Skip to main content

Cerebellar Connections with Limbic Circuits: Anatomy and Functional Implications

  • Reference work entry

Abstract

There is an emerging body of evidence suggesting that the cerebellum participates in limbic-related functions including emotion and affect. The underlying connectivity of the cerebellar cortex and nuclei with limbic-related brain areas and associative and paralimbic cortices suggests widespread cerebellar influence on behaviors including the experience and expression of emotion, sadness and grief, integrative hypothalamic visceral/sensory functions, pain perception, modulation, and intensity due to noxious stimuli, as well as other nonmotor behaviors. The key anatomical relationships are the fastigial nucleus projections to the ventral tegmental area (VTA), cerebellar interconnections with the septum, hippocampus and amygdala, direct cerebellar connections with hypothalamic circuits that integrate somatic-, visceral-, and limbic-related activity, and indirect connections with the nucleus accumbens (NAcc), a mesolimbic dopaminergic structure that predicts activity in a reward paradigm in limbic-related structures. Additionally, the cerebellum is interconnected with cingulate cortices that play a role in motivation and emotional drive, and with associative and paralimbic regions of prefrontal, posterior parietal, superior temporal polymodal, and parahippocampal regions heavily implicated in high order processing important for the integration of cognition and emotion. These connections between cortical and subcortical areas of the limbic system with the cerebellum (vermis and fastigial nucleus in particular) are the likely anatomical underpinning of the demonstrated cerebellar influence on limbic-related behaviors in the clinical setting and in earlier behavioral and physiological studies. These cerebellar connections with cerebral limbic areas are also implicated in neurodevelopmental disorders such as autism which demonstrate neuropathology and aberrant neurochemistry in the cerebellar cortex and nuclei. Defining the vermis and fastigial nuclei as the probable location of the limbic cerebellum has relevance for future studies of cerebrocerebellar interconnections and functional coupling, and for therapeutic strategies that attempt to enhance cerebellar modulation of limbic-related structures in order to treat neuropsychiatric disorders.

This is a preview of subscription content, log in via an institution.

References

  • Aas JE, Brodal P (1988) Demonstration of topographically organized projections from the hypothalamus to the pontine nuclei: an experimental anatomical study in the cat. J Comp Neurol 268(3):313–328

    Article  PubMed  CAS  Google Scholar 

  • Alalade E, Denny K, Potter G, Steffens D, Wang L (2011) Altered cerebellar-cerebral functional connectivity in geriatric depression. PLoS One 6(5):e20035, Epub May 26

    Article  PubMed  CAS  Google Scholar 

  • Allen G, Courchesne E (2003) Differential effects of developmental cerebellarabnormality on cognitive and motor functions in the cerebellum: an fMRI study of autism. Am J Psychiatry 160(2):262–273

    Article  PubMed  Google Scholar 

  • Allen GI, Tsukahara N (1974) Cerebrocerebellar communication systems. Physiol Rev 54(4):957–1006

    PubMed  CAS  Google Scholar 

  • Aylward EH, Habbak R, Warren AC, Pulsifer MB, Barta PE, Jerram M, Pearlson GD (1997) Cerebellar volume in adults with Down syndrome. Arch Neurol 54(2):209–212

    Article  PubMed  CAS  Google Scholar 

  • Babb TL, Mitchell AG Jr, Crandall PH (1974) Fastigiobulbar and dentatothalamic influences on hippocampal cobalt epilepsy in the cat. Electroencephalogr Clin Neurophysiol 36(2):141–154

    PubMed  CAS  Google Scholar 

  • Ball G, Micco D Jr, Berntson G (1974) Cerebellar stimulation in the rat. Complex stimulation bound oral behaviors and self-stimulation. Physiol Behav 13:123–127

    Article  PubMed  CAS  Google Scholar 

  • Barbas H (2007) Flow of information for emotions through temporal and orbitofrontal pathways. J Anat 211(2):237–249

    Article  PubMed  Google Scholar 

  • Barbas H, Saha S, Rempel-Clower N, Ghashghaei T (2003) Serial pathways from primate prefrontal cortex to autonomic areas may influence emotional expression. BMC Neurosci 4:25

    Article  PubMed  Google Scholar 

  • Bauman M, Kemper TL (1985) Histoanatomic observations of the brain in early infantile autism. Neurology 35(6):866–874

