Stellate Cells: Synaptic Processing and Plasticity

Reference work entry

Abstract

Stellate and basket cells in the molecular layer of the cerebellum are inhibitory interneurons which control the activity of Purkinje cells. Recent studies using genetic approaches have revealed the important function of these interneurons during behavioral tasks, motor coordination, and motor learning. Synaptic transmission onto cerebellar interneurons and interneuron inhibition onto Purkinje cells can be dynamically regulated by synaptic activity. The capacity of molecular layer interneurons to undergo activity-dependent changes in synaptic transmission and membrane excitability provides a cellular mechanism that underlies cerebellar learning and memory.

Keywords

Purkinje Cell Stellate Cell AMPA Receptor Parallel Fiber Gaba Release 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by a National Science Foundation Grant IBN-0964517 and National Institutes of Health Grant NS58867. I thank Dr. Matthew Whim for helpful comments on the manuscript.

References

  1. Alvina K, Khodakhah K (2010) KCa channels as therapeutic targets in episodic ataxia type-2. J Neurosci 30:7249–7257PubMedCrossRefGoogle Scholar
  2. Astori S, Kohr G (2008) Sustained granule cell activity disinhibits juvenile mouse cerebellar stellate cells through presynaptic mechanisms. J Physiol 586:575–592PubMedCrossRefGoogle Scholar
  3. Astori S, Lujan R, Kohr G (2009) GABA release from cerebellar stellate cells is developmentally regulated by presynaptic GABA(B) receptors in a target-cell-specific manner. Eur J Neurosci 30:551–559PubMedCrossRefGoogle Scholar
  4. Bao J, Reim K, Sakaba T (2010) Target-dependent feedforward inhibition mediated by short-term synaptic plasticity in the cerebellum. J Neurosci 30:8171–8179PubMedCrossRefGoogle Scholar
  5. Bickford-Wimer P, Pang K, Rose GM, Gerhardt GA (1991) Electrically-evoked release of norepinephrine in the rat cerebellum: an in vivo electrochemical and electrophysiological study. Brain Res 558:305–311PubMedCrossRefGoogle Scholar
  6. Briatore F, Patrizi A, Viltono L, Sassoe-Pognetto M, Wulff P (2010) Quantitative organization of GABAergic synapses in the molecular layer of the mouse cerebellar cortex. PLoS One 5:e12119PubMedCrossRefGoogle Scholar
  7. Browne DL, Gancher ST, Nutt JG, Brunt ER, Smith EA, Kramer P, Litt M (1994) Episodic ataxia/myokymia syndrome is associated with point mutations in the human potassium channel gene, KCNA1. Nat Genet 8:136–140PubMedCrossRefGoogle Scholar
  8. Bureau I, Mulle C (1998) Potentiation of GABAergic synaptic transmission by AMPA receptors in mouse cerebellar stellate cells: changes during development. J Physiol 509(Pt 3):817–831PubMedCrossRefGoogle Scholar
  9. Caillard O, Moreno H, Schwaller B, Llano I, Celio MR, Marty A (2000) Role of the calcium-binding protein parvalbumin in short-term synaptic plasticity. Proc Natl Acad Sci USA 97:13372–13377PubMedCrossRefGoogle Scholar
  10. Carter AG, Regehr WG (2000) Prolonged synaptic currents and glutamate spillover at the parallel fiber to stellate cell synapse. J Neurosci 20:4423–4434PubMedGoogle Scholar
  11. Carter AG, Regehr WG (2002) Quantal events shape cerebellar interneuron firing. Nat Neurosci 5:1309–1318PubMedCrossRefGoogle Scholar
