Proneural Genes and Cerebellar Neurogenesis in the Ventricular Zone and Upper Rhombic Lip

  • G. Giacomo Consalez
  • Marta Florio
  • Luca Massimino
  • Laura Croci
Reference work entry


The cerebellar primordium arises between embryonic days 8.5 and 9.5 from dorsal rhombomere 1, adjacent to the fourth ventricle. Cerebellar patterning requires the concerted action of morphogens secreted by the rhombic lip and roof plate, and leads to the formation of two main neurogenetic centers, the upper rhombic lip and ventricular zone, from which glutamatergic and GABAergic neurons arise, respectively. These territories contain gene expression microdomains that are partially overlapping and, among others, express proneural genes. This gene family is tightly conserved in evolution and encodes basic helix-loop-helix transcription factors implicated in many neurogenetic events, ranging from cell-fate specification to terminal differentiation of a variety of neuronal types across the embryonic nervous system. The present paper deals with the established or suggested roles of proneural genes in cerebellar neurogenesis. Of the proneural genes examined in this chapter, Atoh1 plays a quintessential role in the specification and development of granule cells and other cerebellar glutamatergic neurons. Besides playing key roles at early stages in these early developmental events, Atoh1 is a key player in the clonal expansion of GC progenitors of the external granule layer. NeuroD, formerly regarded as a proneural gene, acts as a master gene in granule cell differentiation, survival, and dendrite formation. Ascl1 participates in GABA interneuron and cerebellar nuclei neurons generation, and suppresses astrogliogenesis. Conversely, little is known to date about the role(s) of Neurog1 and Neurog2 in cerebellar neurogenesis, and a combination of loss- and gain-of-function studies is required to elucidate their role, if any, in cerebellar neurogenesis.


Proneural Gene Cerebellar Nucleus Neuron Unipolar Brush Cell External Granule Layer Cerebellar Primordium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Giacomo Consalez’ research has been supported by grants from Ataxia UK, Compagnia di San Paolo, the EU (EuroSyStem), and the Berlucchi Foundation. Further support has come from the Stayton family in honor of Dr. Chester A. Stayton of Indianapolis, Indiana, USA. This review is dedicated to his cherished memory.


  1. Abraham H, Tornoczky T, Kosztolanyi G, Seress L (2001) Cell formation in the cortical layers of the developing human cerebellum. Int J Dev Neurosci 19:53–62PubMedCrossRefGoogle Scholar
  2. Akazawa C, Ishibashi M, Shimizu C, Nakanishi S, Kageyama R (1995) A mammalian helix-loop-helix factor structurally related to the product of Drosophila proneural gene atonal is a positive transcriptional regulator expressed in the developing nervous system. J Biol Chem 270:8730–8738PubMedCrossRefGoogle Scholar
  3. Alder J, Lee KJ, Jessell TM, Hatten ME (1999) Generation of cerebellar granule neurons in vivo by transplantation of BMP-treated neural progenitor cells. Nat Neurosci 2:535–540PubMedCrossRefGoogle Scholar
  4. Artavanis-Tsakonas S, Rand MD, Lake RJ (1999) Notch signaling: cell fate control and signal integration in development. Science 284:770–776PubMedCrossRefGoogle Scholar
  5. Battiste J, Helms AW, Kim EJ, Savage TK, Lagace DC, Mandyam CD, Eisch AJ, Miyoshi G, Johnson JE (2007) Ascl1 defines sequentially generated lineage-restricted neuronal and oligodendrocyte precursor cells in the spinal cord. Development 134:285–293PubMedCrossRefGoogle Scholar
