Cerebro-Cerebellar Connections

  • Richard Apps
  • Thomas C. Watson


The cerebro-cerebellar system is one of the largest pathways in the central nervous system, yet knowledge of its structure and function remains far from complete. This is an important gap in understanding because anatomical connectivity is a key determinant of cerebellar function. This chapter focuses on recent advances in understanding the anatomical and physiological properties of cerebro-cerebellar connections in nonhuman species. There are two main routes by which cerebral information can gain access to the cerebellum: cerebro-ponto-cerebellar pathways that terminate in the cerebellar cortex as mossy fibers and cerebro-olivocerebellar pathways that terminate as climbing fibers. A common principle of organization seems to be the convergence of somatotopically corresponding pathways, with the climbing fiber system playing a key role in imposing this order. In addition to this well-ordered spatial arrangement, there is also precise timing of integration of ascending and descending inputs. The spatial and temporal congruence of inputs is consistent with the one-map hypothesis of cerebellar organization (Apps and Hawkes 2009). The functional significance of this precise arrangement remains to be determined but is likely to have a major impact on cerebellar activity.


Purkinje Cell Motor Cortex Cerebellar Cortex Mossy Fiber Inferior Olive 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ackerley R, Pardoe J, Apps R (2006) A novel site of synaptic relay for climbing fiber pathways relaying signals from the motor cortex to the cerebellar cortical C1 zone. J Physiol 576:503–518PubMedCrossRefGoogle Scholar
  2. Allen GI, Tsukahara N (1974) Cerebrocerebellar communication systems. Physiol Rev 54:957–1006PubMedGoogle Scholar
  3. Allen GI, Azzena GB, Ohno T (1974) Somatotopically organized inputs from fore- and hind limb areas of sensorimotor cortex to cerebellar Purkinje cells. Exp Brain Res 20:255–272PubMedGoogle Scholar
  4. Andersson G (1984) Demonstration of a cuneate relay in a cortico-olivo-cerebellar pathway in the cat. Neurosci Lett 46:47–52PubMedCrossRefGoogle Scholar
  5. Andersson G, Nyquist J (1983) Origin and sagittal termination areas of cerebro-cerebellar climbing fiber paths in the cat. J Physiol 337:257–285PubMedGoogle Scholar
  6. Angaut P (1970) The ascending projections of the nucleus interpositus posterior of the cat cerebellum: an experimental anatomical study using silver impregnation methods. Brain Res 24:377–394PubMedCrossRefGoogle Scholar
  7. Apps R (1998) Input–output connections of the “hindlimb” region of the inferior olive in cats. J Comp Neurol 399:513–529PubMedCrossRefGoogle Scholar
  8. Apps R (1999) Movement-related gating of climbing fiber input to cerebellar cortical zones. Prog Neurobiol 57:537–562PubMedCrossRefGoogle Scholar
  9. Apps R, Garwicz M (2005) Anatomical and physiological foundations of cerebellar information processing. Nat Rev Neurosci 6:297–311PubMedCrossRefGoogle Scholar
  10. Apps R, Hawkes R (2009) Cerebellar cortical organization: a one-map hypothesis. Nat Rev Neurosci 10:670–681PubMedCrossRefGoogle Scholar
  11. Apps R, Hartell NA, Armstrong DM (1995) Step phase-related excitability changes in spino-olivocerebellar paths to the c1 and c3 zones in cat cerebellum. J Physiol 483(Pt 3):687–702PubMedGoogle Scholar
  12. Armstrong DM, Harvey RJ (1966) Responses in the inferior olive to stimulation of the cerebellar and cerebral cortices in the cat. J Physiol 187:553–574PubMedGoogle Scholar