  12. Chadderton P, Margrie TW, Hausser M (2004) Integration of quanta in cerebellar granule cells during sensory processing. Nature 428:856–860PubMedCrossRefGoogle Scholar
  13. Chavas J, Marty A (2003) Coexistence of excitatory and inhibitory GABA synapses in the cerebellar interneuron network. J Neurosci 23:2019–2031PubMedGoogle Scholar
  14. Christie JM, Jahr CE (2008) Dendritic NMDA receptors activate axonal calcium channels. Neuron 60:298–307PubMedCrossRefGoogle Scholar
  15. Clark BA, Cull-Candy SG (2002) Activity-dependent recruitment of extrasynaptic NMDA receptor activation at an AMPA receptor-only synapse. J Neurosci 22:4428–4436PubMedGoogle Scholar
  16. Cohen D, Yarom Y (2000) Cerebellar on-beam and lateral inhibition: two functionally distinct circuits. J Neurophysiol 83:1932–1940PubMedGoogle Scholar
  17. Collin T, Franconville R, Ehrlich BE, Llano I (2009) Activation of metabotropic glutamate receptors induces periodic burst firing and concomitant cytosolic Ca2+ oscillations in cerebellar interneurons. J Neurosci 29:9281–9291PubMedCrossRefGoogle Scholar
  18. Conti R, Tan YP, Llano I (2004) Action potential-evoked and ryanodine-sensitive spontaneous Ca2+ transients at the presynaptic terminal of a developing CNS inhibitory synapse. J Neurosci 24:6946–6957PubMedCrossRefGoogle Scholar
  19. Diana MA, Marty A (2003) Characterization of depolarization-induced suppression of inhibition using paired interneuron–Purkinje cell recordings. J Neurosci 23:5906–5918PubMedGoogle Scholar
  20. Diana MA, Marty A (2004) Endocannabinoid-mediated short-term synaptic plasticity: depolarization-induced suppression of inhibition (DSI) and depolarization-induced suppression of excitation (DSE). Br J Pharmacol 142:9–19PubMedCrossRefGoogle Scholar
  21. Duguid IC, Smart TG (2004) Retrograde activation of presynaptic NMDA receptors enhances GABA release at cerebellar interneuron-Purkinje cell synapses. Nat Neurosci 7:525–533PubMedCrossRefGoogle Scholar
  22. Duguid IC, Pankratov Y, Moss GW, Smart TG (2007) Somatodendritic release of glutamate regulates synaptic inhibition in cerebellar Purkinje cells via autocrine mGluR1 activation. J Neurosci 27:12464–12474PubMedCrossRefGoogle Scholar
  23. Eccles JC (1967) Circuits in the cerebellar control of movement. Proc Natl Acad Sci USA 58:336–343PubMedCrossRefGoogle Scholar
  24. Forti L, Pouzat C, Llano I (2000) Action potential-evoked Ca2+ signals and calcium channels in axons of developing rat cerebellar interneurones. J Physiol 527(Pt 1):33–48PubMedCrossRefGoogle Scholar
  25. Gao Y, Vasilyev DV, Goncalves MB, Howell FV, Hobbs C, Reisenberg M, Shen R, Zhang MY, Strassle BW, Lu P, Mark L, Piesla MJ, Deng K, Kouranova EV, Ring RH, Whiteside GT, Bates B, Walsh FS, Williams G, Pangalos MN, Samad TA, Doherty P (2010) Loss of retrograde endocannabinoid signaling and reduced adult neurogenesis in diacylglycerol lipase knock-out mice. J Neurosci 30:2017–2024PubMedCrossRefGoogle Scholar
  26. Gardner SM, Takamiya K, Xia J, Suh JG, Johnson R, Yu S, Huganir RL (2005) Calcium-permeable AMPA receptor plasticity is mediated by subunit-specific interactions with PICK1 and NSF. Neuron 45:903–915PubMedCrossRefGoogle Scholar