  6. Ben-Arie N, Bellen HJ, Armstrong DL, McCall AE, Gordadze PR, Guo Q, Matzuk MM, Zoghbi HY (1997) Math1 is essential for genesis of cerebellar granule neurons. Nature 390:169–172PubMedCrossRefGoogle Scholar
  7. Ben-Arie N, Hassan BA, Bermingham NA, Malicki DM, Armstrong D, Matzuk M, Bellen HJ, Zoghbi HY (2000) Functional conservation of atonal and Math1 in the CNS and PNS. Development 127:1039–1048PubMedGoogle Scholar
  8. Bermingham NA, Hassan BA, Wang VY, Fernandez M, Banfi S, Bellen HJ, Fritzsch B, Zoghbi HY (2001) Proprioceptor pathway development is dependent on Math1. Neuron 30:411–422PubMedCrossRefGoogle Scholar
  9. Blader P, Fischer N, Gradwohl G, Guillemot F, Strahle U (1997) The activity of neurogenin1 is controlled by local cues in the zebrafish embryo. Development 124:4557–4569PubMedGoogle Scholar
  10. Cajal S (1889) Sobre las fibras nerviosas de la capa granulosa del cerebelo. Revista Trimestral de Histolog a Normal y Patológica 3–4:107–118Google Scholar
  11. Campuzano S, Modolell J (1992) Patterning of the Drosophila nervous system: the achaete-scute gene complex. Trends Genet 8:202–208PubMedGoogle Scholar
  12. Casarosa S, Fode C, Guillemot F (1999) Mash1 regulates neurogenesis in the ventral telencephalon. Development 126:525–534PubMedGoogle Scholar
  13. Cau E, Gradwohl G, Fode C, Guillemot F (1997) Mash1 activates a cascade of bHLH regulators in olfactory neuron progenitors. Development 124:1611–1621PubMedGoogle Scholar
  14. Chen P, Johnson JE, Zoghbi HY, Segil N (2002) The role of Math1 in inner ear development: Uncoupling the establishment of the sensory primordium from hair cell fate determination. Development 129:2495–2505PubMedCrossRefGoogle Scholar
  15. Chien CT (1996) Neuronal type information encoded in the basic-helix-loop-helix domain of proneural genes. Proc Natl Acad Sci USA 93:13239–13244PubMedCrossRefGoogle Scholar
  16. Chizhikov VV, Millen KJ (2004) Control of roof plate development and signaling by Lmx1b in the caudal vertebrate CNS. J Neurosci 24:5694–5703PubMedCrossRefGoogle Scholar
  17. Chizhikov VV, Lindgren AG, Currle DS, Rose MF, Monuki ES, Millen KJ (2006) The roof plate regulates cerebellar cell-type specification and proliferation. Development 133:2793–2804PubMedCrossRefGoogle Scholar
  18. Crossley PH, Martinez S, Martin GR (1996) Midbrain development induced by FGF8 in the chick embryo. Nature 380:66–68PubMedCrossRefGoogle Scholar
  19. Dahmane N, Ruiz-i-Altaba A (1999) Sonic hedgehog regulates the growth and patterning of the cerebellum. Development 126:3089–3100PubMedGoogle Scholar
  20. Dalgard CL, Zhou Q, Lundell TG, Doughty ML (2011) Altered gene expression in the emerging cerebellar primordium of Neurog1 −/− mice. Brain Res 1388:12–21PubMedCrossRefGoogle Scholar
  21. Eberhart CG, Tihan T, Burger PC (2000) Nuclear localization and mutation of beta-catenin in medulloblastomas. J Neuropathol Exp Neurol 59:333–337PubMedGoogle Scholar
  22. Ebert PJ, Timmer JR, Nakada Y, Helms AW, Parab PB, Liu Y, Hunsaker TL, Johnson JE (2003) Zic1 represses Math1 expression via interactions with the Math1 enhancer and modulation of Math1 autoregulation. Development 130:1949–1959PubMedCrossRefGoogle Scholar
  23. Englund C, Kowalczyk T, Daza RA, Dagan A, Lau C, Rose MF, Hevner RF (2006) Unipolar brush cells of the cerebellum are produced in the rhombic lip and migrate through developing white matter. J Neurosci 26:9184–9195PubMedCrossRefGoogle Scholar
  24. Flora A, Klisch TJ, Schuster G, Zoghbi HY (2009) Deletion of Atoh1 Disrupts Sonic Hedgehog Signaling in the Developing Cerebellum and Prevents Medulloblastoma. Science 326:1424–1427PubMedCrossRefGoogle Scholar
