Advertisement

Cerebellar Nuclei and the Inferior Olivary Nuclei: Organization and Connections

  • Jan Voogd
  • Yoshikazu Shinoda
  • Tom J. H. Ruigrok
  • Izumi Sugihara

Abstract

The cerebellar nuclei, together with certain vestibular nuclei, are the target of the axons of the Purkinje cells of the cerebellar cortex. Each of these nuclei receives a projection from a longitudinal Purkinje cell zone. Climbing fiber projections are organized according to the same zonal pattern. In this chapter, we will review the morphology and the circuitry of the cerebellar nuclei and the inferior olive and the recurrent pathways connecting them.

Keywords

Vestibular Nucleus Cerebellar Nucleus Inferior Olive Climbing Fiber Fastigial Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ackerley R, Pardoe J, Apps R (2006) A novel site of synaptic relay for climbing fibre pathways relaying signals from the motor cortex to the cerebellar cortical C1 zone. J Physiol 57:503–518CrossRefGoogle Scholar
  2. Akaike T (1989) Electrophysiological analysis of the trigemino-olivo-cerebellar (crura I and II, lobulus simplex) projection in the rat. Brain Res 20:402–406CrossRefGoogle Scholar
  3. Akaike T (1992) The tectorecipient zone in the inferior olivary nucleus in the rat. J Comp Neurol 320:398–414PubMedCrossRefGoogle Scholar
  4. Alonso A, Blanco MJ, Paino CL, Rubia FJ (1986) Distribution of neurons in the main cuneate nucleus projecting to the inferior olive in the cat. Evidence that they differ from those directly projecting to the cerebellum. Neuroscience 18:671–683PubMedCrossRefGoogle Scholar
  5. Andersson G (1984) Demonstration of a cuneate relay in a cortico-olivo-cerebellar pathway in the cat. Neurosci Lett 46:47–52PubMedCrossRefGoogle Scholar
  6. Andersson G, Eriksson L (1981) Spinal, trigeminal, and cortical climbing fibre paths to the lateral vermis of the cerebellar anterior lobe in the cat. Exp Brain Res 44:71–81PubMedCrossRefGoogle Scholar
  7. Andersson G, Oscarsson O (1978) Climbing fiber microzones in cerebellar vermis and their projection to different groups of cells in the lateral vestibular nucleus. Exp Brain Res 32:565–579PubMedGoogle Scholar
  8. Angaut P, Brodal A (1967) The projection of the “vestibulocerebellum” onto the vestibular nuclei in the cat. Arch Ital Biol 105:441–479PubMedGoogle Scholar
  9. Armstrong DM, Schild RF (1979) Spino-olivary neurones in the lumbo-sacral cord of the cat demonstrated by retrograde transport of horseradish peroxidase. Brain Res 168:176–179PubMedCrossRefGoogle Scholar
  10. Armstrong DM, Harvey RJ, Schild RF (1973) Branching of inferior olivary axons to terminate in different folia, lobules or lobes of the cerebellum. Brain Res 54:365–371PubMedCrossRefGoogle Scholar
  11. Armstrong DM, Campbell MC, Edglet SA, Schild RF (1982) Investigations of the olivocerebellar and spino-olivary pathways. Exp Brain Res 6:195–232CrossRefGoogle Scholar
  12. Azizi SA, Woodward DJ (1987) Inferior olivary nuclear complex of the rat: morphology and comments on the principles of organization within the olivocerebellar system. J Comp Neurol 263:467–484PubMedCrossRefGoogle Scholar
  13. Bagnall MW, Zingg B, Sakatos A, Moghadam SH, Zeilhofer HU, du Lac S (2009) Glycinergic projection neurons of the cerebellum. J Neurosci 29:10104–10110PubMedCrossRefGoogle Scholar
  14. Barmack NH (2006) Inferior olive and oculomotor system. Prog Brain Res 151:269–291PubMedCrossRefGoogle Scholar