  27. Garwicz M, Jorntell H, Ekerot CF (1998) Cutaneous receptive fields and topography of mossy fibres and climbing fibres projecting to cat cerebellar C3 zone. J Physiol 512(Pt 1):277–293PubMedCrossRefGoogle Scholar
  28. Glitsch M, Marty A (1999) Presynaptic effects of NMDA in cerebellar Purkinje cells and interneurons. J Neurosci 19:511–519PubMedGoogle Scholar
  29. Hausser M, Clark BA (1997) Tonic synaptic inhibition modulates neuronal output pattern and spatiotemporal synaptic integration. Neuron 19:665–678PubMedCrossRefGoogle Scholar
  30. Herson PS, Virk M, Rustay NR, Bond CT, Crabbe JC, Adelman JP, Maylie J (2003) A mouse model of episodic ataxia type-1. Nat Neurosci 6:378–383PubMedCrossRefGoogle Scholar
  31. Hesslow G, Ivarsson M (1994) Suppression of cerebellar Purkinje cells during conditioned responses in ferrets. Neuroreport 5:649–652PubMedCrossRefGoogle Scholar
  32. Hirono M, Obata K (2006) Alpha-adrenoceptive dual modulation of inhibitory GABAergic inputs to Purkinje cells in the mouse cerebellum. J Neurophysiol 95:700–708PubMedCrossRefGoogle Scholar
  33. Hirono M, Matsunaga W, Chimura T, Obata K (2008) Developmental enhancement of alpha2-adrenoceptor-mediated suppression of inhibitory synaptic transmission onto mouse cerebellar Purkinje cells. Neuroscience 156:143–154PubMedCrossRefGoogle Scholar
  34. Jaeger D, Bower JM (1999) Synaptic control of spiking in cerebellar Purkinje cells: dynamic current clamp based on model conductances. J Neurosci 19:6090–6101PubMedGoogle Scholar
  35. Jirenhed DA, Bengtsson F, Hesslow G (2007) Acquisition, extinction, and reacquisition of a cerebellar cortical memory trace. J Neurosci 27:2493–2502PubMedCrossRefGoogle Scholar
  36. Jorntell H, Ekerot CF (2002) Reciprocal bidirectional plasticity of parallel fiber receptive fields in cerebellar Purkinje cells and their afferent interneurons. Neuron 34:797–806PubMedCrossRefGoogle Scholar
  37. Jorntell H, Ekerot CF (2003) Receptive field plasticity profoundly alters the cutaneous parallel fiber synaptic input to cerebellar interneurons in vivo. J Neurosci 23:9620–9631PubMedGoogle Scholar
  38. Jorntell H, Bengtsson F, Schonewille M, De Zeeuw CI (2010) Cerebellar molecular layer interneurons – computational properties and roles in learning. Trends Neurosci 33:524–532PubMedCrossRefGoogle Scholar
  39. Kano M, Rexhausen U, Dreessen J, Konnerth A (1992) Synaptic excitation produces a long-lasting rebound potentiation of inhibitory synaptic signals in cerebellar Purkinje cells. Nature 356:601–604PubMedCrossRefGoogle Scholar
  40. Kano M, Fukunaga K, Konnerth A (1996) Ca(2+)-induced rebound potentiation of gamma-aminobutyric acid-mediated currents requires activation of Ca2+/calmodulin-dependent kinase II. Proc Natl Acad Sci USA 93:13351–13356PubMedCrossRefGoogle Scholar
  41. Karakossian MH, Otis TS (2004) Excitation of cerebellar interneurons by group I metabotropic glutamate receptors. J Neurophysiol 92:1558–1565PubMedCrossRefGoogle Scholar
  42. Kawaguchi S, Hirano T (2000) Suppression of inhibitory synaptic potentiation by presynaptic activity through postsynaptic GABA(B) receptors in a Purkinje neuron. Neuron 27:339–347PubMedCrossRefGoogle Scholar