  13. Atkins MJ, Apps R (1997) Somatotopical organisation within the climbing fiber projection to the paramedian lobule and copula pyramidis of the rat cerebellum. J Comp Neurol 389:249–263PubMedCrossRefGoogle Scholar
  14. Baker MR, Javid M, Edgley SA (2001) Activation of cerebellar climbing fibers to rat cerebellar posterior lobe from motor cortical output pathways. J Physiol 536:825–839PubMedCrossRefGoogle Scholar
  15. Berrevoets CE, Kuypers HG (1975) Pericruciate cortical neurons projecting to brain stem reticular formation, dorsal column nuclei and spinal cord in the cat. Neurosci Lett 1:257–262PubMedCrossRefGoogle Scholar
  16. Bjaalie JG, Leergaard TB (2000) Functions of the pontine nuclei in cerebro-cerebellar communication. Trends Neurosci 23:152–153PubMedCrossRefGoogle Scholar
  17. Brodal A, Kawamura K (1980) Olivocerebellar projection: a review. Adv Anat Embryol Cell Biol 64(IVIII):1–140CrossRefGoogle Scholar
  18. Brodal P (1978a) The corticopontine projection in the rhesus monkey. Origin and principles of organization. Brain 101:251–283PubMedCrossRefGoogle Scholar
  19. Brodal P (1978b) Principles of organization of the monkey corticopontine projection. Brain Res 148:214–218PubMedCrossRefGoogle Scholar
  20. Brodal P, Steen N (1983) The corticopontocerebellar pathway to crus I in the cat as studied with anterograde and retrograde transport of horseradish peroxidase. Brain Res 267:1–17PubMedCrossRefGoogle Scholar
  21. Brodal P, Bjaalie JG (1992) Organization of the pontine nuclei. Neurosci Res 13:83–118PubMedCrossRefGoogle Scholar
  22. Brodal P, Bjaalie JG (1997) Salient anatomic features of the cortico-ponto-cerebellar pathway. Prog Brain Res 114:227–249PubMedCrossRefGoogle Scholar
  23. Brooks VB, Thach WT (1981) Cerebellar control of posture and movement. In: Brooks VB (ed) Handbook of physiology the nervous system, vol 2, Part 2, 2nd edn. American Physiology Society, Bethesda, pp 877–946Google Scholar
  24. Brown IE, Bower JM (2001) Congruence of mossy fiber and climbing fiber tactile projections in the lateral hemispheres of the rat cerebellum. J Comp Neurol 429:59–70PubMedCrossRefGoogle Scholar
  25. Brown JT, Chan-Palay V, Palay SL (1977) A study of afferent input to the inferior olivary complex in the rat by retrograde axonal transport of horseradish peroxidase. J Comp Neurol 176:1–22PubMedCrossRefGoogle Scholar
  26. Buisseret-Delmas C, Angaut P (1993) The cerebellar olivo-corticonuclear connections in the rat. Prog Neurobiol 40:63–87PubMedCrossRefGoogle Scholar
  27. Buzsaki G (ed) (2006) Rhythms of the brain. Oxford University Press, New YorkGoogle Scholar
  28. Buzsaki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304:1926–1929PubMedCrossRefGoogle Scholar
  29. Carlton SM, Leichnetz GR, Mayer JD (1982) Projections from the nucleus parafascicularis prerubralis to medullary raphe nuclei and inferior olive in the rat: a horseradish peroxidase and autoradiography study. Neurosci Lett 30:191–197PubMedCrossRefGoogle Scholar
  30. Cerminara NL, Apps R (2011) Behavioural significance of cerebellar modules. Cerebellum 10:484–494PubMedCrossRefGoogle Scholar
  31. Chapin JK, Lin CS (1984) Mapping the body representation in the SI cortex of anesthetized and awake rats. J Comp Neurol 229:199–213PubMedCrossRefGoogle Scholar
  32. Cheema S, Rustioni A, Whitsel BL (1985) Sensorimotor cortical projections to the primate cuneate nucleus. J Comp Neurol 240:196–211PubMedCrossRefGoogle Scholar
  33. Courtemanche R, Lamarre Y (2005) Local field potential oscillations in primate cerebellar cortex: synchronization with cerebral cortex during active and passive expectancy. J Neurophysiol 93:2039–2052PubMedCrossRefGoogle Scholar