    Article  PubMed  CAS  Google Scholar 

  • Beauregard M, Leroux JM, Bergman S, Arzoumanian Y, Beaudoin G, Bourgouin P, Stip E (1998) The functional neuroanatomy of major depression: an fMRI study using an emotional activation paradigm. Neuroreport 9(14):3253–3258

    Article  PubMed  CAS  Google Scholar 

  • Becerra LR, Breiter HC, Stojanovic M, Fishman S, Edwards A, Comite AR, Gonzalez RG et al (1999) Human brain activation under controlled thermal stimulation and habituation to noxious heat: an fMRI study. Magn Reson Med 41(5):1044–1057

    Article  PubMed  CAS  Google Scholar 

  • Berman AJ, Berman D, Prescott JW (1978) The effects of cerebellar lesions on emotional behavior in the rhesus monkey. In: Cooper IS, Riklan M, Snider M. (eds) The Cerebellum Epilepsy and Behavior. Plenum, New York, pp. 277–284. Reprinted in Schmahmann JD (ed) The Cerebellum and Cognition (1997). Academic, San Diego. Int Rev Neurobiol 41:111–119

    Google Scholar 

  • Berntson G, Potolicchio S Jr, Miller N (1973) Evidence for higher functions of the cerebellum. Eating and grooming elicited by cerebellar stimulation in cats. Proc Natl Acad Sci 70:2497–2499

    Article  PubMed  CAS  Google Scholar 

  • Berquin PC, Giedd JN, Jacobsen LK, Hamburger SD, Krain AL, Rapoport JL, Castellanos FX (1998) Cerebellum in attention-deficit hyperactivity disorder: a morphometric MRI study. Neurology 50(4):1087–1093

    Article  PubMed  CAS  Google Scholar 

  • Borsook D, Moulton EA, Tully S, Schmahmann JD, Becerra L (2008) Human cerebellar responses to brush and heat stimuli in healthy and neuropathic pain subjects. Cerebellum (London, England) 7(3):252–272

    CAS  Google Scholar 

  • Bratus NV, Ioltukhovskiĭ MV (1986) Electrophysiologic analysis of the effects of the hypothalamus on the cerebellar cortex. Fiziol Zh 32(3):257–263

    PubMed  CAS  Google Scholar 

  • Broca P (1878) Anatomie comparée des circonvolutions cérébrales: le grand lobe limbique et la scissure limbique dans la série des mammifères. Revue d’ Anthropologie (2 ser) 1:385–498

    Google Scholar 

  • Brodal P, Bjaalie JG, Aas JE (1991) Organization of cingulo-pontocerebellar connections in the cat. Anat Embryol 184(3):245–254

    Article  PubMed  CAS  Google Scholar 

  • Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Johann Ambrosius Barth Verlag, Leipzig

    Google Scholar 

  • Bucy PC, Kluver H (1955) An anatomical investigation of the temporal lobe in the monkey (Macaca mulatta). J Comp Neurol 103:151–251

    Article  PubMed  CAS  Google Scholar 

  • Cannon WB (1927) The James-Lange theory of emotion: a critical examination and an alternative theory. Am J Psychol 39:106–124

    Article  Google Scholar 

  • Cauda F, Cavanna AE, D’agata F, Sacco K, Duca S, Geminiani GC (2011) Functional connectivity and coactivation of the nucleus accumbens: a combined functional connectivity and structure-based meta-analysis. J Cogn Neurosci 32(10):1566–1579

    Google Scholar 

  • Courchesne E, Karns CM, Davis HR, Ziccardi R, Carper RA, Tigue ZD, Chisum HJ et al (2001) Unusual brain growth patterns in early life in patients with autistic disorder: an MRI study. Neurology 57(2):245–254

    Article  PubMed  CAS  Google Scholar 

  • Critchley HD, Corfield DR, Chandler MP, Mathias CJ, Dolan RJ (2000) Cerebral correlates of autonomic cardiovascular arousal: a functional neuroimaging investigation in humans. J Physiol 523(Pt 1):259–270

    Article  PubMed  CAS  Google Scholar 

  • Damasio AR (1999) The feeling of what happens: body and emotion in the making of consciousness. Harcourt, New York

    Google Scholar 

  • Demirtas-Tatlidede A, Freitas C, Cromer J, Safar L, Ongur D, Stone WS, Seidman LJ, Schmahmann JD, Pascual-Leone A (2010) Safety and proof of principle study of cerebellar vermal theta burst stimulation in refractory schizophrenia. Schizophr Res 124:91–100