  25. Fode C, Gradwohl G, Morin X, Dierich A, LeMeur M, Goridis C, Guillemot F (1998) The bHLH protein NEUROGENIN 2 is a determination factor for epibranchial placode-derived sensory neurons. Neuron 20:483–494PubMedCrossRefGoogle Scholar
  26. Fode C, Ma Q, Casarosa S, Ang SL, Anderson DJ, Guillemot F (2000) A role for neural determination genes in specifying the dorsoventral identity of telencephalic neurons. Genes Dev 14:67–80PubMedGoogle Scholar
  27. Gaudilliere B, Konishi Y, de la Iglesia N, Yao G, Bonni A (2004) A CaMKII-NeuroD signaling pathway specifies dendritic morphogenesis. Neuron 41:229–241PubMedCrossRefGoogle Scholar
  28. Gazit R, Krizhanovsky V, Ben-Arie N (2004) Math1 controls cerebellar granule cell differentiation by regulating multiple components of the Notch signaling pathway. Development 131:903–913PubMedCrossRefGoogle Scholar
  29. Ghysen A, Dambly-Chaudiere C (1988) From DNA to form: the achaete-scute complex. Genes Dev 2:495–501PubMedCrossRefGoogle Scholar
  30. Goridis C, Brunet JF (1999) Transcriptional control of neurotransmitter phenotype. Curr Opin Neurobiol 9:47–53PubMedCrossRefGoogle Scholar
  31. Goulding SE, zur Lage P, Jarman AP (2000) amos, a proneural gene for Drosophila olfactory sense organs that is regulated by lozenge. Neuron 25:69–78PubMedCrossRefGoogle Scholar
  32. Gowan K, Helms AW, Hunsaker TL, Collisson T, Ebert PJ, Odom R, Johnson JE (2001) Crossinhibitory activities of Ngn1 and Math1 allow specification of distinct dorsal interneurons. Neuron 31:219–232PubMedCrossRefGoogle Scholar
  33. Grimaldi P, Parras C, Guillemot F, Rossi F, Wassef M (2009) Origins and control of the differentiation of inhibitory interneurons and glia in the cerebellum. Dev Biol 328:422–433PubMedCrossRefGoogle Scholar
  34. Harris J, Moreno S, Shaw G, Mugnaini E (1993) Unusual neurofilament composition in cerebellar unipolar brush neurons. J Neurocytol 22:1039–1059PubMedCrossRefGoogle Scholar
  35. Hatten ME, Heintz N (1995) Mechanisms of neural patterning and specification in the developing cerebellum. Ann Rev Neurosci 18:385–408PubMedCrossRefGoogle Scholar
  36. Helms AW, Gowan K, Abney A, Savage T, Johnson JE (2001) Overexpression of MATH1 disrupts the coordination of neural differentiation in cerebellum development. Mol Cell Neurosci 17:671–682PubMedCrossRefGoogle Scholar
  37. Helms AW, Battiste J, Henke RM, Nakada Y, Simplicio N, Guillemot F, Johnson JE (2005) Sequential roles for Mash1 and Ngn2 in the generation of dorsal spinal cord interneurons. Development 132:2709–2719PubMedCrossRefGoogle Scholar
  38. Herrup K, Kuemerle B (1997) The compartmentalization of the cerebellum [Review]. Annu Rev Neurosci 20:61–90PubMedCrossRefGoogle Scholar
  39. Hoshino M, Nakamura S, Mori K, Kawauchi T, Terao M, Nishimura YV, Fukuda A, Fuse T, Matsuo N, Sone M, Watanabe M, Bito H, Terashima T, Wright CV, Kawaguchi Y, Nakao K, Nabeshima Y (2005) Ptf1a, a bHLH transcriptional gene, defines GABAergic neuronal fates in cerebellum. Neuron 47:201–213PubMedCrossRefGoogle Scholar
  40. Jan Y, Jan L (1994) Neuronal cell fate specification in Drosophila. Curr Opin Neurobiol 4:8–13PubMedCrossRefGoogle Scholar
  41. Jensen P, Smeyne R, Goldowitz D (2004) Analysis of cerebellar development in math1 null embryos and chimeras. J Neurosci 24:2202–2211PubMedCrossRefGoogle Scholar
  42. Joyner AL, Zervas M (2006) Genetic inducible fate mapping in mouse: establishing genetic lineages and defining genetic neuroanatomy in the nervous system. Dev Dyn 235:2376–2385PubMedCrossRefGoogle Scholar