  34. D'Angelo E, Nieus T, Maffei A, Armano S, Rossi P, Taglietti V, Fontana A, Naldi G (2001) Theta-frequency bursting and resonance in cerebellar granule cells: experimental evidence and modeling of a slow k + −dependent mechanism. J Neurosci 21:759–770PubMedGoogle Scholar
  35. Dow R (1942) Cerebellar action potentials in response to stimulation of the cerebral cortex in monkeys and cats. J Neurophysiol 5:121–136Google Scholar
  36. Eccles J, Ito M, Szentágothai J (eds) (1967) The cerebellum as a neuronal machine. Springer, New YorkGoogle Scholar
  37. Edwards SB (1972) The ascending and descending projections of the red nucleus in the cat: an experimental study using an autoradiographic tracing method. Brain Res 48:45–63PubMedCrossRefGoogle Scholar
  38. Fries P (2005) A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci 9:474–480PubMedCrossRefGoogle Scholar
  39. Glickstein M (1997) Mossy-fiber sensory input to the cerebellum. Prog Brain Res 114:251–259PubMedCrossRefGoogle Scholar
  40. Glickstein M (2007) What does the cerebellum really do? Curr Biol 17:R824–R827PubMedCrossRefGoogle Scholar
  41. Glickstein M, May JG 3, Mercier BE (1985) Corticopontine projection in the macaque: the distribution of labelled cortical cells after large injections of horseradish peroxidase in the pontine nuclei. J Comp Neurol 235:343–359PubMedCrossRefGoogle Scholar
  42. Gordon G, Jukes MG (1964) Descending influences on the exteroceptive organizations of the cat’s gracile nucleus. J Physiol 173:291–319PubMedGoogle Scholar
  43. Hartmann MJ, Bower JM (1998) Oscillatory activity in the cerebellar hemispheres of unrestrained rats. J Neurophysiol 80:1598–1604PubMedGoogle Scholar
  44. Hassler R, Muhs-Clement K (1964) Architectonic construction of the sensorimotor and parietal cortex in the cat. J Hirnforsch 20:377–420PubMedGoogle Scholar
  45. Hesslow G, Yeo C (1998) Cerebellum and learning: a complex problem. Science 280:1817–1819PubMedCrossRefGoogle Scholar
  46. Hoffmann LC, Berry SD (2009) Cerebellar theta oscillations are synchronized during hippocampal theta-contingent trace conditioning. Proc Natl Acad Sci USA 106:21371–21376PubMedCrossRefGoogle Scholar
  47. Hyvärinen J (1982) Posterior parietal lobe of the primate brain. Physiol Rev 62:1060–1129PubMedGoogle Scholar
  48. Ito M (1984) The cerebellum and neural control. Raven, New YorkGoogle Scholar
  49. Jansen J (1957) Afferent impulses to the cerebellar hemispheres from the cerebral cortex and certain subcortical nuclei; an electroanatomical study in the cat. Acta Physiol Scand Suppl 41:1–99PubMedCrossRefGoogle Scholar
  50. Joseph JW, Shambes GM, Gibson JM, Welker W (1978) Tactile projections to granule cells in caudal vermis of the rat’s cerebellum. Brain Behav Evol 15:141–149PubMedCrossRefGoogle Scholar
  51. Kassel J, Shambes GM, Welker W (1984) Fractured cutaneous projections to the granule cell layer of the posterior cerebellar hemisphere of the domestic cat. J Comp Neurol 225:458–468PubMedCrossRefGoogle Scholar
  52. Kelly RM, Strick PL (2000) Rabies as a transneuronal tracer of circuits in the central nervous system. J Neurosci Methods 103:63–71PubMedCrossRefGoogle Scholar
  53. Kelly RM, Strick PL (2003) Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci 23:8432–8444PubMedGoogle Scholar
  54. Kitai ST, Oshima T, Provini L, Tsukahara N (1969) Cerebro-cerebellar connections mediated by fast and slow conducting pyramidal tract fibers of the cat. Brain Res 15:267–271PubMedCrossRefGoogle Scholar
  55. Kitao Y, Nakamura Y, Okoyama S (1983) An electron microscope study of the cortico-pretecto-olivary projection in the cat by a combined degeneration and horseradish peroxidase tracing technique. Brain Res 280:139–142PubMedCrossRefGoogle Scholar