    Article  PubMed  Google Scholar 

  • Demirtas-Tatlidede A, Freitas C, Pascual-Leone A, Schmahmann JD (2011) Modulatory effects of theta burst stimulation on cerebellar nonsomatic functions. Cerebellum 10(3):495–503

    Article  PubMed  Google Scholar 

  • Devinsky O, Morrell MJ, Vogt BA (1995) Contributions of anterior cingulate cortex to behaviour. Brain J Neurol 118(Pt 1):279–306

    Article  Google Scholar 

  • Dietrichs E, Haines DE, Røste GK, Røste LS (1994) Hypothalamocerebellar and cerebellohypothalamic projections–circuits for regulating nonsomatic cerebellar activity? Histol Histopathol 9(3):603–604

    PubMed  CAS  Google Scholar 

  • Eccles JC, Ito M, Szentagothai J (1967) The cerebellum as a neuronal machine. Springer., New York

    Google Scholar 

  • Evans KC, Banzett RB, Adams L, McKay L, Frackowiak RSJ, Corfield DR (2002) BOLD fMRI identifies limbic, paralimbic, and cerebellar activation during air hunger. J Neurophysiol 88(3):1500–1511

    PubMed  Google Scholar 

  • Fatemi SH, Laurence JA, Araghi-Niknam M, Stary JM, Schulz SC, Lee S, Gottesman II (2004) Glial fibrillary acidic protein is reduced in cerebellum of subjects with major depression, but not schizophrenia. Schizophr Res 69(2–3):317–323

    Article  PubMed  Google Scholar 

  • Glickstein M, May JG, Mercier BE (1985) Corticopontine projection in the macaque: the distribution of labeled cortical cells after large injections of horseradish peroxidase in the pontine nuclei. J Comp Neurol 235(3):343–359

    Article  PubMed  CAS  Google Scholar 

  • Greco CM, Navarro CS, Hunsaker MR, Maezawa I, Shuler JF, Tassone F, Delany M et al (2011) Neuropathologic features in the hippocampus and cerebellum of three older men with fragile X syndrome. Molecular Autism 2(1):2

    Article  PubMed  Google Scholar 

  • Gündel H, O’Connor MF, Littrell L, Fort C, Lane RD (2003) Functional neuroanatomy of grief: an FMRI study. Am J Psychiatry 160(11):1946–1953

    Article  PubMed  Google Scholar 

  • Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF, Menon V, Greicius MD (2009) Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci 29(26):8586–8594

    Article  PubMed  CAS  Google Scholar 

  • Haines DE, Dietrichs E (1984) An HRP study of hypothalamo-cerebellar and cerebello-hypothalamic connections in squirrel monkey (Saimiri sciureus). J Comp Neurol 229(4):559–575

    Article  PubMed  CAS  Google Scholar 

  • Haines DE, Dietrichs E, Mihailoff GA, McDonald EF (1997) The cerebellar-hypothalamic axis: basic circuits and clinical observations. Int Rev Neurobiol 41:83–107

    Article  PubMed  CAS  Google Scholar 

  • Heath RJ (1977) Modulation of emotion with a brain pacemaker. J Nerv Ment Dis 165:300–317

    Article  PubMed  CAS  Google Scholar 

  • Heath RG, Dempsey CW, Fontana CJ, Myers WA (1978) Cerebellar stimulation: effects on septal region, hippocampus, and amygdala of cats and rats. Biol Psychiatry 13:501–529

    PubMed  CAS  Google Scholar 

  • Heath RG, Franklin DE, Shraberg D (1979) Gross pathology of the cerebellum in patients diagnosed and treated as functional psychiatric disorders. J Nerv Ment Dis 167:585–592

    Article  PubMed  CAS  Google Scholar 

  • Heimer L, Van Hoesen GW, Trimble M, Zahm DS (2008) Anatomy of neuropsychiatry. Elsevier, San Diego

    Google Scholar 

  • Helmchen C, Mohr C, Erdmann C, Petersen D, Nitschke MF (2003) Differential cerebellar activation related to perceived pain intensity during noxious thermal stimulation in humans: a functional magnetic resonance imaging study. Neurosci Lett 335(3):202–206

