Specification of Granule Cells and Purkinje Cells

  • Thomas Butts
  • Leigh Wilson
  • Richard J. T. Wingate
Reference work entry

Abstract

Granule cells and Purkinje cells are the major populations of neurons in the cerebellum. Their specification depends on a combination of regional identity and spatiotemporal cues. These are conferred by patterning systems in the early embryo that determine anteroposterior and dorsoventral positional coordinates and an age-dependent signal (or signals) whose nature is obscure. While a number of important questions remain about the nature of cerebellar progenitor pools and their precise boundaries, a variety of fate-mapping and genetic approaches have indicated that both granule cells and Purkinje cells arise from different dorsoventral domains within hindbrain rhombomere 1. Unusually, granule cell precursors undergo a subsequent transit amplification stage regulated by Purkinje cell signals, within a transient superficial germinal layer. Recent evolutionary insights suggest that this phase of Sonic hedgehog-dependent transit amplification is only found in amniotes. Evolutionarily, since secondary proliferation arose independently of granule cell specification, it is likely to be an adaptation purely for postspecification regulation of granule cell numbers.

Keywords

Purkinje Cell Granule Cell Ventricular Zone bHLH Gene Roof Plate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Acampora D, Mazan S, Lallemand Y, Avantaggiato V, Maury M, Simeone A, Brulet P (1995) Forebrain and midbrain regions are deleted in Otx2−/− mutants due to a defective anterior neuroectoderm specification during gastrulation. Development 121:3279–3290PubMedGoogle Scholar
  2. Alder J, Cho NK, Hatten ME (1996) Embryonic precursor cells from the rhombic lip are specified to a cerebellar granule neuron identity. Neuron 17:389–399PubMedCrossRefGoogle Scholar
  3. Alder J, Lee KJ, Jessell TM, Hatten ME (1999) Generation of cerebellar granule neurons in vivo by transplantation of BMP-treated neural progenitor cells. Nat Neurosci 2:535–540PubMedCrossRefGoogle Scholar
  4. Alexandre P, Wassef M (2003) The isthmic organizer links anteroposterior and dorsoventral patterning in the mid/hindbrain by generating roof plate structures. Development 130:5331–5338PubMedCrossRefGoogle Scholar
  5. Altman J, Bayer SA (1985) Embryonic development of the rat cerebellum. III. Regional differences in the time of origin, migration, and settling of Purkinje cells. J Comp Neurol 231:42–65PubMedCrossRefGoogle Scholar
  6. Apps R, Garwicz M (2005) Anatomical and physiological foundations of cerebellar information processing. Nat Rev Neurosci 6:297–311PubMedCrossRefGoogle Scholar
  7. Baader SL, Schilling ML, Rosengarten B, Pretsch W, Teutsch HF, Oberdick J, Schilling K (1996) Purkinje cell lineage and the topographic organization of the cerebellar cortex: a view from X inactivation mosaics. Dev Biol 174:393–406PubMedCrossRefGoogle Scholar
  8. Ben-Arie N, Bellen HJ, Armstrong DL, McCall AE, Gordadze PR, Guo Q, Matzuk MM, Zoghbi HY (1997) Math1 is essential for genesis of cerebellar granule neurons. Nature 390:169–172PubMedCrossRefGoogle Scholar
  9. Bermingham NA, Hassan BA, Wang VY, Fernandez M, Banfi S, Bellen HJ, Fritzsch B, Zoghbi HY (2001) Proprioceptor pathway development is dependent on Math1. Neuron 30:411–422PubMedCrossRefGoogle Scholar
  10. Braitenberg V (1961) Functional interpretation of cerebellar histology. Nature 190:539–540CrossRefGoogle Scholar