  56. Kyuhou S (1992) Cerebro-cerebellar projections from the ventral bank of the anterior ectosylvian sulcus in the cat. J Physiol 451:673–687PubMedGoogle Scholar
  57. Lang EJ, Llinas R, Sugihara I (2006a) Isochrony in the olivocerebellar system underlies complex spike synchrony. J Physiol 573:277–279, author reply 281–272PubMedCrossRefGoogle Scholar
  58. Lang EJ, Sugihara I, Llinas R (2006b) Olivocerebellar modulation of motor cortex ability to generate vibrissal movements in rat. J Physiol 571:101–120PubMedCrossRefGoogle Scholar
  59. Lang EJ, Sugihara I, Welsh JP, Llinas R (1999) Patterns of spontaneous purkinje cell complex spike activity in the awake rat. J Neurosci 19:2728–2739PubMedGoogle Scholar
  60. Larsell O (1953) The cerebellum of the cat and the monkey. J Comp Neurol 99:135–199PubMedCrossRefGoogle Scholar
  61. Larsell O (ed) (1970) The comparative anatomy and histology of the cerebellum from monotremes through primates. University of Minnesota Press, MinneapolisGoogle Scholar
  62. Leergaard TB, Bjaalie JG (2007) Topography of the complete corticopontine projection: from experiments to principal Maps. Front Neurosci 1:211–223PubMedCrossRefGoogle Scholar
  63. Leergaard TB, Lillehaug S, De Schutter E, Bower JM, Bjaalie JG (2006) Topographical organization of pathways from somatosensory cortex through the pontine nuclei to tactile regions of the rat cerebellar hemispheres. Eur J Neurosci 24:2801–2812PubMedCrossRefGoogle Scholar
  64. Legg CR, Mercier B, Glickstein M (1989) Corticopontine projection in the rat: the distribution of labelled cortical cells after large injections of horseradish peroxidase in the pontine nuclei. J Comp Neurol 286:427–441PubMedCrossRefGoogle Scholar
  65. Leiner HC, Leiner AL, Dow RS (1991) The human cerebro-cerebellar system: its computing, cognitive, and language skills. Behav Brain Res 44:113–128PubMedCrossRefGoogle Scholar
  66. Lidierth M, Apps R (1990) Gating in the spino-olivocerebellar pathways to the c1 zone of the cerebellar cortex during locomotion in the cat. J Physiol 430:453–469PubMedGoogle Scholar
  67. Llinas R, Yarom Y (1981a) Electrophysiology of mammalian inferior olivary neurones in vitro. Different types of voltage-dependent ionic conductances. J Physiol 315:549–567PubMedGoogle Scholar
  68. Llinas R, Yarom Y (1981b) Properties and distribution of ionic conductances generating electroresponsiveness of mammalian inferior olivary neurones in vitro. J Physiol 315:569–584PubMedGoogle Scholar
  69. Llinas R, Yarom Y (1986) Oscillatory properties of guinea-pig inferior olivary neurones and their pharmacological modulation: an in vitro study. J Physiol 376:163–182PubMedGoogle Scholar
  70. Llinas R, Sasaki K (1989) The functional organization of the olivo-cerebellar system as examined by multiple Purkinje cell recordings. Eur J Neurosci 1:587–602PubMedCrossRefGoogle Scholar
  71. Llinas RR (2009) Inferior olive oscillation as the temporal basis for motricity and oscillatory reset as the basis for motor error correction. Neuroscience 162:797–804PubMedCrossRefGoogle Scholar
  72. Martinez L, Lamas JA, Canedo A (1995) Pyramidal tract and corticospinal neurons with branching axons to the dorsal column nuclei of the cat. Neuroscience 68:195–206PubMedCrossRefGoogle Scholar
  73. Middleton FA, Strick PL (1994) Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science 266:458–461PubMedCrossRefGoogle Scholar
  74. Middleton FA, Strick PL (1997a) Dentate output channels: motor and cognitive components. Prog Brain Res 114:553–566PubMedCrossRefGoogle Scholar
