MR Spectroscopy in Health and Disease

Reference work entry

Abstract

Magnetic resonance spectroscopy (MRS) enables the noninvasive quantification of up to 20 neurochemicals in selected brain regions and has found many applications in the study of the cerebellum in health and disease. The neurochemicals accessible by MRS include neuronal and glial markers, neurotransmitters, markers of cellular energetics, and antioxidants and, therefore, provide means to assess neuronal dysfunction/loss, glial activation, energy metabolism, and oxidative stress. As a result, the methodology has been applied to the study of many diseases that affect the cerebellum, including neurodegenerative diseases, cancer, metabolic disorders, alcoholism, and neuropsychiatric disorders. While MRS of the cerebellum poses challenges due to the caudal location of the structure in the brain, these have been overcome both on research and clinical scanners that operate at high and ultra-high magnetic fields, providing the potential for further applications of the technology with greater sensitivity and resolution than ever before to benefit basic and translational investigations in cerebellar disorders.

Keywords

Magnetic Resonance Spectroscopy Fetal Alcohol Spectrum Disorder Creatine Supplementation Magnetic Resonance Spectroscopy Study Neurochemical Alteration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The preparation of this manuscript was supported by the National Institutes of Health grant R01 NS070815. The Center for MR Research is supported by National Center for Research Resources (NCRR) biotechnology research resource grant P41 RR008079 and Neuroscience Center Core Blueprint Award P30 NS057091.

References

  1. Andreassen OA, Jenkins BG, Dedeoglu A et al (2001) Increases in cortical glutamate concentrations in transgenic amyotrophic lateral sclerosis mice are attenuated by creatine supplementation. J Neurochem 77:383–390PubMedCrossRefGoogle Scholar
  2. Angenstein F, Hilfert L, Zuschratter W et al (2008) Morphological and metabolic changes in the cortex of mice lacking the functional presynaptic active zone protein bassoon: a combined 1H-NMR spectroscopy and histochemical study. Cereb Cortex 18:890–897PubMedCrossRefGoogle Scholar
  3. Baker EH, Basso G, Barker PB et al (2008) Regional apparent metabolite concentrations in young adult brain measured by 1H MR spectroscopy at 3 Tesla. J Magn Reson Imaging 27:489–499PubMedCrossRefGoogle Scholar
  4. Banfi S, Zoghbi HY (1994) Molecular genetics of hereditary ataxias. Baillieres Clin Neurol 3:281–295PubMedGoogle Scholar
  5. Bartsch AJ, Homola G, Biller A et al (2007) Manifestations of early brain recovery associated with abstinence from alcoholism. Brain 130:36–47PubMedCrossRefGoogle Scholar
  6. Bates TE, Strangward M, Keelan J et al (1996) Inhibition of N-acetylaspartate production: implications for 1H MRS studies in vivo. Neuroreport 7:1397–1400PubMedCrossRefGoogle Scholar
  7. Bitsch A, Bruhn H, Vougioukas V et al (1999) Inflammatory CNS demyelination: histopathologic correlation with in vivo quantitative proton MR spectroscopy. AJNR Am J Neuroradiol 20:1619–1627PubMedGoogle Scholar
  8. Blüml S, Philippart M, Schiffmann R et al (2003) Membrane phospholipids and high-energy metabolites in childhood ataxia with CNS hypomyelination. Neurology 61:648–654PubMedCrossRefGoogle Scholar
  9. Boddaert N, Romano S, Funalot B et al (2008) 1H MRS spectroscopy evidence of cerebellar high lactate in mitochondrial respiratory chain deficiency. Mol Genet Metab 93:85–88PubMedCrossRefGoogle Scholar
  10. Boesch SM, Schocke M, Burk K et al (2001) Proton magnetic resonance spectroscopic imaging reveals differences in spinocerebellar ataxia types 2 and 6. J Magn Reson Imaging 13:553–559PubMedCrossRefGoogle Scholar