    Article  PubMed  CAS  Google Scholar 

  • Hernáez-Goñi P, Tirapu-Ustárroz J, Iglesias-Fernández L, Luna-Lario P (2010) The role of the cerebellum in the regulation of affection, emotion and behavior (Article in Spanish). Rev Neurol 51(10):597–609

    PubMed  Google Scholar 

  • Hoover JE, Strick PL (1999) The organization of cerebellar and basal ganglia outputs to primary motor cortex as revealed by retrograde transneuronal transport of herpes simplex virus type 1. J Neurosci 19(4):1446–1463

    PubMed  CAS  Google Scholar 

  • Hopyan T, Laughlin S, Dennis M (2010) Emotions and their cognitive control in children with cerebellar tumors. J Int Neuropsychol Soc 16(6):1027–1038

    Article  PubMed  Google Scholar 

  • Ito M (1984) The modifiable neuronal network of the cerebellum. Jpn J Physiol 34(5):781–792

    Article  PubMed  CAS  Google Scholar 

  • Ito M (1993) Movement and thought: identical control mechanisms by the cerebellum. Trends in Neuroscience 16(11):448–450

    Article  CAS  Google Scholar 

  • Kates WR, Mostofsky SH, Zimmerman AW, Mazzocco MM, Landa R, Warsofsky IS, Kaufmann WE et al (1998) Neuroanatomical and neurocognitive differences in a pair of monozygous twins discordant for strictly defined autism. Ann Neurol 43(6):782–791

    Article  PubMed  CAS  Google Scholar 

  • Kelly RM, Strick PL (2003) Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci 23(23):8432–8444

    PubMed  CAS  Google Scholar 

  • Kish SJ, el-Awar M, Schut L, Leach L, Oscar-Berman M, Freedman M (1988) Cognitive deficits in olivopontocerebellar atrophy: implications for the cholinergic hypothesis of Alzheimer’s dementia. Ann Neurol 24(2):200–206

    Article  PubMed  CAS  Google Scholar 

  • Krienen FM, Buckner RL (2009) Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cereb Cortex 19(10):2485–2497

    Article  PubMed  Google Scholar 

  • Lange CG, James W (1922) The emotions, vol I. Williams Wilkins, Baltimore

    Google Scholar 

  • LeDoux JE (1996) The emotional brain. Simon and Schuster, New York

    Google Scholar 

  • Levisohn L, Cronin-Golomb A, Schmahmann JD (2000) Neuropsychological consequences of cerebellar tumour resection in children: cerebellar cognitive affective syndrome in a pediatric population. Brain 123(5):1041–1050

    Article  PubMed  Google Scholar 

  • Liu H, Mihailoff GA (1999) Hypothalamopontine projections in the rat: anterograde axonal transport studies utilizing light and electron microscopy. Anat Rec 255(4):428–451

    Article  PubMed  CAS  Google Scholar 

  • MacLean PD (1949) Psychosomatic disease and the “visceral brain”: recent developments bearing on the Papez theory of emotion. Psycho-som Med 11:338–353

    CAS  Google Scholar 

  • MacLean PD (1954) The limbic system and its hippocampal formation. J Neurosurg 11:29–44

    Article  PubMed  CAS  Google Scholar 

  • MacLean P (1969) The hypothalamus and emotional behavior. In: Haymaker W, Anderson E, Nauta WJH, Thomas CC (eds) The hypothalamus. Springfield, Thomas, pp 659–678

    Google Scholar 

  • Martner J (1975) Cerebellar influences on autonomic mechanisms. Act Physiol Scand 425(Suppl):1–42

    CAS  Google Scholar 

  • Mayberg HS, Liotti M, Brannan SK, McGinnis S, Mahurin RK, Jerabek PA, Silva JA et al (1999) Reciprocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness. Am J Psychiatry 156(5):675–682

    PubMed  CAS  Google Scholar 

  • Middleton FA, Strick PL (2001) Cerebellar projections to the prefrontal cortex of the primate. J Neurosci 21(2):700–712

    PubMed  CAS  Google Scholar 

  • Moulton EA, Elman I, Pendse G, Schmahmann J, Becerra L, Borsook D (2011) Aversion-related circuitry in the cerebellum: responses to noxious heat and unpleasant images. J Neurosci 31(10):3795–3804

    Article  PubMed  CAS  Google Scholar 

  • Mugnaini E, Floris A (1994) The unipolar brush cell: a neglected neuron of the mammalian cerebellar cortex. J Comp Neurol 339:174–180