  43. Kawaguchi SY, Hirano T (2002) Signaling cascade regulating long-term potentiation of GABA(A) receptor responsiveness in cerebellar Purkinje neurons. J Neurosci 22:3969–3976PubMedGoogle Scholar
  44. Kawaguchi SY, Hirano T (2007) Sustained structural change of GABA(A) receptor-associated protein underlies long-term potentiation at inhibitory synapses on a cerebellar Purkinje neuron. J Neurosci 27:6788–6799PubMedCrossRefGoogle Scholar
  45. Kelly L, Farrant M, Cull-Candy SG (2009) Synaptic mGluR activation drives plasticity of calcium-permeable AMPA receptors. Nat Neurosci 12:593–601PubMedCrossRefGoogle Scholar
  46. Kishimoto Y, Kano M (2006) Endogenous cannabinoid signaling through the CB1 receptor is essential for cerebellum-dependent discrete motor learning. J Neurosci 26:8829–8837PubMedCrossRefGoogle Scholar
  47. Kondo S, Marty A (1997) Protein kinase A-mediated enhancement of miniature IPSC frequency by noradrenaline in rat cerebellar stellate cells. J Physiol 498(Pt 1):165–176PubMedGoogle Scholar
  48. Kondo S, Marty A (1998a) Differential effects of noradrenaline on evoked, spontaneous and miniature IPSCs in rat cerebellar stellate cells. J Physiol 509(Pt 1):233–243PubMedCrossRefGoogle Scholar
  49. Kondo S, Marty A (1998b) Synaptic currents at individual connections among stellate cells in rat cerebellar slices. J Physiol 509(Pt 1):221–232PubMedCrossRefGoogle Scholar
  50. Kreitzer AC, Regehr WG (2002) Retrograde signaling by endocannabinoids. Curr Opin Neurobiol 12:324–330PubMedCrossRefGoogle Scholar
  51. Kreitzer AC, Carter AG, Regehr WG (2002) Inhibition of interneuron firing extends the spread of endocannabinoid signaling in the cerebellum. Neuron 34:787–796PubMedCrossRefGoogle Scholar
  52. Lachamp PM, Liu Y, Liu SJ (2009) Glutamatergic modulation of cerebellar interneuron activity is mediated by an enhancement of GABA release and requires protein kinase A/RIM1alpha signaling. J Neurosci 29:381–392PubMedCrossRefGoogle Scholar
  53. Liu SJ (2007) Biphasic modulation of GABA release from stellate cells by glutamatergic receptor subtypes. J Neurophysiol 98:550–556PubMedCrossRefGoogle Scholar
  54. Liu SQ, Cull-Candy SG (2000) Synaptic activity at calcium-permeable AMPA receptors induces a switch in receptor subtype. Nature 405:454–458PubMedCrossRefGoogle Scholar
  55. Liu SJ, Cull-Candy SG (2005) Subunit interaction with PICK and GRIP controls Ca2+ permeability of AMPARs at cerebellar synapses. Nat Neurosci 8:768–775PubMedCrossRefGoogle Scholar
  56. Liu SJ, Lachamp P (2006) The activation of excitatory glutamate receptors evokes a long-lasting increase in the release of GABA from cerebellar stellate cells. J Neurosci 26:9332–9339PubMedCrossRefGoogle Scholar
  57. Liu Y, Formisano L, Savtchouk I, Takayasu Y, Szabo G, Zukin RS, Liu SJ (2010) A single fear-inducing stimulus induces a transcription-dependent switch in synaptic AMPAR phenotype. Nat Neurosci 13:223–231PubMedCrossRefGoogle Scholar
  58. Liu Y, Savtchouk I, Acharjee S, Liu SJ (2011) Inhibition of Ca2+-activated large-conductance K+ channel activity alters synaptic AMPA receptor phenotype in mouse cerebellar stellate cells. J Neurophysiol 106(1):144–152PubMedCrossRefGoogle Scholar