  11. Boesch SM, Wolf C, Seppi K et al (2007) Differentiation of SCA2 from MSA-C using proton magnetic resonance spectroscopic imaging. J Magn Reson Imaging 25:564–569PubMedCrossRefGoogle Scholar
  12. Bossuet C, Vaufrey F, Conde F et al (2004) Up-regulation of glutamate concentration in the putamen and in the prefrontal cortex of asymptomatic SIVmac251-infected macaques without major brain involvement. J Neurochem 88:928–938PubMedCrossRefGoogle Scholar
  13. Brand A, Richter-Landsberg C, Leibfritz D (1993) Multinuclear NMR studies on the energy metabolism of glial and neuronal cells. Dev Neurosci 15:289–298PubMedCrossRefGoogle Scholar
  14. Brockmann K, Dechent P, Meins M et al (2003) Cerebral proton magnetic resonance spectroscopy in infantile Alexander disease. J Neurol 250:300–306PubMedCrossRefGoogle Scholar
  15. Brownell AL, Jenkins BG, Elmaleh DR et al (1998) Combined PET/MRS brain studies show dynamic and long-term physiological changes in a primate model of Parkinson disease. Nat Med 4:1308–1312PubMedCrossRefGoogle Scholar
  16. Bruhn H, Kruse B, Korenke GC et al (1992) Proton NMR spectroscopy of cerebral metabolic alterations in infantile peroxisomal disorders. J Comput Assist Tomogr 16:335–344PubMedCrossRefGoogle Scholar
  17. Cecil KM, DelBello MP, Sellars MC et al (2003) Proton magnetic resonance spectroscopy of the frontal lobe and cerebellar vermis in children with a mood disorder and a familial risk for bipolar disorders. J Child Adolesc Psychopharmacol 13:545–555PubMedCrossRefGoogle Scholar
  18. Chapa F, Cruz F, Garcia-Martin ML et al (2000) Metabolism of (1–13C) glucose and (2–13C, 2–2H3) acetate in the neuronal and glial compartments of the adult rat brain as detected by 13C, 2H NMR spectroscopy. Neurochem Int 37:217–228PubMedCrossRefGoogle Scholar
  19. Chassain C, Bielicki G, Durand E et al (2008) Metabolic changes detected by proton magnetic resonance spectroscopy in vivo and in vitro in a murin model of Parkinson’s disease, the MPTP-intoxicated mouse. J Neurochem 105:874–882PubMedCrossRefGoogle Scholar
  20. Choi JK, Dedeoglu A, Jenkins BG (2007) Application of MRS to mouse models of neurodegenerative illness. NMR Biomed 20:216–237PubMedCrossRefGoogle Scholar
  21. Choi JK, Kustermann E, Dedeoglu A et al (2009) Magnetic resonance spectroscopy of regional brain metabolite markers in FALS mice and the effects of dietary creatine supplementation. Eur J Neurosci 30:2143–2150PubMedCrossRefGoogle Scholar
  22. Choi IY, Lee SP, Denney D et al (2011) Lower levels of glutathione in the brains of secondary progressive multiple sclerosis patients measured by 1H magnetic resonance chemical shift imaging at 3 T. Mult Scler 17:289–296PubMedCrossRefGoogle Scholar
  23. Clark JB (1998) N-acetyl aspartate: a marker for neuronal loss or mitochondrial dysfunction. Dev Neurosci 20:271–276PubMedCrossRefGoogle Scholar
  24. Costa MO, Lacerda MT, Garcia Otaduy MC et al (2002) Proton magnetic resonance spectroscopy: normal findings in the cerebellar hemisphere in childhood. Pediatr Radiol 32:787–792PubMedCrossRefGoogle Scholar
  25. Davie CA, Barker GJ, Webb S et al (1995) Persistent functional deficit in multiple sclerosis and autosomal dominant cerebellar ataxia is associated with axon loss. Brain 118:1583–1592PubMedCrossRefGoogle Scholar
  26. Davies NP, Wilson M, Harris LM et al (2008) Identification and characterisation of childhood cerebellar tumours by in vivo proton MRS. NMR Biomed 21:908–918PubMedCrossRefGoogle Scholar
  27. De Stefano N, Dotti MT, Mortilla M et al (2001) Magnetic resonance imaging and spectroscopic changes in brains of patients with cerebrotendinous xanthomatosis. Brain 124:121–131PubMedCrossRefGoogle Scholar
  28. Dedeoglu A, Choi JK, Cormier K et al (2004) Magnetic resonance spectroscopic analysis of Alzheimer’s disease mouse brain that express mutant human APP shows altered neurochemical profile. Brain Res 1012:60–65PubMedCrossRefGoogle Scholar