    Article  PubMed  CAS  Google Scholar 

  • Nauta WJH (1958) Hippocampal projections and related neuronal path- ways to the mid-brain in the cat. Brain 81:319–340

    Article  PubMed  CAS  Google Scholar 

  • Nauta WJH (1986) Circuitous connections linking cerebral cortex, limbic system and corpus striatum. In: Doane BK, Livingston KE (eds) The limbic system: functional organization and clinical disorders. Raven, New York, pp 43–54

    Google Scholar 

  • Nauta WJH, Domesick VB (1976) Crossroads of limbic and striatal circuitry: hypothalamo-nigral connections. In: Livingston KE, Hornykiewicz O (eds) Limbic mechanisms. Plenum, New York, pp 75–93

    Google Scholar 

  • O’Reilly JX, Beckmann CF, Tomassini V et al (2010) Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb Cortex 20:953–965

    Article  PubMed  Google Scholar 

  • Onat F, Cavdar S (2003) Cerebellar connections: hypothalamus. Cerebellum 2(4):263–269

    Article  PubMed  Google Scholar 

  • Pandya DN, Yeterian EH (1985) Architecture and connections of cortical association areas. In: Peters A, Jones EG (eds) Cerebral cortex, vol 4. Plenum, New York, pp 3–61

    Google Scholar 

  • Papez JW (1937) A proposed mechanism of emotion. Arch Neurol Psychiat 38:725–744

    Google Scholar 

  • Parsons LM, Denton D, Egan G, McKinley M, Shade R, Lancaster J, Fox PT (2000) Neuroimaging evidence implicating cerebellum in support of sensory/cognitive processes associated with thirst. Proc Natl Acad Sci 97(5):2332–2336

    Article  PubMed  CAS  Google Scholar 

  • Parvizi J, Joseph JT, Press D, Schmahmann JD (2007) Pathological laughter and crying in patients with multiple system atrophy-cerebellar type. Mov Disord 22:798–803

    Article  PubMed  Google Scholar 

  • Paus T (2001) Primate anterior cingulate cortex: where motor control, drive and cognition interface. Nat Rev Neurosci 2(6):417–424

    Article  PubMed  CAS  Google Scholar 

  • Peng J, Liu J, Nie B, Li Y, Shan B, Wang G, Li K (2011) Cerebral and cerebellar gray matter reduction in first-episode patients with major depressive disorder: a voxel-based morphometry study. Eur J Radiol 80(2):395–399

    Article  PubMed  Google Scholar 

  • Percheron G, Francois C, Talbi B, Yelnik J, Fénelon G (1996) The primate motor thalamus. Brain Res Rev 22(2):93–181

    Article  PubMed  CAS  Google Scholar 

  • Ploghaus A, Tracey I, Gati JS, Clare S, Menon RS, Matthews PM, Rawlins JN (1999) Dissociating pain from its anticipation in the human brain. Science (New York, NY) 284(5422):1979–1981

    Article  CAS  Google Scholar 

  • Pollack IF, Polinko P, Albright AL, Towbin R, Fitz C (1995) Mutism and pseudobulbar symptoms after resection of posterior fossa tumors in children: incidence and pathophysiology. Neurosurgery 37(5):885–893

    Article  PubMed  CAS  Google Scholar 

  • Ramnani N (2006) The primate cortico-cerebellar system: anatomy and function. Nat Rev Neurosci 7(7):511–522

    Article  PubMed  CAS  Google Scholar 

  • Rapoport M, van Reekum R, Mayberg H (2000) The role of the cerebellum in cognition and behavior: a selective review. J Neuropsychiatry Clin Neurosci 12(2):193–198

    Article  PubMed  CAS  Google Scholar 

  • Reiman EM, Raichle ME, Robins E, Mintun MA, Fusselman MJ, Fox PT, Price JL et al (1989) Neuroanatomical correlates of a lactate-induced anxiety attack. Arch Gen Psychiatry 46(6):493–500

    Article  PubMed  CAS  Google Scholar 

  • Reis DJ, Doba N, Nathan MA (1973) Predatory attack, grooming and consummatory behaviors evoked by electrical stimulation of cat cerebellar nuclei. Science 182:845–847

    Article  PubMed  CAS  Google Scholar 

  • Sasaki K, Oka H, Matsuda Y, Shimono T, Mizuno N (1975) Electrophysiological studies of the projections from the parietal association area to the cerebellar cortex. Experimental brain research. Experimentelle hirnforschung. Expérimentation Cérébrale 23(1):91–102