  15. Barmack NH, Fagerson M, Errico P (1993) Cholinergic projection to the dorsal cap of the inferior olive of the rat, rabbit, and monkey. J Comp Neurol 328:263–281PubMedCrossRefGoogle Scholar
  16. Barmack NH, Fredette BJ, Mugnaini E (1998) Parasolitary nucleus: a source of GABAergic vestibular information to the inferior olive of rat and rabbit. J Comp Neurol 392:352–372PubMedCrossRefGoogle Scholar
  17. Batton RR 3rd, Jayaraman A, Ruggiero D, Carpenter MB (1977) Fastigial efferent projections in the monkey: an autoradiographic study. J Comp Neurol 174:281–305PubMedCrossRefGoogle Scholar
  18. Beitz AJ (1976) The topographical organization of the olivo-dentate and dentato-olivary pathways in the cat. Brain Res 115:311–317PubMedCrossRefGoogle Scholar
  19. Bentivoglio M, Kuypers HGJM (1982) Divergent axon collaterals from rat cerebellar nuclei to diencephalon, mesencephalon, medulla oblongata and cervical cord. Exp Brain Res 46:339–356PubMedCrossRefGoogle Scholar
  20. Berkley KJ, Hand PJ (1978) Projections to the inferior olive of the cat. II. Comparisons of input from the gracile, cuneate and the spinal trigeminal nuclei. J Comp Neurol 180:253–264PubMedCrossRefGoogle Scholar
  21. Bertrand I, Marechal P (1930) Étude morphologique du complexe olivaire inférieur chez l’homme. Revue Neurol 53:705–736Google Scholar
  22. Bigaré F (1980) De efferente verbindingen van de cerebellaire schors van de kat. Thesis, Leiden UniversityGoogle Scholar
  23. Boesten AJ, Voogd J (1975) Projections of the dorsal column nuclei and the spinal cord on the inferior olive in the cat. J Comp Neurol 161:215–237PubMedCrossRefGoogle Scholar
  24. Borra E, Belmalih A, Gerbella M, Rozzi S, Luppino G (2010) Projections of the hand field of the macaque ventral premotor area F5 to the brainstem and spinal cord. J Comp Neurol 518:2570–2591PubMedGoogle Scholar
  25. Bowman JP, Sladek JR Jr (1973) Morphology of the inferior olivary complex of the rhesus monkey (Macaca mulatta). J Comp Neurol 152:299–316PubMedCrossRefGoogle Scholar
  26. Brodal A (1940) Untersuchungen über die Olivocerebellaren Lokalisation. Z Neurol 169:1053Google Scholar
  27. Brodal P, Brodal A (1981) The olivocerebellar projection in the monkey. Experimental studies with the method of retrograde tracing of horseradish peroxidase. J Comp Neurol 201:375–393PubMedCrossRefGoogle Scholar
  28. Brodal A, Kawamura K (1980) Olivocerebellar projection: a review. Adv Anat Embryol Cell Biol 64:1–137CrossRefGoogle Scholar
  29. Brodal A, Walberg F, Blackstad T (1950) Termination of spinal afferents to inferior olive in cat. J Neurophysiol 13:431–454PubMedGoogle Scholar
  30. Brown JT, Chan-Palay V, Palay SL (1977) A study of afferent input to the inferior olivary complex in the rat by retrograde axonal transport of horseradish peroxidase. J Comp Neurol 176:1–22PubMedCrossRefGoogle Scholar
  31. Buisseret-Delmas C (1982) An HRP study of the afferents to the inferior olive in cat. Arch Ital Biol 118:270–286Google Scholar
  32. Buisseret-Delmas C (1988) Sagittal organization of the olivocerebellonuclear pathway in the rat. I. Connections with the nucleus fastigii and the nucleus vestibularis lateralis. Neurosci Res 5:475–493PubMedCrossRefGoogle Scholar
  33. Buisseret-Delmas C (1989) Sagittal organization of the olivocerebellonuclear pathway in the rat. III. Connections with the nucleus dentatus. Neurosci Res 7:131–143PubMedCrossRefGoogle Scholar