  59. Llano I, Gerschenfeld HM (1993a) Beta-adrenergic enhancement of inhibitory synaptic activity in rat cerebellar stellate and Purkinje cells. J Physiol 468:201–224PubMedGoogle Scholar
  60. Llano I, Gerschenfeld HM (1993b) Inhibitory synaptic currents in stellate cells of rat cerebellar slices. J Physiol 468:177–200PubMedGoogle Scholar
  61. Llano I, Marty A (1995) Presynaptic metabotropic glutamatergic regulation of inhibitory synapses in rat cerebellar slices. J Physiol 486(Pt 1):163–176PubMedGoogle Scholar
  62. Llano I, Gonzalez J, Caputo C, Lai FA, Blayney LM, Tan YP, Marty A (2000) Presynaptic calcium stores underlie large-amplitude miniature IPSCs and spontaneous calcium transients. Nat Neurosci 3:1256–1265PubMedCrossRefGoogle Scholar
  63. Manganas LN, Akhtar S, Antonucci DE, Campomanes CR, Dolly JO, Trimmer JS (2001) Episodic ataxia type-1 mutations in the Kv1.1 potassium channel display distinct folding and intracellular trafficking properties. J Biol Chem 276:49427–49434PubMedCrossRefGoogle Scholar
  64. Mann-Metzer P, Yarom Y (1999) Electrotonic coupling interacts with intrinsic properties to generate synchronized activity in cerebellar networks of inhibitory interneurons. J Neurosci 19:3298–3306PubMedGoogle Scholar
  65. Mann-Metzer P, Yarom Y (2002) Jittery trains induced by synaptic-like currents in cerebellar inhibitory interneurons. J Neurophysiol 87:149–156PubMedGoogle Scholar
  66. Maylie B, Bissonnette E, Virk M, Adelman JP, Maylie JG (2002) Episodic ataxia type 1 mutations in the human Kv1.1 potassium channel alter hKvbeta 1-induced N-type inactivation. J Neurosci 22:4786–4793PubMedGoogle Scholar
  67. McCormick DA, Thompson RF (1984) Cerebellum: essential involvement in the classically conditioned eyelid response. Science 223:296–299PubMedCrossRefGoogle Scholar
  68. Mejia-Gervacio S, Marty A (2006) Control of interneurone firing pattern by axonal autoreceptors in the juvenile rat cerebellum. J Physiol 571:43–55PubMedCrossRefGoogle Scholar
  69. Mejia-Gervacio S, Collin T, Pouzat C, Tan YP, Llano I, Marty A (2007) Axonal speeding: shaping synaptic potentials in small neurons by the axonal membrane compartment. Neuron 53:843–855PubMedCrossRefGoogle Scholar
  70. Mitoma H, Konishi S (1999) Monoaminergic long-term facilitation of GABA-mediated inhibitory transmission at cerebellar synapses. Neuroscience 88:871–883PubMedCrossRefGoogle Scholar
  71. Mittmann W, Koch U, Hausser M (2005) Feed-forward inhibition shapes the spike output of cerebellar Purkinje cells. J Physiol 563:369–378PubMedCrossRefGoogle Scholar
  72. Moises HC, Waterhouse BD, Woodward DJ (1983) Locus coeruleus stimulation potentiates local inhibitory processes in rat cerebellum. Brain Res Bull 10:795–804PubMedCrossRefGoogle Scholar
  73. Molineux ML, Fernandez FR, Mehaffey WH, Turner RW (2005) A-type and T-type currents interact to produce a novel spike latency-voltage relationship in cerebellar stellate cells. J Neurosci 25:10863–10873PubMedCrossRefGoogle Scholar
  74. Myoga MH, Beierlein M, Regehr WG (2009) Somatic spikes regulate dendritic signaling in small neurons in the absence of backpropagating action potentials. J Neurosci 29:7803–7814PubMedCrossRefGoogle Scholar
  75. Oldfield CS, Marty A, Stell BM (2010) Interneurons of the cerebellar cortex toggle Purkinje cells between up and down states. Proc Natl Acad Sci USA 107:13153–13158PubMedCrossRefGoogle Scholar