  29. Deicken RF, Feiwell R, Schuff N et al (2001) Evidence for altered cerebellar vermis neuronal integrity in schizophrenia. Psychiatry Res 107:125–134PubMedCrossRefGoogle Scholar
  30. DeKosky ST, Marek K (2003) Looking backward to move forward: early detection of neurodegenerative disorders. Science 302:830–834PubMedCrossRefGoogle Scholar
  31. Demougeot C, Garnier P, Mossiat C et al (2001) N-Acetylaspartate, a marker of both cellular dysfunction and neuronal loss: its relevance to studies of acute brain injury. J Neurochem 77:408–415PubMedCrossRefGoogle Scholar
  32. DeVito TJ, Drost DJ, Neufeld RW et al (2007) Evidence for cortical dysfunction in autism: a proton magnetic resonance spectroscopic imaging study. Biol Psychiatry 61:465–473PubMedCrossRefGoogle Scholar
  33. Dringen R (2000) Metabolism and functions of glutathione in brain. Prog Neurobiol 62:649–671PubMedCrossRefGoogle Scholar
  34. Eluri R, Paul C, Roemer R et al (1998) Single-voxel proton magnetic resonance spectroscopy of the pons and cerebellum in patients with schizophrenia: a preliminary study. Psychiatry Res Neuroimag 84:17–26CrossRefGoogle Scholar
  35. Emir UE, Tuite PJ, øz G. Elevated pontine and putamenal GABA levels in mild-moderate Parkinson disease detected by 7 tesla proton MRS. PLoS ONE, in pressGoogle Scholar
  36. Emir UE, Raatz S, McPherson S et al (2011b) Noninvasive quantification of ascorbate and glutathione concentration in the elderly human brain. NMR Biomed. 24:888–894PubMedCrossRefGoogle Scholar
  37. Emir UE, Auerbach EJ, Van De Moortele PF et al (2011c) Regional neurochemical profiles in the human brain measured by 1H MRS at 7 T using local B1 shimming. NMR Biomed. doi:10.1002/nbm.1727Google Scholar
  38. Ende G, Hubrich P, Walter S et al (2005) Further evidence for altered cerebellar neuronal integrity in schizophrenia. Am J Psychiatry 162:790–792PubMedCrossRefGoogle Scholar
  39. Ernst T, Kreis R, Ross BD (1993) Absolute quantitation of water and metabolites in the human brain. I. Compartments and water. J Magn Reson 102:1–8Google Scholar
  40. Fagerlund A, Heikkinen S, Autti-Ramo I et al (2006) Brain metabolic alterations in adolescents and young adults with fetal alcohol spectrum disorders. Alcohol Clin Exp Res 30:2097–2104PubMedCrossRefGoogle Scholar
  41. Fisher SK, Novak JE, Agranoff BW (2002) Inositol and higher inositol phosphates in neural tissues: homeostasis, metabolism and functional significance. J Neurochem 82:736–754PubMedCrossRefGoogle Scholar
  42. Frahm J, Bruhn H, Gyngell ML et al (1989) Localized proton NMR spectroscopy in different regions of the human brain in vivo. Relaxation times and concentrations of cerebral metabolites. Magn Reson Med 11:47–63PubMedCrossRefGoogle Scholar
  43. Fulham MJ, Dietz MJ, Duyn JH et al (1994) Transsynaptic reduction in N-acetyl-aspartate in cerebellar diaschisis: a proton MR spectroscopic imaging study. J Comput Assist Tomogr 18:697–704PubMedCrossRefGoogle Scholar
  44. Galanaud D, Haik S, Linguraru MG et al (2010) Combined diffusion imaging and MR spectroscopy in the diagnosis of human prion diseases. AJNR Am J Neuroradiol 31:1311–1318PubMedCrossRefGoogle Scholar
  45. Gruetter R, Ugurbil K, Seaquist ER (1998) Steady-state cerebral glucose concentrations and transport in the human brain. J Neurochem 70:397–408PubMedCrossRefGoogle Scholar
  46. Gruetter R, Adriany G, Choi IY et al (2003) Localized in vivo 13C NMR spectroscopy of the brain. NMR Biomed 16:313–338PubMedCrossRefGoogle Scholar
  47. Guerrini L, Belli G, Cellerini M et al (2002) Proton MR spectroscopy of cerebellitis. Magn Reson Imaging 20:619–622PubMedCrossRefGoogle Scholar
  48. Guerrini L, Lolli F, Ginestroni A et al (2004) Brainstem neurodegeneration correlates with clinical dysfunction in SCA1 but not in SCA2. A quantitative volumetric, diffusion and proton spectroscopy MR study. Brain 127:1785–1795PubMedCrossRefGoogle Scholar