  34. Buisseret-Delmas C, Angaut P (1993) The cerebellar olivo-corticonuclear connections in the rat. Prog Neurobiol 40:63–87PubMedCrossRefGoogle Scholar
  35. Buisseret-Delmas C, Angaut P, Compoint C, Diagne M, Buisseret P (1998) Brainstem efferents from the interface between the nucleus medialis and the nucleus interpositus in the rat. J Comp Neurol 402:264–275PubMedCrossRefGoogle Scholar
  36. Bull MS, Mitchell SK, Berkley KJ (1990) Convergent inputs to the inferior olive from the dorsal column nuclei and pretectum in the cat. Brain Res 525:1–10PubMedCrossRefGoogle Scholar
  37. Burman K, Darian-Smith C, Darian-Smith I (2000) Macaque red nucleus: origins of spinal and olivary projections and terminations of cortical inputs. J Comp Neurol 423:179–196PubMedCrossRefGoogle Scholar
  38. Cajal SRy (1972) Histologie du système nerveux de l’homme et des vertebrés, vol 2. Consejo Superior de Investigaciones Cientificas, MadridGoogle Scholar
  39. Campbell NC, Armstrong DM (1985) Origin in the medial accessory olive of climbing fibres to the x and lateral c1 zones of the cat cerebellum: a combined electrophysiological/WGA-HRP investigation. Exp Brain Res 58:520–531PubMedCrossRefGoogle Scholar
  40. Catsman-Berrevoets CE, Kuypers HJGM, Lemon RN (1979) Cells of origin of the cortical projections to magnocellular and parvocellular red nucleus and superior colliculus in cynomolgus monkey. An HRP study. Neurosci Lett 12:41–46CrossRefGoogle Scholar
  41. Chan-Palay V (1977) Cerebellar dentate nucleus: organization, cytology and transmitters. Springer, BerlinGoogle Scholar
  42. Chen S, Hillman DE (1993) Colocalization of neurotransmitters in the deep cerebellar nuclei. J Neurocytol 22:81–91PubMedCrossRefGoogle Scholar
  43. Clower DM, West RA, Lynch JC, Strick PL (2001) The inferior parietal lobule is the target of output from the superior colliculus, hippocampus, and cerebellum. J Neurosci 21:6283–6291PubMedGoogle Scholar
  44. Clower DM, Dum RP, Strick PL (2005) Basal ganglia and cerebellar inputs to ‘AIP’. Cereb Cortex 15(7):913–920PubMedCrossRefGoogle Scholar
  45. Cook JR, Wiesendanger M (1976) Input from trigeminal cutaneous afferents to neurones of the inferior olive in rats. Exp Brain Res 26:193–202PubMedCrossRefGoogle Scholar
  46. Courville J (1975) Distribution of olivocerebellar fibers demonstrated by a radioautographic method. Brain Res 95:253–263PubMedCrossRefGoogle Scholar
  47. Courville J, Cooper CW (1970) The cerebellar nuclei of Macaca mulatta: a morphological study. J Comp Neurol 140:241–254PubMedCrossRefGoogle Scholar
  48. Courville J, Faraco-Cantin F (1978) On the origin of the climbing fibers of the cerebellum. An experimental study in the cat with an autoradiographic tracing method. Neuroscience 3:797–809PubMedCrossRefGoogle Scholar
  49. Courville J, Faraco-Cantin F, Diakiw N (1974) A functionally important feature of the distribution of the olivo-cerebellar climbing fibers. Can J Physiol Pharmacol 52:1212–1217PubMedCrossRefGoogle Scholar
  50. Courville J, Faraco-Cantin F, Legendre A (1983a) Detailed organization of cerebello-olivary projections in the cat. An autoradiographic study. Arch Ital Biol 121:219–236PubMedGoogle Scholar
  51. Courville J, Faraco-Cantin F, Marcon L (1983b) Projections from the reticular formation of the medulla, the spinal trigeminal and lateral reticular nuclei to the inferior olive. Neuroscience 9:129–139PubMedCrossRefGoogle Scholar