  11. Brand M, Heisenberg CP, Jiang YJ, Beuchle D, Lun K, Furutani-Seiki M, Granato M, Haffter P, Hammerschmidt M, Kane DA et al (1996) Mutations in zebrafish genes affecting the formation of the boundary between midbrain and hindbrain. Development 123:179–190PubMedGoogle Scholar
  12. Butler A, Hodos W (1996) Comparative vertebrate neuroanatomy: evolution and adaptation. Wiley, New YorkGoogle Scholar
  13. Butts T, Chaplin N, Wingate RJ (2011) Can clues from evolution unlock the molecular development of the cerebellum? Mol Neurobiol 43:67–76PubMedCrossRefGoogle Scholar
  14. Cajal PRy (1891) El encéfalo de los reptiles: Trabajo del Laboratorio. Laboratorio de Histología, ZaragozaGoogle Scholar
  15. Cajal SRy (1894) Les nouvelles idées sur la structure du système nerveux chez l’homme et chez les vertébrés. C. Reinwald & Cie, ParisCrossRefGoogle Scholar
  16. Cajal SRy (1911) Histologie du système nerveux de l’hommme et des vertébrés. A. Maloine, ParisGoogle Scholar
  17. Chaplin N, Tendeng C, Wingate RJ (2010) Absence of an external germinal layer in zebrafish and shark reveals a distinct, anamniote ground plan of cerebellum development. J Neurosci 30:3048–3057PubMedCrossRefGoogle Scholar
  18. Chizhikov VV, Lindgren AG, Currle DS, Rose MF, Monuki ES, Millen KJ (2006) The roof plate regulates cerebellar cell-type specification and proliferation. Development 133:2793–2804PubMedCrossRefGoogle Scholar
  19. Chizhikov VV, Lindgren AG, Mishima Y, Roberts RW, Aldinger KA, Miesegaes GR, Currle DS, Monuki ES, Millen KJ (2010) Lmx1a regulates fates and location of cells originating from the cerebellar rhombic lip and telencephalic cortical hem. Proc Natl Acad Sci USA 107:10725–10730PubMedCrossRefGoogle Scholar
  20. Chizhikov VV, Millen KJ (2004) Mechanisms of roof plate formation in the vertebrate CNS. Nat Rev Neurosci 5:808–812PubMedCrossRefGoogle Scholar
  21. Clarke JD, Erskine L, Lumsden A (1998) Differential progenitor dispersal and the spatial origin of early neurons can explain the predominance of single-phenotype clones in the chick hindbrain. Dev Dyn 212:14–26PubMedCrossRefGoogle Scholar
  22. Corrales JD, Blaess S, Mahoney EM, Joyner AL (2006) The level of sonic hedgehog signaling regulates the complexity of cerebellar foliation. Development 133:1811–1821PubMedCrossRefGoogle Scholar
  23. Corrales JD, Rocco GL, Blaess S, Guo Q, Joyner AL (2004) Spatial pattern of sonic hedgehog signaling through Gli genes during cerebellum development. Development 131:5581–5590PubMedCrossRefGoogle Scholar
  24. Currle DS, Cheng X, Hsu CM, Monuki ES (2005) Direct and indirect roles of CNS dorsal midline cells in choroid plexus epithelia formation. Development 132:3549–3559PubMedCrossRefGoogle Scholar
  25. Dahmane N, Ruiz-i-Altaba A (1999) Sonic hedgehog regulates the growth and patterning of the cerebellum. Development 126:3089–3100PubMedGoogle Scholar
  26. Dean P, Porrill J, Ekerot CF, Jorntell H (2010) The cerebellar microcircuit as an adaptive filter: experimental and computational evidence. Nat Rev Neurosci 11:30–43PubMedCrossRefGoogle Scholar
  27. Eddison M, Toole L, Bell E, Wingate RJ (2004) Segmental identity and cerebellar granule cell induction in rhombomere 1. BMC Biol 2:14PubMedCrossRefGoogle Scholar
  28. Ellison DW, Clifford SC, Gajjar A, Gilbertson RJ (2003) What’s new in neuro-oncology? Recent advances in medulloblastoma. Eur J Paediatr Neurol 7:53–66PubMedCrossRefGoogle Scholar