  76. Palay S, Chan-Palay V (1974) Cerebellar cortex. Cytology and organization. Springer, BerlinCrossRefGoogle Scholar
  77. Pouzat C, Hestrin S (1997) Developmental regulation of basket/stellate cell– > Purkinje cell synapses in the cerebellum. J Neurosci 17:9104–9112PubMedGoogle Scholar
  78. Pouzat C, Marty A (1998) Autaptic inhibitory currents recorded from interneurones in rat cerebellar slices. J Physiol 509(Pt 3):777–783PubMedCrossRefGoogle Scholar
  79. Pouzat C, Marty A (1999) Somatic recording of GABAergic autoreceptor current in cerebellar stellate and basket cells. J Neurosci 19:1675–1690PubMedGoogle Scholar
  80. Rajakulendran S, Schorge S, Kullmann DM, Hanna MG (2007) Episodic ataxia type 1: a neuronal potassium channelopathy. Neurotherapeutics 4:258–266PubMedCrossRefGoogle Scholar
  81. Rancillac A, Crepel F (2004) Synapses between parallel fibres and stellate cells express long-term changes in synaptic efficacy in rat cerebellum. J Physiol 554:707–720PubMedCrossRefGoogle Scholar
  82. Rea R, Spauschus A, Eunson LH, Hanna MG, Kullmann DM (2002) Variable K(+) channel subunit dysfunction in inherited mutations of KCNA1. J Physiol 538:5–23PubMedCrossRefGoogle Scholar
  83. Rossi B, Maton G, Collin T (2008) Calcium-permeable presynaptic AMPA receptors in cerebellar molecular layer interneurons. J Physiol 586:5129–5145PubMedCrossRefGoogle Scholar
  84. Sacchetti B, Baldi E, Lorenzini CA, Bucherelli C (2002) Cerebellar role in fear-conditioning consolidation. Proc Natl Acad Sci USA 99:8406–8411PubMedCrossRefGoogle Scholar
  85. Sacchetti B, Scelfo B, Tempia F, Strata P (2004) Long-term synaptic changes induced in the cerebellar cortex by fear conditioning. Neuron 42:973–982PubMedCrossRefGoogle Scholar
  86. Saitow F, Konishi S (2000) Excitability increase induced by beta-adrenergic receptor-mediated activation of hyperpolarization-activated cation channels in rat cerebellar basket cells. J Neurophysiol 84:2026–2034PubMedGoogle Scholar
  87. Saitow F, Satake S, Yamada J, Konishi S (2000) beta-adrenergic receptor-mediated presynaptic facilitation of inhibitory GABAergic transmission at cerebellar interneuron-Purkinje cell synapses. J Neurophysiol 84:2016–2025PubMedGoogle Scholar
  88. Satake S, Saitow F, Yamada J, Konishi S (2000) Synaptic activation of AMPA receptors inhibits GABA release from cerebellar interneurons. Nat Neurosci 3:551–558PubMedCrossRefGoogle Scholar
  89. Satake S, Saitow F, Rusakov D, Konishi S (2004) AMPA receptor-mediated presynaptic inhibition at cerebellar GABAergic synapses: a characterization of molecular mechanisms. Eur J Neurosci 19:2464–2474PubMedCrossRefGoogle Scholar
  90. Satake S, Song SY, Cao Q, Satoh H, Rusakov DA, Yanagawa Y, Ling EA, Imoto K, Konishi S (2006) Characterization of AMPA receptors targeted by the climbing fiber transmitter mediating presynaptic inhibition of GABAergic transmission at cerebellar interneuron-Purkinje cell synapses. J Neurosci 26:2278–2289PubMedCrossRefGoogle Scholar
  91. Savtchouk I, Liu SJ (2011) Remodeling of synaptic AMPA receptor subtype alters the probability and pattern of action potential firing. J Neurosci 31:501–511PubMedCrossRefGoogle Scholar