  43. Kanekar S, Perron M, Dorsky R, Harris WA, Jan LY, Jan YN, Vetter ML (1997) Xath5 participates in a network of bHLH genes in the developing Xenopus retina. Neuron 19:981–994PubMedCrossRefGoogle Scholar
  44. Kim P (1997) XATH-1, a vertebrate homolog of Drosophila atonal, induces a neuronal differentiation within ectodermal progenitors. Dev Biol 187:1–12PubMedCrossRefGoogle Scholar
  45. Kim EJ, Battiste J, Nakagawa Y, Johnson JE (2008) Ascl1 (Mash1) lineage cells contribute to discrete cell populations in CNS architecture. Mol Cell Neurosci 38:595–606PubMedCrossRefGoogle Scholar
  46. Kim EJ, Hori K, Wyckoff A, Dickel LK, Koundakjian EJ, Goodrich LV, Johnson JE (2011) Spatiotemporal fate map of neurogenin1 (Neurog1) lineages in the mouse central nervous system. J Comp Neurol 519:1355–1370PubMedCrossRefGoogle Scholar
  47. Ledent V, Vervoort M (2001) The basic helix-loop-helix protein family: comparative genomics and phylogenetic analysis. Genome Res 11:754–770PubMedCrossRefGoogle Scholar
  48. Lee JE (1997) Basic helix-loop-helix genes in neural development. Curr Opin Neurobiol 7:13–20PubMedCrossRefGoogle Scholar
  49. Lee J, Hollenberg S, Snider L, Turner D, Lipnick N, Weintraub H (1995) Conversion of Xenopus ectoderm into neurons by NeuroD, a basic helix-loop-helix protein. Science 268:836–844PubMedCrossRefGoogle Scholar
  50. Lee JK, Cho JH, Hwang WS, Lee YD, Reu DS, Suh-Kim H (2000) Expression of neuroD/BETA2 in mitotic and postmitotic neuronal cells during the development of nervous system. Dev Dyn 217:361–367PubMedCrossRefGoogle Scholar
  51. Lewis PM, Gritli-Linde A, Smeyne R, Kottmann A, McMahon AP (2004) Sonic hedgehog signaling is required for expansion of granule neuron precursors and patterning of the mouse cerebellum. Dev Biol 270:393–410PubMedCrossRefGoogle Scholar
  52. Liu A, Joyner AL (2001) Early anterior/posterior patterning of the midbrain and cerebellum. Annu Rev Neurosci 24:869–896PubMedCrossRefGoogle Scholar
  53. Lundell TG, Zhou Q, Doughty ML (2009) Neurogenin1 expression in cell lineages of the cerebellar cortex in embryonic and postnatal mice. Dev Dyn 238:3310–3325PubMedCrossRefGoogle Scholar
  54. Ma Q, Kintner C, Anderson DJ (1996) Identification of neurogenin, a vertebrate neuronal determination gene. Cell 87:43–52PubMedCrossRefGoogle Scholar
  55. Ma Q, Chen Z, del Barco BI, de la Pompa JL, Anderson DJ (1998) neurogenin1 is essential for the determination of neuronal precursors for proximal cranial sensory ganglia. Neuron 20:469–482PubMedCrossRefGoogle Scholar
  56. Ma Q, Fode C, Guillemot F, Anderson DJ (1999) Neurogenin1 and neurogenin2 control two distinct waves of neurogenesis in developing dorsal root ganglia. Genes Dev 13:1717–1728PubMedCrossRefGoogle Scholar
  57. Machold R, Fishell G (2005) Math1 is expressed in temporally discrete pools of cerebellar rhombic-lip neural progenitors. Neuron 48:17–24PubMedCrossRefGoogle Scholar
  58. Marin F, Puelles L (1994) Patterning of the embryonic avian midbrain after experimental inversions: a polarizing activity from the isthmus. Dev Biol 163:19–37PubMedCrossRefGoogle Scholar
  59. Marin F, Puelles L (1995) Morphological fate of rhombomeres in quail/chick chimeras: a segmental analysis of hindbrain nuclei. Eur J Neurosci 7:1714–1738PubMedCrossRefGoogle Scholar
  60. Martinez S, Alvarado-Mallart RM (1987) Rostral cerebellum originates from the caudal portion of the so-called mesencephalic vesicle: a study using quail/chick chimeras. Eur J Neurosci 1:549–560CrossRefGoogle Scholar
  61. Martinez S, Crossley PH, Cobos I, Rubenstein JL, Martin GR (1999) FGF8 induces formation of an ectopic isthmic organizer and isthmocerebellar development via a repressive effect on Otx2 expression. Development 126:1189–1200PubMedGoogle Scholar
