16:237–240PubMedCrossRefGoogle Scholar
  89. Suster ML, Sumiyama K, Kawakami K (2009) Transposon-mediated BAC transgenesis in zebrafish and mice. BMC Genomics 10:477PubMedCrossRefGoogle Scholar
  90. Takacs J, Markova L, Borostyankoi Z, Gorcs TJ, Hamori J (1999) Metabotrop glutamate receptor type 1a expressing unipolar brush cells in the cerebellar cortex of different species: a comparative quantitative study. J Neurosci Res 55:733–748PubMedCrossRefGoogle Scholar
  91. Tour E, Pillemer G, Gruenbaum Y, Fainsod A (2002) Gbx2 interacts with Otx2 and patterns the anterior-posterior axis during gastrulation in Xenopus. Mech Dev 112:141–151PubMedCrossRefGoogle Scholar
  92. Toyama R, Gomez DM, Mana MD, Dawid IB (2004) Sequence relationships and expression patterns of zebrafish zic2 and zic5 genes. Gene Expr Patterns 4:345–350PubMedCrossRefGoogle Scholar
  93. Volkmann K, Rieger S, Babaryka A, Koster RW (2008) The zebrafish cerebellar rhombic lip is spatially patterned in producing granule cell populations of different functional compartments. Dev Biol 313:167–180PubMedCrossRefGoogle Scholar
  94. Volkmann K, Chen YY, Harris MP, Wullimann MF, Koster RW (2010) The zebrafish cerebellar upper rhombic lip generates tegmental hindbrain nuclei by long-distance migration in an evolutionary conserved manner. J Comp Neurol 518:2794–2817PubMedGoogle Scholar
  95. Wang VY, Zoghbi HY (2001) Genetic regulation of cerebellar development. Nat Rev Neurosci 2:484–491PubMedCrossRefGoogle Scholar
  96. Wang VY, Rose MF, Zoghbi HY (2005) Math1 expression redefines the rhombic lip derivatives and reveals novel lineages within the brainstem and cerebellum. Neuron 48:31–43PubMedCrossRefGoogle Scholar
  97. Wechsler-Reya RJ, Scott MP (1999) Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron 22:103–114PubMedCrossRefGoogle Scholar
  98. Wingate RJ (2001) The rhombic lip and early cerebellar development. Curr Opin Neurobiol 11:82–88PubMedCrossRefGoogle Scholar
  99. Wingate RJ, Hatten ME (1999) The role of the rhombic lip in avian cerebellum development. Development 126:4395–4404PubMedGoogle Scholar
  100. Wullimann MF (1997) The central nervous system. In: Evans DH, Claiborne JB (eds) Physiology of fishes, vol II. CRC Press, Boca RatonGoogle Scholar
  101. Wullimann MF, Northcutt RG (1988) Connections of the corpus cerebelli in the green sunfish and the common goldfish: a comparison of perciform and cypriniform teleosts. Brain Behav Evol 32:293–316PubMedCrossRefGoogle Scholar
  102. Wullimann MF, Northcutt RG (1989) Afferent connections of the valvula cerebelli in two teleosts, the common goldfish and the green sunfish. J Comp Neurol 289:554–567PubMedCrossRefGoogle Scholar
  103. Wurst W, Bally-Cuif L (2001) Neural plate patterning: upstream and downstream of the isthmic organizer. Nat Rev Neurosci 2:99–108PubMedCrossRefGoogle Scholar
  104. Xue HG, Yang CY, Yamamoto N (2008) Afferent sources to the inferior olive and distribution of the olivocerebellar climbing fibers in cyprinids. J Comp Neurol 507:1409–1427PubMedCrossRefGoogle Scholar
  105. Zecchin E, Mavropoulos A, Devos N, Filippi A, Tiso N, Meyer D, Peers B, Bortolussi M, Argenton F (2004) Evolutionary conserved role of ptf1a in the specification of exocrine pancreatic fates. Dev Biol 268:174–184PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Developmental Genetics, Biotechnology Center and Center for Regenerative Therapies DresdenDresden University of TechnologyDresdenGermany
  2. 2.Australian Regenerative Medicine Institute (ARMI)Monash UniversityMelbourneAustralia

Personalised recommendations