  92. Scelfo B, Sacchetti B, Strata P (2008) Learning-related long-term potentiation of inhibitory synapses in the cerebellar cortex. Proc Natl Acad Sci USA 105:769–774PubMedCrossRefGoogle Scholar
  93. Siggins GR, Hoffer BJ, Oliver AP, Bloom FE (1971) Activation of a central noradrenergic projection to cerebellum. Nature 233:481–483PubMedCrossRefGoogle Scholar
  94. Smith SL, Otis TS (2005) Pattern-dependent, simultaneous plasticity differentially transforms the input–output relationship of a feedforward circuit. Proc Natl Acad Sci USA 102:14901–14906PubMedCrossRefGoogle Scholar
  95. Soler-Llavina GJ, Sabatini BL (2006) Synapse-specific plasticity and compartmentalized signaling in cerebellar stellate cells. Nat Neurosci 9(6):798–806PubMedCrossRefGoogle Scholar
  96. Southan AP, Robertson B (1998) Patch-clamp recordings from cerebellar basket cell bodies and their presynaptic terminals reveal an asymmetric distribution of voltage-gated potassium channels. J Neurosci 18:948–955PubMedGoogle Scholar
  97. Southan AP, Robertson B (2000) Electrophysiological characterization of voltage-gated K(+) currents in cerebellar basket and purkinje cells: Kv1 and Kv3 channel subfamilies are present in basket cell nerve terminals. J Neurosci 20:114–122PubMedGoogle Scholar
  98. Southan AP, Morris NP, Stephens GJ, Robertson B (2000) Hyperpolarization-activated currents in presynaptic terminals of mouse cerebellar basket cells. J Physiol 526(Pt 1):91–97PubMedCrossRefGoogle Scholar
  99. Suarez J, Bermudez-Silva FJ, Mackie K, Ledent C, Zimmer A, Cravatt BF, de Fonseca FR (2008) Immunohistochemical description of the endogenous cannabinoid system in the rat cerebellum and functionally related nuclei. J Comp Neurol 509:400–421PubMedCrossRefGoogle Scholar
  100. Sultan F, Bower JM (1998) Quantitative Golgi study of the rat cerebellar molecular layer interneurons using principal component analysis. J Comp Neurol 393:353–373PubMedCrossRefGoogle Scholar
  101. Sun L, Liu SJ (2007) Activation of extrasynaptic NMDA receptors induces a PKC-dependent switch in AMPA receptor subtypes in mouse cerebellar stellate cells. J Physiol 583(2):537–553PubMedCrossRefGoogle Scholar
  102. Swanson GT, Kamboj SK, Cull-Candy SG (1997) Single-channel properties of recombinant AMPA receptors depend on RNA editing, splice variation, and subunit composition. J Neurosci 17:58–69PubMedGoogle Scholar
  103. Szabo B, Urbanski MJ, Bisogno T, Di Marzo V, Mendiguren A, Baer WU, Freiman I (2006) Depolarization-induced retrograde synaptic inhibition in the mouse cerebellar cortex is mediated by 2-arachidonoylglycerol. J Physiol 577:263–280PubMedCrossRefGoogle Scholar
  104. Szapiro G, Barbour B (2007) Multiple climbing fibers signal to molecular layer interneurons exclusively via glutamate spillover. Nat Neurosci 10:735–742PubMedCrossRefGoogle Scholar
  105. Tan YP, Llano I (1999) Modulation by K+ channels of action potential-evoked intracellular Ca2+ concentration rises in rat cerebellar basket cell axons. J Physiol 520(Pt 1):65–78PubMedCrossRefGoogle Scholar