  62. Miyata T, Maeda T, Lee JE (1999) NeuroD is required for differentiation of the granule cells in the cerebellum and hippocampus. Genes Dev 13:1647–1652PubMedCrossRefGoogle Scholar
  63. Mugnaini E, Floris A (1994) The unipolar brush cell: a neglected neuron of the mammalian cerebellar cortex. J Comp Neurol 339:174–180PubMedCrossRefGoogle Scholar
  64. Novak A, Guo C, Yang W, Nagy A, Lobe CG (2000) Genesis 28(3–4):147–155PubMedCrossRefGoogle Scholar
  65. Nunzi MG, Birnstiel S, Bhattacharyya BJ, Slater NT, Mugnaini E (2001) Unipolar brush cells form a glutamatergic projection system within the mouse cerebellar cortex. J Comp Neurol 434:329–341PubMedCrossRefGoogle Scholar
  66. Olson EC, Schinder AF, Dantzker JL, Marcus EA, Spitzer NC, Harris WA (1998) Properties of ectopic neurons induced by Xenopus neurogenin1 misexpression. Mol Cell Neurosci 12:281–299PubMedCrossRefGoogle Scholar
  67. Parras C (1996) Control of neural precursor specification by proneural proteins in the CNS of Drosophila. EMBO J 15:6394–6399PubMedGoogle Scholar
  68. Pascual M, Abasolo I, Mingorance-Le Meur A, Martinez A, Del Rio JA, Wright CV, Real FX, Soriano E (2007) Cerebellar GABAergic progenitors adopt an external granule cell-like phenotype in the absence of Ptf1a transcription factor expression. Proc Natl Acad Sci USA 104:5193–5198PubMedCrossRefGoogle Scholar
  69. Paxinos G (1995) The rat nervous system. Academic, San DiegoGoogle Scholar
  70. Perez SE, Rebelo S, Anderson DJ (1999) Early specification of sensory neuron fate revealed by expression and function of neurogenins in the chick embryo. Development 126:1715–1728PubMedGoogle Scholar
  71. Pomeroy SL, Tamayo P, Gaasenbeek M, Sturla LM, Angelo M, McLaughlin ME, Kim JY, Goumnerova LC, Black PM, Lau C, Allen JC, Zagzag D, Olson JM, Curran T, Wetmore C, Biegel JA, Poggio T, Mukherjee S, Rifkin R, Califano A, Stolovitzky G, Louis DN, Mesirov JP, Lander ES, Golub TR (2002) Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415:436–442PubMedCrossRefGoogle Scholar
  72. Rodriguez I (1990) Competence to develop sensory organs is temporally and spatially regulated in Drosophila epidermal primordia. EMBO J 9:3583–3592PubMedGoogle Scholar
  73. Salsano E, Pollo B, Eoli M, Giordana MT, Finocchiaro G (2004) Expression of MATH1, a marker of cerebellar granule cell progenitors, identifies different medulloblastoma sub-types. Neurosci Lett 370:180–185PubMedCrossRefGoogle Scholar
  74. Salsano E, Croci L, Maderna E, Lupo L, Pollo B, Giordana MT, Consalez G, Finocchiaro G (2007) Expression of the neurogenic basic helix-loop-helix transcription factor NEUROG1 identifies a subgroup of medulloblastomas not expressing ATOH1. Neuro Oncol 9:298–307PubMedCrossRefGoogle Scholar
  75. Schaper A (1897) Die frühsten differenzierungsvorgänge im centralnervensystem. Arch Entw Mech Org 5:81–132Google Scholar
  76. Schmahmann JD (2004) Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci 16:367–378PubMedCrossRefGoogle Scholar
  77. Schuurmans C, Armant O, Nieto M, Stenman JM, Britz O, Klenin N, Brown C, Langevin LM, Seibt J, Tang H, Cunningham JM, Dyck R, Walsh C, Campbell K, Polleux F, Guillemot F (2004) Sequential phases of cortical specification involve Neurogenin-dependent and -independent pathways. EMBO J 23:2892–2902PubMedCrossRefGoogle Scholar
  78. Simionato E, Ledent V, Richards G, Thomas-Chollier M, Kerner P, Coornaert D, Degnan BM, Vervoort M (2007) Origin and diversification of the basic helix-loop-helix gene family in metazoans: insights from comparative genomics. BMC Evol Biol 7:33PubMedCrossRefGoogle Scholar