  52. De Zeeuw CI, Wentzel P, Mugnaini E (1993) Fine structure of the dorsal cap of the inferior olive and its GABAergic and non-GABAergic input from the nucleus prepositus hypoglossi in rat and rabbit. J Comp Neurol 327:63–82PubMedCrossRefGoogle Scholar
  53. De Zeeuw CI, Gerrits NM, Voogd J, Leonard CS, Simpson JI (1994a) The rostral dorsal cap and ventrolateral outgrowth of the rabbit inferior olive receive a GABAergic input from dorsal group Y and the ventral dentate nucleus. J Comp Neurol 341:420–432PubMedCrossRefGoogle Scholar
  54. De Zeeuw CI, Wylie DR, DiGiorgi PL, Simpson JI (1994b) Projections of individual Purkinje cells of identified zones in the flocculus to the vestibular and cerebellar nuclei in the rabbit. J Comp Neurol 349:428–447PubMedCrossRefGoogle Scholar
  55. Demolé V (1927a) Structure et cnnexions des noyeaux denreles du cervelet. I. Schweiz Arch Neurol Psychiat 20:271–294Google Scholar
  56. Demolé V (1927b) Structure et connection des noyeaux denteles du cervelet. II. Schweiz Arch Neurol u Psychiat 21:73–1110Google Scholar
  57. Desclin JC (1974) Histological evidence supporting the inferior olive as the major source of cerebellar climbing fibers in the rat. Brain Res 77:365–384PubMedCrossRefGoogle Scholar
  58. Eccles JC, Llinas R, Sasaki K (1966) The excitatory synaptic action of climbing fibres on the Purkinje cells of the cerebellum. J Physiol 182:268–296PubMedGoogle Scholar
  59. Ekerot CF, Larson B (1979a) The dorsal spino-olivocerebellar system in the cat. I. Functional organization and termination in the anterior lobe. Exp Brain Res 36(2):201–217PubMedCrossRefGoogle Scholar
  60. Ekerot CF, Larson B (1979b) The dorsal spino-olivocerebellar system in the cat. II. Somatotopical organization. Exp Brain Res 36:219–232PubMedCrossRefGoogle Scholar
  61. Ekerot CF, Larson B (1982) Branching of olivary axons to innervate pairs of sagittal zones in the cerebellar anterior lobe of the cat. Exp Brain Res 48:185–198PubMedCrossRefGoogle Scholar
  62. Ekerot CF, Garwicz M, Schouenborg J (1991) The postsynaptic dorsal column pathway mediates cutaneous nociceptive information to cerebellar climbing fibres in the cat. J Physiol 441:275–284PubMedGoogle Scholar
  63. Faugier-Grimaud S, Ventre J (1989) Anatomic connections of inferior parietal cortex (area 7) with subcortical structures related to vestibulo-ocular function in a monkey (Macaca fascicularis). J Comp Neurol 280:1–14PubMedCrossRefGoogle Scholar
  64. Frankfurter A, Weber JT, Royce GJ, Strominger NL, Harting JK (1976) An autoradiographic analysis of the tecto-olivary projection in primates. Brain Res 118:245–257PubMedCrossRefGoogle Scholar
  65. Fujita H, Oh-Nishi A, Obayashi S, Sugihara I (2010) Organization of the marmoset cerebellum in three-dimensional space: lobulation, aldolase C compartmentalization and axonal projection. J Comp Neurol 518:1764–1791PubMedCrossRefGoogle Scholar
  66. Garwicz M (1997) Sagittal zonal organization of climbing fiber input to the cerebellar anterior lobe of the ferret. Exp Brain Res 117:389–398PubMedCrossRefGoogle Scholar
  67. Garwicz M, Ekerot CF (1994) Topographical organization of the cerebellar cortical projection to nucleus interpositus anterior in the cat. J Physiol 474:245–260PubMedGoogle Scholar
  68. Garwicz M, Ekerot CF, Schouenborg J (1992) Distribution of cutaneous nociceptive and tactile climbing fibre input to sagittal zones in cat cerebellar anterior lobe. Eur J Neurosci 4:289–295PubMedCrossRefGoogle Scholar