  29. Englund C, Kowalczyk T, Daza RA, Dagan A, Lau C, Rose MF, Hevner RF (2006) Unipolar brush cells of the cerebellum are produced in the rhombic lip and migrate through developing white matter. J Neurosci 26:9184–9195PubMedCrossRefGoogle Scholar
  30. Espinosa JS, Luo L (2008) Timing neurogenesis and differentiation: insights from quantitative clonal analyses of cerebellar granule cells. J Neurosci 28:2301–2312PubMedCrossRefGoogle Scholar
  31. Fernandez C, Tatard VM, Bertrand N, Dahmane N (2010) Differential modulation of Sonic-hedgehog-induced cerebellar granule cell precursor proliferation by the IGF signaling network. Dev Neurosci 32:59–70PubMedCrossRefGoogle Scholar
  32. Fink AJ, Englund C, Daza RA, Pham D, Lau C, Nivison M, Kowalczyk T, Hevner RF (2006) Development of the deep cerebellar nuclei: transcription factors and cell migration from the rhombic lip. J Neurosci 26:3066–3076PubMedCrossRefGoogle Scholar
  33. Flora A, Klisch TJ, Schuster G, Zoghbi HY (2009) Deletion of Atoh1 disrupts Sonic Hedgehog signaling in the developing cerebellum and prevents medulloblastoma. Science 326:1424–1427PubMedCrossRefGoogle Scholar
  34. Foucher I, Mione M, Simeone A, Acampora D, Bally-Cuif L, Houart C (2006) Differentiation of cerebellar cell identities in absence of Fgf signalling in zebrafish Otx morphants. Development 133:1891–1900PubMedCrossRefGoogle Scholar
  35. Gavalas A, Davenne M, Lumsden A, Chambon P, Rijli FM (1997) Role of Hoxa-2 in axon pathfinding and rostral hindbrain patterning. Development 124:3693–3702PubMedGoogle Scholar
  36. Gilthorpe JD, Papantoniou EK, Chedotal A, Lumsden A, Wingate RJ (2002) The migration of cerebellar rhombic lip derivatives. Development 129:4719–4728PubMedGoogle Scholar
  37. Glasgow SM, Henke RM, Macdonald RJ, Wright CV, Johnson JE (2005) Ptf1a determines GABAergic over glutamatergic neuronal cell fate in the spinal cord dorsal horn. Development 132:5461–5469PubMedCrossRefGoogle Scholar
  38. Gold DA, Baek SH, Schork NJ, Rose DW, Larsen DD, Sachs BD, Rosenfeld MG, Hamilton BA (2003) RORalpha coordinates reciprocal signaling in cerebellar development through sonic hedgehog and calcium-dependent pathways. Neuron 40:1119–1131PubMedCrossRefGoogle Scholar
  39. Goldowitz D, Hamre KM, Przyborski SA, Ackerman SL (2000) Granule cells and cerebellar boundaries: analysis of Unc5h3 mutant chimeras. J Neurosci 20:4129–4137PubMedGoogle Scholar
  40. Gona AG (1972) Morphogenesis of the cerebellum of the frog tadpole during spontaneous metamorphosis. J Comp Neurol 146:133–142PubMedCrossRefGoogle Scholar
  41. Goodrich LV, Milenkovic L, Higgins KM, Scott MP (1997) Altered neural cell fates and medulloblastoma in mouse patched mutants. Science 277:1109–1113PubMedCrossRefGoogle Scholar
  42. Hallonet ME, Le Douarin NM (1993) Tracing neuroepithelial cells of the mesencephalic and metencephalic alar plates during cerebellar ontogeny in quail-chick chimaeras. Eur J Neurosci 5:1145–1155PubMedCrossRefGoogle Scholar
  43. Hallonet ME, Teillet MA, Le Douarin NM (1990) A new approach to the development of the cerebellum provided by the quail-chick marker system. Development 108:19–31PubMedGoogle Scholar
  44. Hawkes R, Beierbach E, Tan SS (1999) Granule cell dispersion is restricted across transverse boundaries in mouse chimeras. Eur J Neurosci 11:3800–3808PubMedCrossRefGoogle Scholar
  45. Hawkes R, Herrup K (1995) Aldolase C/zebrin II and the regionalization of the cerebellum. J Mol Neurosci 6:147–158PubMedCrossRefGoogle Scholar
  46. Helms AW, Johnson JE (1998) Progenitors of dorsal commissural interneurons are defined by MATH1 expression. Development 125:919–928PubMedGoogle Scholar