    PubMed  CAS  Google Scholar 

  • Schilling K, Oberdick J, Rossi F, Baader SL (2008) Besides Purkinje cells and granule neurons: an appraisal of the cell biology of the interneurons of the cerebellar cortex. Histochem Cell Biol 130(4):601–615

    Article  PubMed  CAS  Google Scholar 

  • Schmahmann JD (1991) An emerging concept. The cerebellar contribution to higher function. Arch Neurol 48(11):1178–1187

    Article  PubMed  CAS  Google Scholar 

  • Schmahmann JD (1996) From movement to thought: anatomic substrates of the cerebellar contribution to cognitive processing. Hum Brain Mapp 4(3):174–198

    Article  PubMed  CAS  Google Scholar 

  • Schmahmann JD (1997) Rediscovery of an early concept. In: Schmahmann JD (ed) The cerebellum and cognition, vol 41, International review of neurobiology. Academic, San Diego

    Google Scholar 

  • Schmahmann JD (2000) The role of the cerebellum in affect and psychosis. J Neurolinguist 13:189–214

    Article  Google Scholar 

  • Schmahmann JD (2001) The cerebellar cognitive affective syndrome: clinical correlations of the dysmetria of thought hypothesis. Int Rev Psychiatry 13:313–322

    Article  Google Scholar 

  • Schmahmann JD (2004) Disorders of the cerebellum: Ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci 16(3):367–378

    Article  PubMed  Google Scholar 

  • Schmahmann JD (2010) The role of the cerebellum in cognition and emotion: personal reflections since 1982 on the dysmetria of thought hypothesis, and its historical evolution from theory to therapy. Neuropsychol Rev 20(3):236–260

    Article  PubMed  Google Scholar 

  • Schmahmann JD, Pandya DN (1989) Anatomical Investigation of projections to the basis pontis from posterior parietal association cortices in rhesus monkey. J Comp Neurol 289:53–73

    Article  PubMed  CAS  Google Scholar 

  • Schmahmann JD, Pandya DN (1991) Projections to the basis pontis from the superior temporal sulcus and superior temporal region in the rhesus monkey. J Comp Neurol 308(2):224–248

    Article  PubMed  CAS  Google Scholar 

  • Schmahmann JD, Pandya DN (1992) Course of the fiber pathways to pons from parasensory association areas in the rhesus monkey. J Comp Neurol 326(2):159–179

    Article  PubMed  CAS  Google Scholar 

  • Schmahmann JD, Pandya DN (1993) Prelunate, occipitotemporal, and parahippocampal projections to the basis pontis in rhesus monkey. J Comp Neurol 337(1):94–112

    Article  PubMed  CAS  Google Scholar 

  • Schmahmann JD, Pandya DN (1995) Prefrontal cortex projections to the basilar pons: implications for the cerebellar contribution to higher function. Neurosci Lett 199:175–178

    Article  PubMed  CAS  Google Scholar 

  • Schmahmann JD, Pandya DN (1997) Anatomic organization of the basilar pontine projections from prefrontal cortices in rhesus monkey. J Neurosci 17(1):438–458

    PubMed  CAS  Google Scholar 

  • Schmahmann JD, Sherman JC (1997) Cerebellar cognitive affective syndrome. In: Schmahmann JD (ed) The cerebellum and cognition. Academic, San Diego. Inter Rev Neurobiol 41:433–440

    Google Scholar 

  • Schmahmann JD, Sherman JC (1998) The cerebellar cognitive affective syndrome. Brain 121(4):561–579

    Article  PubMed  Google Scholar 

  • Schmahmann JD, Weilburg JB, Sherman JC (2007) The neuropsychiatry of the cerebellum - insights from the clinic. Cerebellum 6(3):254–267

    Article  PubMed  Google Scholar 

  • Schreiner L, Kling A (1953) Behavioral changes following rhinencephalic injury in cat. J Neurophysiol 16:643–659

    PubMed  CAS  Google Scholar 

  • Schutter DJ, van Honk J (2005) The cerebellum on the rise in human emotion. Cerebellum 4(4):290–294

    Article  PubMed  Google Scholar 

  • Singer T, Seymour B, O’Doherty J, Kaube H, Dolan RJ, Frith CD (2004) Empathy for pain involves the affective but not sensory components of pain. Science (New York, NY) 303(5661):1157–1162