  75. Middleton FA, Strick PL (1997b) Cerebellar output channels. Int Rev Neurobiol 41:61–82PubMedCrossRefGoogle Scholar
  76. Mihailoff GA, McArdle CB, Adams CE (1981) The cytoarchitecture, cytology, and synaptic organization of the basilar pontine nuclei in the rat I. Nissl and Golgi studies. J Comp Neurol 195:181–201PubMedCrossRefGoogle Scholar
  77. Miles TS, Wiesendanger M (1975) Climbing fiber inputs to cerebellar Purkinje cells from trigeminal cutaneous afferents and the SI face area of the cerebral cortex in the cat. J Physiol 245:425–445PubMedGoogle Scholar
  78. Miller S, Nezlina N, Oscarsson O (1969) Projection and convergence patterns in climbing fiber paths to cerebellar anterior lobe activated from cerebral cortex and spinal cord. Brain Res 14:230–233PubMedCrossRefGoogle Scholar
  79. Molinari HH, Schultze KE, Strominger NL (1996) Gracile, cuneate, and spinal trigeminal projections to inferior olive in rat and monkey. J Comp Neurol 375:467–480PubMedCrossRefGoogle Scholar
  80. Morissette J, Bower JM (1996) Contribution of somatosensory cortex to responses in the rat cerebellar granule cell layer following peripheral tactile stimulation. Exp Brain Res 109:240–250PubMedCrossRefGoogle Scholar
  81. Nakamura Y, Kitao Y, Okoyama S (1983) Cortico-Darkschewitsch-olivary projection in the cat: an electron microscope study with the aid of horseradish peroxidase tracing technique. Brain Res 274:140–143PubMedCrossRefGoogle Scholar
  82. Odeh F, Ackerley R, Bjaalie JG, Apps R (2005) Pontine maps linking somatosensory and cerebellar cortices are in register with climbing fiber somatotopy. J Neurosci 25:5680–5690PubMedCrossRefGoogle Scholar
  83. Oka H, Jinnai K, Yamamoto T (1979) The parieto-rubro-olivary pathway in the cat. Exp Brain Res 37:115–125PubMedCrossRefGoogle Scholar
  84. Oka H, Sasaki K, Matsuda Y, Yasuda T, Mizuno N (1975) Responses of pontocerebellar neurones to stimulation of the parietal association and the frontal motor cortices. Brain Res 93:399–407PubMedCrossRefGoogle Scholar
  85. Oscarsson O (1980a) Functional organization of olivary projection to the cerebellar anterior lobe. In: Courville J, De Montigny C, Lamarre Y (eds) The inferior olivary nucleus: anatomy and physiology. Raven, New York, pp 279–289Google Scholar
  86. Oscarsson O (1980b) Sagittal zones and microzones – the functional units of cerebellum. In: Szentgothai J, Hamori M, Palkovits M (eds) Regulatory functions of the CNS subsystems. Pergamon Press, Elmsford, pp 21–28 (Adv Physiol Sci, vol 2)Google Scholar
  87. Pandya DN, Seltzer B, Barbas H (1988) Input–output organization of the primate cerebral cortex. In: Steklis HD, Erwin J (eds) Comparative primate biology. A.R. Liss, New York, pp 39–80Google Scholar
  88. Pardoe J, Edgley SA, Drew T, Apps R (2004) Changes in excitability of ascending and descending inputs to cerebellar climbing fibers during locomotion. J Neurosci 24:2656–2666PubMedCrossRefGoogle Scholar
  89. Paxinos G, Watson C (eds) (2005) Rat brain in stereotaxic Co-ordinates. Academic, San DiegoGoogle Scholar
  90. Placantonakis DG, Bukovsky AA, Aicher SA, Kiem HP, Welsh JP (2006) Continuous electrical oscillations emerge from a coupled network: a study of the inferior olive using lentiviral knockdown of Connexin36. J Neurosci 26:5008–5016PubMedCrossRefGoogle Scholar
  91. Provini L, Redman S, Strata P (1968) Mossy and climbing fiber organization on the anterior lobe of the cerebellum activated by forelimb and hindlimb areas of the sensorimotor cortex. Exp Brain Res 6:216–233PubMedCrossRefGoogle Scholar
  92. Ramnani N (2006) The primate cortico-cerebellar system: anatomy and function. Nat Rev Neurosci 7:511–522PubMedCrossRefGoogle Scholar