  47. Helms AW, Johnson JE (2003) Specification of dorsal spinal cord interneurons. Curr Opin Neurobiol 13:42–49PubMedCrossRefGoogle Scholar
  48. Holland LZ, Holland ND (1999) Chordate origins of the vertebrate central nervous system. Curr Opin Neurobiol 9:596–602PubMedCrossRefGoogle Scholar
  49. Hoshino M, Nakamura S, Mori K, Kawauchi T, Terao M, Nishimura YV, Fukuda A, Fuse T, Matsuo N, Sone M et al (2005) Ptf1a, a bHLH transcriptional gene, defines GABAergic neuronal fates in cerebellum. Neuron 47:201–213PubMedCrossRefGoogle Scholar
  50. Irving C, Mason I (2000) Signalling by FGF8 from the isthmus patterns anterior hindbrain and establishes the anterior limit of Hox gene expression. Development 127:177–186PubMedGoogle Scholar
  51. Jensen P, Smeyne R, Goldowitz D (2004) Analysis of cerebellar development in math1 null embryos and chimeras. J Neurosci 24:2202–2211PubMedCrossRefGoogle Scholar
  52. Joyner AL (1996) Engrailed, Wnt and Pax genes regulate midbrain–hindbrain development. Trends Genet 12:15–20PubMedCrossRefGoogle Scholar
  53. Kani S, Bae YK, Shimizu T, Tanabe K, Satou C, Parsons MJ, Scott E, Higashijima S, Hibi M (2010) Proneural gene-linked neurogenesis in zebrafish cerebellum. Dev Biol 343:1–17PubMedCrossRefGoogle Scholar
  54. Kenney AM, Cole MD, Rowitch DH (2003) Nmyc upregulation by sonic hedgehog signaling promotes proliferation in developing cerebellar granule neuron precursors. Development 130:15–28PubMedCrossRefGoogle Scholar
  55. Kenney AM, Widlund HR, Rowitch DH (2004) Hedgehog and PI-3 kinase signaling converge on Nmyc1 to promote cell cycle progression in cerebellar neuronal precursors. Development 131:217–228PubMedCrossRefGoogle Scholar
  56. Kim EJ, Battiste J, Nakagawa Y, Johnson JE (2008) Ascl1 (Mash1) lineage cells contribute to discrete cell populations in CNS architecture. Mol Cell Neurosci 38:595–606PubMedCrossRefGoogle Scholar
  57. Klein C, Butt SJ, Machold RP, Johnson JE, Fishell G (2005) Cerebellum- and forebrain-derived stem cells possess intrinsic regional character. Development 132:4497–4508PubMedCrossRefGoogle Scholar
  58. Koibuchi N (2008) The role of thyroid hormone on cerebellar development. Cerebellum 7:530–533PubMedCrossRefGoogle Scholar
  59. Kool M, Koster J, Bunt J, Hasselt NE, Lakeman A, van Sluis P, Troost D, Meeteren NS, Caron HN, Cloos J et al (2008) Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological features. PLoS ONE 3:e3088PubMedCrossRefGoogle Scholar
  60. Koster RW, Fraser SE (2006) FGF signaling mediates regeneration of the differentiating cerebellum through repatterning of the anterior hindbrain and reinitiation of neuronal migration. J Neurosci 26:7293–7304PubMedCrossRefGoogle Scholar
  61. Larouche M, Hawkes R (2006) From clusters to stripes: the developmental origins of adult cerebellar compartmentation. Cerebellum 5:77–88PubMedCrossRefGoogle Scholar
  62. Le Douarin NM (1993) Embryonic neural chimaeras in the study of brain development. Trends Neurosci 16:64–72PubMedCrossRefGoogle Scholar
  63. Lee A, Kessler JD, Read TA, Kaiser C, Corbeil D, Huttner WB, Johnson JE, Wechsler-Reya RJ (2005) Isolation of neural stem cells from the postnatal cerebellum. Nat Neurosci 8:723–729PubMedCrossRefGoogle Scholar
  64. Lee KJ, Dietrich P, Jessell TM (2000) Genetic ablation reveals that the roof plate is essential for dorsal interneuron specification. Nature 403:734–740PubMedCrossRefGoogle Scholar