  49. Guerrini L, Belli G, Mazzoni L et al (2009) Impact of cerebrospinal fluid contamination on brain metabolites evaluation with 1H-MR spectroscopy: a single voxel study of the cerebellar vermis in patients with degenerative ataxias. J Magn Reson Imaging 30:11–17PubMedCrossRefGoogle Scholar
  50. Gybina AA, Tkáč I, Prohaska JR (2009) Copper deficiency alters the neurochemical profile of developing rat brain. Nutr Neurosci 12:114–122PubMedCrossRefGoogle Scholar
  51. Håberg AK, Qu H, Sonnewald U (2009) Acute changes in intermediary metabolism in cerebellum and contralateral hemisphere following middle cerebral artery occlusion in rat. J Neurochem 109(Suppl 1):174–181PubMedCrossRefGoogle Scholar
  52. Harding AE (1982) The clinical features and classification of the late onset autosomal dominant cerebellar ataxias. A study of 11 families, including descendants of the “the Drew family of Walworth”. Brain 105:1–28PubMedCrossRefGoogle Scholar
  53. Harding AE (1983) Classification of the hereditary ataxias and paraplegias. Lancet 1:1151–1155PubMedCrossRefGoogle Scholar
  54. Harno H, Heikkinen S, Kaunisto MA et al (2005) Decreased cerebellar total creatine in episodic ataxia type 2: a 1H MRS study. Neurology 64:542–544PubMedCrossRefGoogle Scholar
  55. Harper C (2009) The neuropathology of alcohol-related brain damage. Alcohol Alcohol 44:136–140PubMedGoogle Scholar
  56. Harris LM, Davies N, Macpherson L et al (2007) The use of short-echo-time 1H MRS for childhood cerebellar tumours prior to histopathological diagnosis. Pediatr Radiol 37:1101–1109PubMedCrossRefGoogle Scholar
  57. Heikkila O, Makimattila S, Timonen M et al (2010) Cerebellar glucose during fasting and acute hyperglycemia in nondiabetic men and in men with type 1 diabetes. Cerebellum 9:336–344PubMedCrossRefGoogle Scholar
  58. Hekmatyar SK, Wilson M, Jerome N et al (2010) 1H nuclear magnetic resonance spectroscopy characterisation of metabolic phenotypes in the medulloblastoma of the SMO transgenic mice. Br J Cancer 103:1297–1304PubMedCrossRefGoogle Scholar
  59. Henchcliffe C, Shungu DC, Mao X et al (2008) Multinuclear magnetic resonance spectroscopy for in vivo assessment of mitochondrial dysfunction in Parkinson’s disease. Ann N Y Acad Sci 1147:206–220PubMedCrossRefGoogle Scholar
  60. Hennig J, Pfister H, Ernst T et al (1992) Direct absolute quantification of metabolites in the human brain with in vivo localized proton spectroscopy. NMR Biomed 5:193–199PubMedCrossRefGoogle Scholar
  61. Hetherington HP, Pan JW, Mason GF et al (1996) Quantitative 1H spectroscopic imaging of human brain at 4.1 T using image segmentation. Magn Reson Med 36:21–29PubMedCrossRefGoogle Scholar
  62. Hetherington HP, Spencer DD, Vaughan JT et al (2001) Quantitative 31P spectroscopic imaging of human brain at 4 Tesla: assessment of gray and white matter differences of phosphocreatine and ATP. Magn Reson Med 45:46–52PubMedCrossRefGoogle Scholar
  63. Iltis I, Hutter D, Bushara KO et al (2010) 1H MR spectroscopy in Friedreich’s ataxia and ataxia with oculomotor apraxia type 2. Brain Res 1358:200–210PubMedCrossRefGoogle Scholar
  64. Inglese M, Nusbaum AO, Pastores GM et al (2005) MR imaging and proton spectroscopy of neuronal injury in late-onset GM2 gangliosidosis. AJNR Am J Neuroradiol 26:2037–2042PubMedGoogle Scholar
  65. Jacobs MA, Horska A, van Zijl PC et al (2001) Quantitative proton MR spectroscopic imaging of normal human cerebellum and brain stem. Magn Reson Med 46:699–705PubMedCrossRefGoogle Scholar
  66. Jenkins BG, Kraft E (1999) Magnetic resonance spectroscopy in toxic encephalopathy and neurodegeneration. Curr Opin Neurol 12:753–760PubMedCrossRefGoogle Scholar