  93. Rowe MJ (1977) Cerebral cortical areas associated with the activation of climbing fiber input to cerebellar Purkinje cells. Arch Ital Biol 115:79–93PubMedGoogle Scholar
  94. Rowland NC, Goldberg JA, Jaeger D (2010) Cortico-cerebellar coherence and causal connectivity during slow-wave activity. Neuroscience 166:698–711PubMedCrossRefGoogle Scholar
  95. Rutherford JG, Zuk-Harper A, Gwyn DG (1989) A comparison of the distribution of the cerebellar and cortical connections of the nucleus of Darkschewitsch (ND) in the cat: a study using anterograde and retrograde HRP tracing techniques. Anat Embryol (Berl) 180:485–486CrossRefGoogle Scholar
  96. Saint-Cyr JA (1983) The projection from the motor cortex to the inferior olive in the cat. An experimental study using axonal transport techniques. Neuroscience 10:667–684PubMedCrossRefGoogle Scholar
  97. Saint-Cyr JA, Courville J (1982) Descending projections to the inferior olive from the mesencephalon and superior colliculus in the cat. An autoradiographic study. Exp Brain Res 45:333–348PubMedCrossRefGoogle Scholar
  98. Sasaki K, Matsuda Y, Oka H, Shimono T, Mizuno N (1973) Proceedings: 261. On the projection from the parietal association cortex to the cerebellum. Nippon Seirigaku Zasshi 35:492Google Scholar
  99. Sasaki K, Oka H, Matsuda Y, Shimono T, Mizuno N (1975) Electrophysiological studies of the projections from the parietal association area to the cerebellar cortex. Exp Brain Res 23:91–102PubMedCrossRefGoogle Scholar
  100. Sasaki K, Oka H, Kawaguchi S, Jinnai K, Yasuda T (1977) Mossy fiber and climbing fiber responses produced in the cerebellar cortex by stimulation of the cerebral cortex in monkeys. Exp Brain Res 29:419–428PubMedCrossRefGoogle Scholar
  101. Schmahmann JD, Pandya DN (1991) Projections to the basis pontis from the superior temporal sulcus and superior temporal region in the rhesus monkey. J Comp Neurol 308:224–248PubMedCrossRefGoogle Scholar
  102. Schmahmann JD, Pandya DN (1993) Prelunate, occipitotemporal, and parahippocampal projections to the basis pontis in rhesus monkey. J Comp Neurol 337:94–112PubMedCrossRefGoogle Scholar
  103. Schmahmann JD, Pandya DN (1995) Prefrontal cortex projections to the basilar pons in rhesus monkey: implications for the cerebellar contribution to higher function. Neurosci Lett 199:175–178PubMedCrossRefGoogle Scholar
  104. Schmahmann JD, Pandya DN (1997) Anatomic organization of the basilar pontine projections from prefrontal cortices in rhesus monkey. J Neurosci 17:438–458PubMedGoogle Scholar
  105. Schwarz C (2010) The Fate of Spontaneous Synchronous Rhythms on the Cerebrocerebellar Loop. Cerebellum 9:77–87PubMedCrossRefGoogle Scholar
  106. Schwarz C, Thier P (1995) Modular organization of the pontine nuclei – dendritic fields of identified pontine projection neurons in the rat respect the borders of cortical afferent fields. J Neurosci 15:3475–3489PubMedGoogle Scholar
  107. Schwarz C, Thier P (2000) Reply. Trends Neurosci 23:152–153PubMedCrossRefGoogle Scholar
  108. Schwarz C, Welsh JP (2001) Dynamic modulation of mossy fiber system throughput by inferior olive synchrony: a multielectrode study of cerebellar cortex activated by motor cortex. J Neurophysiol 86:2489–2504PubMedGoogle Scholar
  109. Shambes GM, Gibson JM, Welker W (1978a) Fractured somatotopy in granule cell tactile areas of rat cerebellar hemispheres revealed by micromapping. Brain Behav Evol 15:94–140PubMedCrossRefGoogle Scholar
  110. Shambes GM, Beermann DH, Welker W (1978b) Multiple tactile areas in cerebellar cortex: another patchy cutaneous projection to granule cell columns in rats. Brain Res 157:123–128PubMedCrossRefGoogle Scholar