  65. Lee KJ, Mendelsohn M, Jessell TM (1998) Neuronal patterning by BMPs: a requirement for GDF7 in the generation of a discrete class of commissural interneurons in the mouse spinal cord. Genes Dev 12:3394–3407PubMedCrossRefGoogle Scholar
  66. Lewis PM, Gritli-Linde A, Smeyne R, Kottmann A, McMahon AP (2004) Sonic hedgehog signaling is required for expansion of granule neuron precursors and patterning of the mouse cerebellum. Dev Biol 270:393–410PubMedCrossRefGoogle Scholar
  67. Lin JC, Cai L, Cepko CL (2001) The external granule layer of the developing chick cerebellum generates granule cells and cells of the isthmus and rostral hindbrain. J Neurosci 21:159–168PubMedGoogle Scholar
  68. Lin JC, Cepko CL (1999) Biphasic dispersion of clones containing Purkinje cells and glia in the developing chick cerebellum. Dev Biol 211:177–197PubMedCrossRefGoogle Scholar
  69. Lisney TJ, Yopak KE, Montgomery JC, Collin SP (2008) Variation in brain organization and cerebellar foliation in chondrichthyans: batoids. Brain Behav Evol 72:262–282PubMedCrossRefGoogle Scholar
  70. Lumsden A, Krumlauf R (1996) Patterning the vertebrate neuraxis. Science 274:1109–1115PubMedCrossRefGoogle Scholar
  71. Machold R, Fishell G (2005) Math1 is expressed in temporally discrete pools of cerebellar rhombic-lip neural progenitors. Neuron 48:17–24PubMedCrossRefGoogle Scholar
  72. Martinez S, Crossley PH, Cobos I, Rubenstein JL, Martin GR (1999) FGF8 induces formation of an ectopic isthmic organizer and isthmocerebellar development via a repressive effect on Otx2 expression. Development 126:1189–1200PubMedGoogle Scholar
  73. Matsumoto K, Nishihara S, Kamimura M, Shiraishi T, Otoguro T, Uehara M, Maeda Y, Ogura K, Lumsden A, Ogura T (2004) The prepattern transcription factor Irx2, a target of the FGF8/MAP kinase cascade, is involved in cerebellum formation. Nat Neurosci 7:605–612PubMedCrossRefGoogle Scholar
  74. McConnell SK, Kaznowski CE (1991) Cell cycle dependence of laminar determination in developing neocortex. Science 254:282–285PubMedCrossRefGoogle Scholar
  75. Miesegaes GR, Klisch TJ, Thaller C, Ahmad KA, Atkinson RC, Zoghbi HY (2009) Identification and subclassification of new Atoh1 derived cell populations during mouse spinal cord development. Dev Biol 327:339–351PubMedCrossRefGoogle Scholar
  76. Millet S, Bloch-Gallego E, Simeone A, Alvarado-Mallart RM (1996) The caudal limit of Otx2 gene expression as a marker of the midbrain/hindbrain boundary: a study using in situ hybridisation and chick/quail homotopic grafts. Development 122:3785–3797PubMedGoogle Scholar
  77. Millonig JH, Millen KJ, Hatten ME (2000) The mouse Dreher gene Lmx1a controls formation of the roof plate in the vertebrate CNS. Nature 403:764–769PubMedCrossRefGoogle Scholar
  78. Mizuhara E, Minaki Y, Nakatani T, Kumai M, Inoue T, Muguruma K, Sasai Y, Ono Y (2010) Purkinje cells originate from cerebellar ventricular zone progenitors positive for Neph3 and E-cadherin. Dev Biol 338:202–214PubMedCrossRefGoogle Scholar
  79. Morales D, Hatten ME (2006) Molecular markers of neuronal progenitors in the embryonic cerebellar anlage. J Neurosci 26:12226–12236PubMedCrossRefGoogle Scholar
  80. Nielsen CM, Dymecki SM (2010) Sonic hedgehog is required for vascular outgrowth in the hindbrain choroid plexus. Dev Biol 340:430–437PubMedCrossRefGoogle Scholar
  81. Nieuwenhuys R, Nicholson C (1969) A survey of the general morphology, the fiber connections, and the possible functional significance of the gigantocerebellum of mormyrid fishes. In: Llinás R (ed) Neurobiology of cerebellar evolution and development. American Medical Association, Chicago, pp 107–134Google Scholar