    Article  CAS  Google Scholar 

  • Snider R, Eldred E (1951) Electro-anatomical studies on cerebro-cerebellar connections in the cat. J Comp Neurol 95(10):1–16

    Article  PubMed  CAS  Google Scholar 

  • Snider RS, Maiti A (1975) Septal afterdischarges and their modification by the cerebellum. Exp Neurol 49(2):529–539

    Article  PubMed  CAS  Google Scholar 

  • Stoodley CJ (2011) The cerebellum and cognition: Evidence from functional imaging studies. Cerebellum [Epub ahead of print]

    Google Scholar 

  • Stoodley CJ, Schmahmann JD (2009) Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage 44:489–501

    Article  PubMed  Google Scholar 

  • Stoodley CJ, Valera EM, Schmahmann JD (2010) An fMRI study of intra-individual functional topography in the human cerebellum. Behav Neurol 23(1–2):65–79

    PubMed  Google Scholar 

  • Stoodley CJ, Valera EM, Schmahmann JD (2012) Functional topography of the cerebellum for motor and cognitive tasks: an fMRI study. Neuroimage 59(2):1560–1570. Epub 2011 Aug 31.

    Google Scholar 

  • Strick PL, Dum RP, Fiez JA (2009) Cerebellum and nonmotor function. Annu Rev Neurosci 32:413–434

    Article  PubMed  CAS  Google Scholar 

  • Supple WF (1993) Hypothalamic modulation of Purkinje cell activity in the anterior cerebellar vermis. Neuroreport 4(7):979–982

    Article  PubMed  Google Scholar 

  • Tavano A, Grasso R, Gagliardi C, Triulzi F, Bresolin N, Fabbro F, Borgatti R (2007) Disorders of cognitive and affective development in cerebellar malformations. Brain 130(Pt 10):2646–2660

    Article  PubMed  Google Scholar 

  • Vilensky JA, van Hoesen GW (1981) Corticopontine projections from the cingulate cortex in the rhesus monkey. Brain Res 205(2):391–395

    Article  PubMed  CAS  Google Scholar 

  • Wang T, Yu QX, Wang JJ (1994) Effects of stimulating lateral hypothalamic area and ventromedial nucleus of hypothalamus on cerebellar cortical neuronal activity in the cat. Chin J Physiol Sci 10:17–25

    CAS  Google Scholar 

  • Watson TC, Jones MW, Apps R (2009) Electrophysiological mapping of novel prefrontal-cerebellar pathways. Front Integr Neurosci 3:18

    Article  PubMed  Google Scholar 

  • Yip J, Soghomonian JJ, Blatt GJ (2007) Decreased GAD67 mRNA levels in cerebellar Purkinje cells in autism: pathophysiological implications. Acta Neuropath 113:559–568

    Article  PubMed  CAS  Google Scholar 

  • Yip J, Soghomonian JJ, Blatt GJ (2008) Increased GAD67 mRNA expression in cerebellar interneurons in autism: implications for Purkinje cell dysfunction. J Neurosci Res 86:525–530

    Article  PubMed  CAS  Google Scholar 

  • Yip J, Soghomonian JJ, Blatt GJ (2009) Decreased GAD65 mRNA levels in select subpopulations of neurons in the cerebellar dentate nuclei in autism: an in situ hybridization study. Autism Res 2:50–59

    Article  PubMed  Google Scholar 

  • Zhu JN, Yung WH, Chow BK, Chan Y, Wang JJ (2006) The cerebellarhypothalamic circuits: potential pathways underlying cerebellar involvement in somatic-visceral integration. Brain Res Rev 52:93–106

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Supported in part by the Sidney R. Baer Jr., Birmingham, and MINDlink Foundations (JDS), Eunice Kennedy Shriver National Institute of Child Health and Human Development 5R01HD039459-06A1, and The Hussman Foundation (GJB). The assistance of Jason MacMore and Caitlin Clancy is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gene J. Blatt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Blatt, G.J., Oblak, A.L., Schmahmann, J.D. (2013). Cerebellar Connections with Limbic Circuits: Anatomy and Functional Implications. In: Manto, M., Schmahmann, J.D., Rossi, F., Gruol, D.L., Koibuchi, N. (eds) Handbook of the Cerebellum and Cerebellar Disorders. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1333-8_22

Download citation

Publish with us

Policies and ethics