  111. Solinas S, Nieus T, D'Angelo E (2010) A realistic large-scale model of the cerebellum granular layer predicts circuit spatio-temporal filtering properties. Front Cell Neurosci 4:12PubMedGoogle Scholar
  112. Soteropoulos DS, Baker SN (2006) Cortico-cerebellar coherence during a precision grip task in the monkey. J Neurophysiol 95:1194–1206PubMedCrossRefGoogle Scholar
  113. Spence SJ, Saint-Cyr JA (1988) Comparative topography of projections from the mesodiencephalic junction to the inferior olive, vestibular nuclei, and upper cervical cord in the cat. J Comp Neurol 268:357–374PubMedCrossRefGoogle Scholar
  114. Steriade M (1995) Two channels in the cerebellothalamocortical system. J Comp Neurol 354:57–70PubMedCrossRefGoogle Scholar
  115. Steriade M, Gloor P, Llinas RR, Lopes de Silva FH, Mesulam MM (1990) Report of IFCN Committee on Basic Mechanisms. Basic mechanisms of cerebral rhythmic activities. Electroencephalogr Clin Neurophysiol 76:481–508PubMedCrossRefGoogle Scholar
  116. Strick PL, Dum RP, Fiez JA (2009) Cerebellum and nonmotor function. Annu Rev Neurosci 32:413–434PubMedCrossRefGoogle Scholar
  117. Swenson RS, Castro AJ (1983) The afferent connections of the inferior olivary complex in rats. An anterograde study using autoradiographic and axonal degeneration techniques. Neuroscience 8:259–275PubMedCrossRefGoogle Scholar
  118. Swenson RS, Sievert CF, Terreberry RR, Neafsey EJ, Castro AJ (1989) Organization of cerebral cortico-olivary projections in the rat. Neurosci Res 7:43–54PubMedCrossRefGoogle Scholar
  119. Takeda T, Maekawa K (1976) The origin of the pretecto-olivary tract. A study using the horseradish peroxidase method. Brain Res 117:319–325PubMedCrossRefGoogle Scholar
  120. Teune TM, van der Burg J, van der Moer J, Voogd J, Ruigrok TJ (2000) Topography of cerebellar nuclear projections to the brain stem in the rat. Prog Brain Res 124:141–172PubMedCrossRefGoogle Scholar
  121. Tomasch J (1969) Numerical capacity of human cortico-ponto-cerebellar system. Brain Res 13:476–484PubMedCrossRefGoogle Scholar
  122. Towe AL, Jabbur SJ (1961) Cortical inhibition of neurons in dorsal column nuclei of cat. J Neurophysiol 24:488–498PubMedGoogle Scholar
  123. Van Der Giessen RS, Koekkoek SK, van Dorp S, De Gruijl JR, Cupido A, Khosrovani S, Dortland B, Wellershaus K, Degen J, Deuchars J, Fuchs EC, Monyer H, Willecke K, De Jeu MT, De Zeeuw CI (2008) Role of olivary electrical coupling in cerebellar motor learning. Neuron 58:599–612CrossRefGoogle Scholar
  124. Voogd J (2011) Cerebellar zones: a personal history. Cerebellum 10:334–350Google Scholar
  125. Voogd J, Glickstein M (1998) The anatomy of the cerebellum. Trends Neurosci 21:370–375PubMedCrossRefGoogle Scholar
  126. Voogd J, Barmack NH (2005) Oculomotor cerebellum. Prog Brain Res 151:231–268CrossRefGoogle Scholar
  127. Walberg F (1956) Descending connections to the inferior olive; an experimental study in the cat. J Comp Neurol 104:77–173PubMedCrossRefGoogle Scholar
  128. Watson TC, Jones MW, Apps R (2009) Electrophysiological mapping of novel prefrontal – cerebellar pathways. Front Integr Neurosci 3:18PubMedCrossRefGoogle Scholar
  129. Woolsey CN (1958) Organization of somatic sensory and motor areas of the cerebral cortex. In: Harlow HF, Woolsey CN (eds) Biological and biochemical bases of behavior. University of Wisconsin, Madison, pp 63–81Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.School of Physiology and PharmacologyUniversity of BristolBristolUK
  2. 2.Department of PharmacologyUniversity of CambridgeCambridgeUK

Personalised recommendations