  67. Jenkins BG, Klivenyi P, Kustermann E et al (2000) Nonlinear decrease over time in N-acetyl aspartate levels in the absence of neuronal loss and increases in glutamine and glucose in transgenic Huntington’s disease mice. J Neurochem 74:2108–2119PubMedCrossRefGoogle Scholar
  68. Jenkins BG, Andreassen OA, Dedeoglu A et al (2005) Effects of CAG repeat length, HTT protein length and protein context on cerebral metabolism measured using magnetic resonance spectroscopy in transgenic mouse models of Huntington’s disease. J Neurochem 95:553–562PubMedCrossRefGoogle Scholar
  69. Kaldis P, Hemmer W, Zanolla E et al (1996) “Hot spots” of creatine kinase localization in brain: cerebellum, hippocampus and choroid plexus. Dev Neurosci 18:542–554PubMedCrossRefGoogle Scholar
  70. Kalra S, Cashman NR, Genge A et al (1998) Recovery of N-acetylaspartate in corticomotor neurons of patients with ALS after riluzole therapy. Neuroreport 9:1757–1761PubMedCrossRefGoogle Scholar
  71. Kan HE, Meeuwissen E, van Asten JJ et al (2007) Creatine uptake in brain and skeletal muscle of mice lacking guanidinoacetate methyltransferase assessed by magnetic resonance spectroscopy. J Appl Physiol 102:2121–2127PubMedCrossRefGoogle Scholar
  72. Kantarci K, Petersen RC, Boeve BF et al (2004) 1H MR spectroscopy in common dementias. Neurology 63:1393–1398PubMedCrossRefGoogle Scholar
  73. Kantarci K, Knopman DS, Dickson DW et al (2008) Alzheimer disease: postmortem neuropathologic correlates of antemortem 1H MR spectroscopy metabolite measurements. Radiology 248:210–220PubMedCrossRefGoogle Scholar
  74. Kim JP, Lentz MR, Westmoreland SV et al (2005) Relationships between astrogliosis and 1H MR spectroscopic measures of brain choline/creatine and myo-inositol/creatine in a primate model. AJNR Am J Neuroradiol 26:752–759PubMedGoogle Scholar
  75. Kish SJ, Rajput A, Gilbert J et al (1986) Elevated gamma-aminobutyric acid level in striatal but not extrastriatal brain regions in Parkinson’s disease: correlation with striatal dopamine loss. Ann Neurol 20:26–31PubMedCrossRefGoogle Scholar
  76. Klockgether T, Dichgans J (1997) The genetic basis of hereditary ataxia. Prog Brain Res 114:569–576PubMedCrossRefGoogle Scholar
  77. Kofke WA, Hawkins RA, Davis DW et al (1987) Comparison of the effects of volatile anesthetics on brain glucose metabolism in rats. Anesthesiology 66:810–813PubMedCrossRefGoogle Scholar
  78. Konaka K, Kaido M, Okuda Y et al (2000) Proton magnetic resonance spectroscopy of a patient with Gerstmann-Straussler-Scheinker disease. Neuroradiology 42:662–665PubMedCrossRefGoogle Scholar
  79. Kreis R, Wingeier K, Vermathen P et al (2011) Brain metabolite composition in relation to cognitive function and dystrophin mutations in boys with Duchenne muscular dystrophy. NMR Biomed 24:253–262PubMedCrossRefGoogle Scholar
  80. Kruse T, Reiber H, Neuhoff V (1985) Amino acid transport across the human blood-CSF barrier. An evaluation graph for amino acid concentrations in cerebrospinal fluid. J Neurol Sci 70:129–138PubMedCrossRefGoogle Scholar
  81. Magnitsky S, Vite CH, Delikatny EJ et al (2010) Magnetic resonance spectroscopy of the occipital cortex and the cerebellar vermis distinguishes individual cats affected with alpha-mannosidosis from normal cats. NMR Biomed 23:74–79PubMedCrossRefGoogle Scholar
  82. Marjanska M, Curran GL, Wengenack TM et al (2005) Monitoring disease progression in transgenic mouse models of Alzheimer’s disease with proton magnetic resonance spectroscopy. Proc Natl Acad Sci USA 102:11906–11910PubMedCrossRefGoogle Scholar
  83. Mascalchi M, Tosetti M, Plasmati R et al (1998) Proton magnetic resonance spectroscopy in an Italian family with spinocerebellar ataxia type 1. Ann Neurol 43:244–252PubMedCrossRefGoogle Scholar
  84. Mascalchi M, Brugnoli R, Guerrini L et al (2002a) Single-voxel long TE 1H-MR spectroscopy of the normal brainstem and cerebellum. J Magn Reson Imaging 16:532–537PubMedCrossRefGoogle Scholar