  82. Nieuwenhuys R, ten Donkelaar HJ, Nicholson C (1998) The central nervous system of vertebrates. Springer, BerlinGoogle Scholar
  83. Pascual M, Abasolo I, Mingorance-Le Meur A, Martinez A, Del Rio JA, Wright CV, Real FX, Soriano E (2007) Cerebellar GABAergic progenitors adopt an external granule cell-like phenotype in the absence of Ptf1a transcription factor expression. Proc Natl Acad Sci USA 104:5193–5198PubMedCrossRefGoogle Scholar
  84. Reifers F, Bohli H, Walsh EC, Crossley PH, Stainier DY, Brand M (1998) Fgf8 is mutated in zebrafish acerebellar (ace) mutants and is required for maintenance of midbrain-hindbrain boundary development and somitogenesis. Development 125:2381–2395PubMedGoogle Scholar
  85. Rieger S, Senghaas N, Walch A, Koster RW (2009) Cadherin-2 controls directional chain migration of cerebellar granule neurons. PLoS Biol 7:e1000240PubMedCrossRefGoogle Scholar
  86. Rodriguez CI, Dymecki SM (2000) Origin of the precerebellar system. Neuron 27:475–486PubMedCrossRefGoogle Scholar
  87. Rose MF, Ahmad KA, Thaller C, Zoghbi HY (2009) Excitatory neurons of the proprioceptive, interoceptive, and arousal hindbrain networks share a developmental requirement for Math1. Proc Natl Acad Sci USA 106:22462–22467PubMedCrossRefGoogle Scholar
  88. Ryder EF, Cepko CL (1994) Migration patterns of clonally related granule cells and their progenitors in the developing chick cerebellum. Neuron 12:1011–1028PubMedCrossRefGoogle Scholar
  89. Sato T, Joyner AL (2009) The duration of Fgf8 isthmic organizer expression is key to patterning different tectal-isthmo-cerebellum structures. Development 136:3617–3626PubMedCrossRefGoogle Scholar
  90. Schuller U, Heine VM, Mao J, Kho AT, Dillon AK, Han YG, Huillard E, Sun T, Ligon AH, Qian Y et al (2008) Acquisition of granule neuron precursor identity is a critical determinant of progenitor cell competence to form Shh-induced medulloblastoma. Cancer Cell 14:123–134PubMedCrossRefGoogle Scholar
  91. Sgaier SK, Millet S, Villanueva MP, Berenshteyn F, Song C, Joyner AL (2005) Morphogenetic and cellular movements that shape the mouse cerebellum; insights from genetic fate mapping. Neuron 45:27–40PubMedGoogle Scholar
  92. Sultan F (2005) Why some bird brains are larger than others. Curr Biol 15:R649–R650PubMedCrossRefGoogle Scholar
  93. Sultan F, Glickstein M (2007) The cerebellum: comparative and animal studies. Cerebellum 6:168–176PubMedCrossRefGoogle Scholar
  94. Swanson DJ, Goldowitz D (2011) Experimental Sey mouse chimeras reveal the developmental deficiencies of Pax6-null granule cells in the postnatal cerebellum. Dev Biol 351(1):1–12PubMedCrossRefGoogle Scholar
  95. Wada H, Saiga H, Satoh N, Holland PW (1998) Tripartite organization of the ancestral chordate brain and the antiquity of placodes: insights from ascidian Pax-2/5/8, Hox and Otx genes. Development 125:1113–1122PubMedGoogle Scholar
  96. Wallace VA (1999) Purkinje-cell-derived Sonic hedgehog regulates granule neuron precursor cell proliferation in the developing mouse cerebellum. Curr Biol 9:445–448PubMedCrossRefGoogle Scholar
  97. Wang VY, Rose MF, Zoghbi HY (2005) Math1 expression redefines the rhombic lip derivatives and reveals novel lineages within the brainstem and cerebellum. Neuron 48:31–43PubMedCrossRefGoogle Scholar