  106. Tanimura A, Yamazaki M, Hashimotodani Y, Uchigashima M, Kawata S, Abe M, Kita Y, Hashimoto K, Shimizu T, Watanabe M, Sakimura K, Kano M (2010) The endocannabinoid 2-arachidonoylglycerol produced by diacylglycerol lipase alpha mediates retrograde suppression of synaptic transmission. Neuron 65:320–327PubMedCrossRefGoogle Scholar
  107. Thompson CL, Drewery DL, Atkins HD, Stephenson FA, Chazot PL (2000) Immunohistochemical localization of N-methyl-d-aspartate receptor NR1, NR2A, NR2B and NR2C/D subunits in the adult mammalian cerebellum. Neurosci Lett 283:85–88PubMedCrossRefGoogle Scholar
  108. Trigo FF, Chat M, Marty A (2007) Enhancement of GABA release through endogenous activation of axonal GABA(A) receptors in juvenile cerebellum. J Neurosci 27:12452–12463PubMedCrossRefGoogle Scholar
  109. Trigo FF, Marty A, Stell BM (2008) Axonal GABAA receptors. Eur J Neurosci 28:841–848PubMedCrossRefGoogle Scholar
  110. Trigo FF, Bouhours B, Rostaing P, Papageorgiou G, Corrie JE, Triller A, Ogden D, Marty A (2010) Presynaptic miniature GABAergic currents in developing interneurons. Neuron 66:235–247PubMedCrossRefGoogle Scholar
  111. Vincent P, Marty A (1993) Neighboring cerebellar Purkinje cells communicate via retrograde inhibition of common presynaptic interneurons. Neuron 11:885–893PubMedCrossRefGoogle Scholar
  112. Vincent P, Marty A (1996) Fluctuations of inhibitory postsynaptic currents in Purkinje cells from rat cerebellar slices. J Physiol 494(Pt 1):183–199PubMedGoogle Scholar
  113. Vincent P, Armstrong CM, Marty A (1992) Inhibitory synaptic currents in rat cerebellar Purkinje cells: modulation by postsynaptic depolarization. J Physiol 456:453–471PubMedGoogle Scholar
  114. Walter JT, Alvina K, Womack MD, Chevez C, Khodakhah K (2006) Decreases in the precision of Purkinje cell pacemaking cause cerebellar dysfunction and ataxia. Nat Neurosci 9:389–397PubMedCrossRefGoogle Scholar
  115. Wulff P, Goetz T, Leppa E, Linden AM, Renzi M, Swinny JD, Vekovischeva OY, Sieghart W, Somogyi P, Korpi ER, Farrant M, Wisden W (2007) From synapse to behavior: rapid modulation of defined neuronal types with engineered GABAA receptors. Nat Neurosci 10:923–929PubMedCrossRefGoogle Scholar
  116. Wulff P, Schonewille M, Renzi M, Viltono L, Sassoe-Pognetto M, Badura A, Gao Z, Hoebeek FE, van Dorp S, Wisden W, Farrant M, De Zeeuw CI (2009) Synaptic inhibition of Purkinje cells mediates consolidation of vestibulo-cerebellar motor learning. Nat Neurosci 12:1042–1049PubMedCrossRefGoogle Scholar
  117. Yeh HH, Woodward DJ (1983) Noradrenergic action in the developing rat cerebellum: interaction between norepinephrine and gamma-aminobutyric acid applied microiontophoretically to immature Purkinje cells. Brain Res 312:49–62PubMedGoogle Scholar
  118. Yoshida T, Hashimoto K, Zimmer A, Maejima T, Araishi K, Kano M (2002) The cannabinoid CB1 receptor mediates retrograde signals for depolarization-induced suppression of inhibition in cerebellar Purkinje cells. J Neurosci 22:1690–1697PubMedGoogle Scholar
  119. Zhang CL, Messing A, Chiu SY (1999) Specific alteration of spontaneous GABAergic inhibition in cerebellar purkinje cells in mice lacking the potassium channel Kv1. 1. J Neurosci 19:2852–2864PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Cell Biology and AnatomyLSU Health Sciences Center Medical Education Building LSUHSCNew OrleansUSA

Personalised recommendations