  85. Mascalchi M, Cosottini M, Lolli F et al (2002b) Proton MR spectroscopy of the cerebellum and pons in patients with degenerative ataxia. Radiology 223:371–378PubMedCrossRefGoogle Scholar
  86. Meisingset TW, Risa O, Brenner M et al (2010) Alteration of glial-neuronal metabolic interactions in a mouse model of Alexander disease. Glia 58:1228–1234PubMedGoogle Scholar
  87. Mekle R, Mlynárik V, Gambarota G et al (2009) MR spectroscopy of the human brain with enhanced signal intensity at ultrashort echo times on a clinical platform at 3 T and 7 T. Magn Reson Med 61:1279–1285PubMedCrossRefGoogle Scholar
  88. Metzger GJ, Snyder C, Akgun C et al (2008) Local B1+ shimming for prostate imaging with transceiver arrays at 7 T based on subject-dependent transmit phase measurements. Magn Reson Med 59:396–409PubMedCrossRefGoogle Scholar
  89. Michaelis T, Merboldt KD, Bruhn H et al (1993) Absolute concentrations of metabolites in the adult human brain in vivo: quantification of localized proton MR spectra. Radiology 187:219–227PubMedGoogle Scholar
  90. Mueller SG, Trabesinger AH, Boesiger P et al (2001) Brain glutathione levels in patients with epilepsy measured by in vivo 1H-MRS. Neurology 57:1422–1427PubMedCrossRefGoogle Scholar
  91. Muthukumaraswamy SD, Edden RA, Jones DK et al (2009) Resting GABA concentration predicts peak gamma frequency and fMRI amplitude in response to visual stimulation in humans. Proc Natl Acad Sci USA 106:8356–8361PubMedCrossRefGoogle Scholar
  92. Okada Y (1992) The distribution and function of gamma-aminobutyric acid (GABA) in the superior colliculus. Prog Brain Res 90:249–262PubMedCrossRefGoogle Scholar
  93. Ottersen OP, Storm-Mathisen J (1984) Glutamate- and GABA-containing neurons in the mouse and rat brain, as demonstrated with a new immunocytochemical technique. J Comp Neurol 229:374–392PubMedCrossRefGoogle Scholar
  94. Öz G, Tkáč I (2011) Short-echo, single-shot, full-intensity proton magnetic resonance spectroscopy for neurochemical profiling at 4 T: validation in the cerebellum and brainstem. Magn Reson Med 65:901–910PubMedCrossRefGoogle Scholar
  95. Öz G, Okar DA, Henry PG (2011a) Glutamate-glutamine cycle and anaplerosis. In: Advances in Neurobiology (editor-in-chief Abel Lajtha), vol. Neural Metabolism in vivo (edited by Gruetter R and Choi IY). Springer, New YorkGoogle Scholar
  96. Öz G, Iltis I, Hutter D et al (2011b) Distinct neurochemical profiles of spinocerebellar ataxias 1, 2, 6, and cerebellar multiple system atrophy. Cerebellum. 10:208–217PubMedCrossRefGoogle Scholar
  97. Öz G, Tkáč I, Charnas LR et al (2005) Assessment of adrenoleukodystrophy lesions by high field MRS in non-sedated pediatric patients. Neurology 64:434–441PubMedCrossRefGoogle Scholar
  98. Öz G, Hutter D, Tkáč I et al (2010a) Neurochemical alterations in spinocerebellar ataxia type 1 and their correlations with clinical status. Mov Disord 25:1253–1261PubMedCrossRefGoogle Scholar
  99. Öz G, Nelson CD, Koski DM et al (2010b) Noninvasive detection of presymptomatic and progressive neurodegeneration in a mouse model of spinocerebellar ataxia type 1. J Neurosci 30:3831–3838PubMedCrossRefGoogle Scholar
  100. Palmi M, Brooke S, Smith AD et al (1991) GABA-like immunoreactivity in different cellular populations of cerebellar cortex of rats before and after treatment with amino-oxyacetic acid. Brain Res 543:277–286PubMedCrossRefGoogle Scholar
  101. Panigrahy A, Krieger MD, Gonzalez-Gomez I et al (2006) Quantitative short echo time 1H-MR spectroscopy of untreated pediatric brain tumors: preoperative diagnosis and characterization. AJNR Am J Neuroradiol 27:560–572PubMedGoogle Scholar
  102. Parks MH, Dawant BM, Riddle WR et al (2002) Longitudinal brain metabolic characterization of chronic alcoholics with proton magnetic resonance spectroscopy. Alcohol Clin Exp Res 26:1368–1380PubMedCrossRefGoogle Scholar