  98. Wassarman KM, Lewandoski M, Campbell K, Joyner AL, Rubenstein JL, Martinez S, Martin GR (1997) Specification of the anterior hindbrain and establishment of a normal mid/hindbrain organizer is dependent on Gbx2 gene function. Development 124:2923–2934PubMedGoogle Scholar
  99. Watt AJ, Cuntz H, Mori M, Nusser Z, Sjostrom PJ, Hausser M (2009) Traveling waves in developing cerebellar cortex mediated by asymmetrical Purkinje cell connectivity. Nat Neurosci 12:463–473PubMedCrossRefGoogle Scholar
  100. Wechsler-Reya RJ, Scott MP (1999) Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron 22:103–114PubMedCrossRefGoogle Scholar
  101. Wilson LJ, Myat A, Sharma A, Maden M, Wingate RJ (2007) Retinoic acid is a potential dorsalising signal in the late embryonic chick hindbrain. BMC Dev Biol 7:138PubMedCrossRefGoogle Scholar
  102. Wilson LJ, Wingate RJ (2006) Temporal identity transition in the avian cerebellar rhombic lip. Dev Biol 297:508–521PubMedCrossRefGoogle Scholar
  103. Wingate R (2005) Math-Map(ic)s. Neuron 48:1–4PubMedCrossRefGoogle Scholar
  104. Wingate RJ, Lumsden A (1996) Persistence of rhombomeric organisation in the postsegmental hindbrain. Development 122:2143–2152PubMedGoogle Scholar
  105. Wingate RJT (2001) The rhombic lip and early cerebellar development. Curr Opin Neurobiol 11:82–88PubMedCrossRefGoogle Scholar
  106. Wingate RJT, Hatten ME (1999) The role of the rhombic lip in avian cerebellum development. Development 126:4395–4404PubMedGoogle Scholar
  107. Wurst W, Auerbach AB, Joyner AL (1994) Multiple developmental defects in Engrailed-1 mutant mice: an early mid- hindbrain deletion and patterning defects in forelimbs and sternum. Development 120:2065–2075PubMedGoogle Scholar
  108. Xu J, Liu Z, Ornitz DM (2000) Temporal and spatial gradients of Fgf8 and Fgf17 regulate proliferation and differentiation of midline cerebellar structures. Development 127:1833–1843PubMedGoogle Scholar
  109. Yamamoto M, Zhang J, Smith D, Hayakawa Y, McCaffery P (2003) A critical period for retinoic acid teratogenesis and loss of neurophilic migration of pontine nuclei neurons. Mech Dev 120:701–709PubMedCrossRefGoogle Scholar
  110. Yang ZJ, Ellis T, Markant SL, Read TA, Kessler JD, Bourboulas M, Schuller U, Machold R, Fishell G, Rowitch DH et al (2008) Medulloblastoma can be initiated by deletion of Patched in lineage-restricted progenitors or stem cells. Cancer Cell 14:135–145PubMedCrossRefGoogle Scholar
  111. Yopak KE, Lisney TJ, Collin SP, Montgomery JC (2007) Variation in brain organization and cerebellar foliation in chondrichthyans: sharks and holocephalans. Brain Behav Evol 69:280–300PubMedCrossRefGoogle Scholar
  112. Yopak KE, Montgomery JC (2008) Brain organization and specialization in deep-sea chondrichthyans. Brain Behav Evol 71:287–304PubMedCrossRefGoogle Scholar
  113. Zhang L, Goldman JE (1996) Generation of cerebellar interneurons from dividing progenitors in white matter. Neuron 16:47–54PubMedCrossRefGoogle Scholar
  114. Zhao H, Ayrault O, Zindy F, Kim JH, Roussel MF (2008) Post-transcriptional down-regulation of Atoh1/Math1 by bone morphogenic proteins suppresses medulloblastoma development. Genes Dev 22:722–727PubMedCrossRefGoogle Scholar
  115. Zordan P, Croci L, Hawkes R, Consalez GG (2008) Comparative analysis of proneural gene expression in the embryonic cerebellum. Dev Dyn 237:1726–1735PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Thomas Butts
    • 1
  • Leigh Wilson
    • 1
  • Richard J. T. Wingate
    • 1
  1. 1.MRC Centre for Developmental NeurobiologyKing’s CollegeLondonUK

Personalised recommendations