  79. Skeath JB, Doe CQ (1996) The achaete-scute complex proneural genes contribute to neural precursor specification in the Drosophila CNS. Curr Biol 6:1146–1152PubMedCrossRefGoogle Scholar
  80. Smeyne RJ, Chu T, Lewin A, Bian F, SC S, Kunsch C, Lira SA, Oberdick J (1995) Local control of granule cell generation by cerebellar Purkinje cells. Mol Cell Neurosci 6:230–251PubMedCrossRefGoogle Scholar
  81. Soriano P (1999) Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 21:70–71PubMedCrossRefGoogle Scholar
  82. Srinivas S, Watanabe T, Lin CS, William CM, Tanabe Y, Jessell TM, Costantini F (2001) Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev Biol 1:4PubMedCrossRefGoogle Scholar
  83. Thompson MC, Fuller C, Hogg TL, Dalton J, Finkelstein D, Lau CC, Chintagumpala M, Adesina A, Ashley DM, Kellie SJ, Taylor MD, Curran T, Gajjar A, Gilbertson RJ (2006) Genomics identifies medulloblastoma subgroups that are enriched for specific genetic alterations. J Clin Oncol 24:1924–1931PubMedCrossRefGoogle Scholar
  84. Villavicencio EH, Walterhouse DO, Iannaccone PM (2000) The sonic hedgehog-patched-gli pathway in human development and disease. Am J Hum Genet 67:1047–1054PubMedGoogle Scholar
  85. Vue TY, Aaker J, Taniguchi A, Kazemzadeh C, Skidmore JM, Martin DM, Martin JF, Treier M, Nakagawa Y (2007) Characterization of progenitor domains in the developing mouse thalamus. J Comp Neurol 505:73–91PubMedCrossRefGoogle Scholar
  86. Wallace VA (1999) Purkinje-cell-derived Sonic hedgehog regulates granule neuron precursor cell proliferation in the developing mouse cerebellum. Curr Biol 9:445–448PubMedCrossRefGoogle Scholar
  87. Wang SW (2001) Requirement for math5 in the development of retinal ganglion cells. Genes Dev 15:24–29PubMedCrossRefGoogle Scholar
  88. Wang VY, Rose MF, Zoghbi HY (2005) Math1 expression redefines the rhombic lip derivatives and reveals novel lineages within the brainstem and cerebellum. Neuron 48:31–43PubMedCrossRefGoogle Scholar
  89. Wassarman KM, Lewandoski M, Campbell K, Joyner AL, Rubenstein JL, Martinez S, Martin GR (1997) Specification of the anterior hindbrain and establishment of a normal mid/hindbrain organizer is dependent on Gbx2 gene function. Development 124:2923–2934PubMedGoogle Scholar
  90. Wechsler-Reya RJ, Scott MP (1999) Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron 22:103–114PubMedCrossRefGoogle Scholar
  91. Yun K, Fischman S, Johnson J, Hrabe de Angelis M, Weinmaster G, Rubenstein JL (2002) Modulation of the notch signaling by Mash1 and Dlx1/2 regulates sequential specification and differentiation of progenitor cell types in the subcortical telencephalon. Development 129:5029–5040PubMedGoogle Scholar
  92. Zhao Y, Kwan K-M, Mailloux C, Lee W-K, Grinberg A, Wurst W, Behringer R, Westphal H (2007) LIM-homeodomain proteins Lhx1 and Lhx5, and their cofactors Ldb1, control Purkinje cell differentiation in the developing cerebellum. Proc Natl Acad Sci USA 104:13182–13186PubMedCrossRefGoogle Scholar
  93. Zhao H, Ayrault O, Zindy F, Kim JH, Roussel MF (2008) Post-transcriptional down-regulation of Atoh1/Math1 by bone morphogenic proteins suppresses medulloblastoma development. Genes Dev 22:722–727PubMedCrossRefGoogle Scholar
  94. Zordan P, Croci L, Hawkes R, Consalez GG (2008) Comparative analysis of proneural gene expression in the embryonic cerebellum. Dev Dyn 237:1726–1735PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • G. Giacomo Consalez
    • 1
  • Marta Florio
    • 1
  • Luca Massimino
    • 1
  • Laura Croci
    • 1
  1. 1.Division of NeuroscienceSan Raffaele Scientific InstituteMilanItaly

Personalised recommendations