  103. Peet AC, Davies NP, Ridley L et al (2007) Magnetic resonance spectroscopy suggests key differences in the metastatic behaviour of medulloblastoma. Eur J Cancer 43:1037–1044PubMedCrossRefGoogle Scholar
  104. Perry TL, Kish SJ, Hansen S et al (1981) Neurotransmitter amino acids in dominantly inherited cerebellar disorders. Neurology 31:237–242PubMedCrossRefGoogle Scholar
  105. Petroff OA, Pleban LA, Spencer DD (1995) Symbiosis between in vivo and in vitro NMR spectroscopy: the creatine, N-acetylaspartate, glutamate, and GABA content of the epileptic human brain. Magn Reson Imaging 13:1197–1211PubMedCrossRefGoogle Scholar
  106. Pfeuffer J, Tkáč I, Provencher SW et al (1999) Toward an in vivo neurochemical profile: quantification of 18 metabolites in short-echo-time 1H NMR spectra of the rat brain. J Magn Reson 141:104–120PubMedCrossRefGoogle Scholar
  107. Pouwels PJ, Frahm J (1998) Regional metabolite concentrations in human brain as determined by quantitative localized proton MRS. Magn Reson Med 39:53–60PubMedCrossRefGoogle Scholar
  108. Pouwels PJ, Kruse B, Korenke GC et al (1998) Quantitative proton magnetic resonance spectroscopy of childhood adrenoleukodystrophy. Neuropediatrics 29:254–264PubMedCrossRefGoogle Scholar
  109. Pouwels PJ, Brockmann K, Kruse B et al (1999) Regional age dependence of human brain metabolites from infancy to adulthood as detected by quantitative localized proton MRS. Pediatr Res 46:474–485PubMedCrossRefGoogle Scholar
  110. Provencher SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30:672–679PubMedCrossRefGoogle Scholar
  111. Rae C, Scott RB, Thompson CH et al (1998) Brain biochemistry in Duchenne muscular dystrophy: a 1H magnetic resonance and neuropsychological study. J Neurol Sci 160:148–157PubMedCrossRefGoogle Scholar
  112. Rice ME (2000) Ascorbate regulation and its neuroprotective role in the brain. Trends Neurosci 23:209–216PubMedCrossRefGoogle Scholar
  113. Sappey-Marinier D, Vighetto A, Peyron R et al (1999) Phosphorus and proton magnetic resonance spectroscopy in episodic ataxia type 2. Ann Neurol 46:256–259PubMedCrossRefGoogle Scholar
  114. Schöls L, Bauer P, Schmidt T et al (2004) Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Lancet Neurol 3:291–304PubMedCrossRefGoogle Scholar
  115. Schuhmann MU, Stiller D, Skardelly M et al (2003) Metabolic changes in the vicinity of brain contusions: a proton magnetic resonance spectroscopy and histology study. J Neurotrauma 20:725–743PubMedCrossRefGoogle Scholar
  116. Schuff N, Meyerhoff DJ, Mueller S et al (2006) N-acetylaspartate as a marker of neuronal injury in neurodegenerative disease. Adv Exp Med Biol 576:241–262PubMedCrossRefGoogle Scholar
  117. Stockler S, Holzbach U, Hanefeld F et al (1994) Creatine deficiency in the brain: a new, treatable inborn error of metabolism. Pediatr Res 36:409–413PubMedCrossRefGoogle Scholar
  118. Storm-Mathisen J, Danbolt NC, Rothe F et al (1992) Ultrastructural immunocytochemical observations on the localization, metabolism and transport of glutamate in normal and ischemic brain tissue. Prog Brain Res 94:225–241PubMedCrossRefGoogle Scholar
  119. Swanson RA, Sagar SM, Sharp FR (1989) Regional brain glycogen stores and metabolism during complete global ischaemia. Neurol Res 11:24–28PubMedGoogle Scholar
  120. Tedeschi G, Bertolino A, Righini A et al (1995) Brain regional distribution pattern of metabolite signal intensities in young adults by proton magnetic resonance spectroscopic imaging. Neurology 45:1384–1391PubMedCrossRefGoogle Scholar
  121. Tedeschi G, Bertolino A, Massaquoi SG et al (1996) Proton magnetic resonance spectroscopic imaging in patients with cerebellar degeneration. Ann Neurol 39:71–78PubMedCrossRefGoogle Scholar
  122. Terakawa H, Abe K, Watanabe Y et al (1999) Proton magnetic resonance spectroscopy (1H MRS) in patients with sporadic cerebellar degeneration. J Neuroimaging 9:72–77PubMedGoogle Scholar
  123. Terpstra M, Marjanska M, Henry PG et al (2006) Detection of an antioxidant profile in the human brain in vivo via double editing with MEGA-PRESS. Magn Reson Med 56:1192–1199PubMedCrossRefGoogle Scholar
  124. Tibbo P, Hanstock CC, Asghar S et al (2000) Proton magnetic resonance spectroscopy (1H-MRS) of the cerebellum in men with schizophrenia. J Psychiatry Neurosci 25:509–512PubMedGoogle Scholar
  125. Tkáč I, Keene CD, Pfeuffer J et al (2001) Metabolic changes in quinolinic acid-lesioned rat striatum detected non-invasively by in vivo 1H NMR spectroscopy. J Neurosci Res 66:891–898PubMedCrossRefGoogle Scholar
  126. Tkáč I, Henry PG, Andersen P et al (2004) Highly resolved in vivo 1H NMR spectroscopy of the mouse brain at 9.4 T. Magn Reson Med 52:478–484PubMedCrossRefGoogle Scholar
  127. Tkáč I, Dubinsky JM, Keene CD et al (2007) Neurochemical changes in Huntington R6/2 mouse striatum detected by in vivo 1H NMR spectroscopy. J Neurochem 100:1397–1406PubMedCrossRefGoogle Scholar
  128. Tkáč I, Öz G, Adriany G et al (2009) In vivo 1H NMR spectroscopy of the human brain at high magnetic fields: metabolite quantification at 4 T vs. 7 T. Magn Reson Med 62:868–879PubMedCrossRefGoogle Scholar
  129. Urenjak J, Williams SR, Gadian DG et al (1993) Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types. J Neurosci 13:981–989PubMedGoogle Scholar
  130. Urquhart N, Perry TL, Hansen S et al (1975) GABA content and glutamic acid decarboxylase activity in brain of Huntington’s chorea patients and control subjects. J Neurochem 24:1071–1075PubMedCrossRefGoogle Scholar
  131. Valette J, Guillermier M, Besret L et al (2007) Isoflurane strongly affects the diffusion of intracellular metabolites, as shown by 1H nuclear magnetic resonance spectroscopy of the monkey brain. J Cereb Blood Flow Metab 27:588–596PubMedCrossRefGoogle Scholar
  132. Van de Moortele PF, Akgun C, Adriany G et al (2005) B1 destructive interferences and spatial phase patterns at 7 T with a head transceiver array coil. Magn Reson Med 54:1503–1518PubMedCrossRefGoogle Scholar
  133. van Gelder NM (1989) Brain taurine content as a function of cerebral metabolic rate: osmotic regulation of glucose derived water production. Neurochem Res 14:495–497PubMedCrossRefGoogle Scholar
  134. Viau M, Marchand L, Bard C et al (2005) 1H magnetic resonance spectroscopy of autosomal ataxias. Brain Res 1049:191–202PubMedCrossRefGoogle Scholar
  135. Vion-Dury J, Nicoli F, Salvan AM et al (1995) Reversal of brain metabolic alterations with zidovudine detected by proton localised magnetic resonance spectroscopy. Lancet 345:60–61PubMedCrossRefGoogle Scholar
  136. Vrenken H, Barkhof F, Uitdehaag BM et al (2005) MR spectroscopic evidence for glial increase but not for neuro-axonal damage in MS normal-appearing white matter. Magn Reson Med 53:256–266PubMedCrossRefGoogle Scholar
  137. Wilichowski E, Pouwels PJ, Frahm J et al (1999) Quantitative proton magnetic resonance spectroscopy of cerebral metabolic disturbances in patients with MELAS. Neuropediatrics 30:256–263PubMedCrossRefGoogle Scholar
  138. Wilken B, Helms G, Christen HJ et al (1996) Localized proton magnetic resonance spectroscopy of a cerebellar tumor in a two-year-old child. Childs Nerv Syst 12:626–629PubMedCrossRefGoogle Scholar
  139. Wu JY, Prentice H (2010) Role of taurine in the central nervous system. J Biomed Sci 17(Suppl 1):S1PubMedCrossRefGoogle Scholar
  140. Zoghbi HY, Orr HT (2000) Glutamine repeats and neurodegeneration. Annu Rev Neurosci 23:217–247PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Center for Magnetic Resonance Research, Department of RadiologyMedical School, University of MinnesotaMinneapolisUSA

Personalised recommendations