  69. Gellman R, Houk JC, Gibson AR (1983) Somatosensory properties of the inferior olive of the cat. J Comp Neurol 215:228–243PubMedCrossRefGoogle Scholar
  70. Gerrits NM, Voogd J (1982) The climbing fiber projection to the flocculus and adjacent paraflocculus in the cat. Neuroscience 7:2971–2991PubMedCrossRefGoogle Scholar
  71. Gerrits NM, Voogd J (1986) The nucleus reticularis tegmenti pontis and the adjacent rostral paramedian reticular formation: differential projections to the cerebellum and the caudal brain stem. Exp Brain Res 62:29–45PubMedCrossRefGoogle Scholar
  72. Gerrits NM, Voogd J, Magras IN (1985) Vestibular afferents of the inferior olive and the vestibulo-olivo-cerebellar climbing fiber pathway to the flocculus in the cat. Brain Res 332(2):325–336PubMedCrossRefGoogle Scholar
  73. Gibson AR, Horn KM, Pong M (2002) Inhibitory control of olivary discharge. Ann NY Acad Sci 978:219–231PubMedCrossRefGoogle Scholar
  74. Giolli RA, Blanks RH, Lui F (2006) The accessory optic system: basic organization with an update on connectivity, neurochemistry, and function. Prog Brain Res 151:407–440PubMedCrossRefGoogle Scholar
  75. Glickstein M, Strata P, Voogd J (2009) Cerebellum: history. Neuroscience 162:549–559PubMedCrossRefGoogle Scholar
  76. Goodman DC, Hallett RE, Welch RB (1963) Patterns of localization in the cerebellar corticonuclear projections of the albino rat. J Comp Neurol 121:51–67PubMedCrossRefGoogle Scholar
  77. Graybiel AM, Hartwieg EA (1974) Some afferent connections of the oculomotor complex in the cat: an experimental study with tracer techniques. Brain Res 81:543–551PubMedCrossRefGoogle Scholar
  78. Graybiel AM, Nauta HJ, Lasek RJ, Nauta WJ (1973) A cerebello-olivary pathway in the cat: an experimental study using autoradiographic tracing techniques. Brain Res 58:205–211PubMedCrossRefGoogle Scholar
  79. Groenewegen HJ, Voogd J (1977) The parasagittal zonation within the olivocerebellar projection. I. Climbing fiber distribution in the vermis of cat cerebellum. J Comp Neurol 174:417–488PubMedCrossRefGoogle Scholar
  80. Groenewegen HJ, Boesten AJ, Voogd J (1975) The dorsal column nuclear projections to the nucleus ventralis posterior lateralis thalami and the inferior olive in the cat: an autoradiographic study. J Comp Neurol 162:505–517PubMedCrossRefGoogle Scholar
  81. Groenewegen HJ, Voogd J, Freedman SL (1979) The parasagittal zonation within the olivocerebellar projection. II. Climbing fiber distribution in the intermediate and hemispheric parts of cat cerebellum. J Comp Neurol 183:551–601PubMedCrossRefGoogle Scholar
  82. Haines DE (1977) Cerebellar corticonuclear and corticiovetibular fibers of the flocculonodular lobe in a prosimian primate (Galago senegalensis). J Comp Neurol 174:607–630PubMedCrossRefGoogle Scholar
  83. Haines DE, Patrick GW, Satrulee P (1982) Organization of cerebellar corticonuclear fiber systems. Exp Brain Res 6:320–371CrossRefGoogle Scholar
  84. Harting JK (1977) Descending pathways from the superior colliculus: an autoradiographic analysis in the rhesus monkey (Macaca mulatta). J Comp Neurol 173:583–612PubMedCrossRefGoogle Scholar
  85. Hawkes R, Herrup K (1995) Aldolase C/zebrin II and the regionalization of the cerebellum. J Mol Neurosci 6:147–158PubMedCrossRefGoogle Scholar
  86. Hawkes R, Leclerc N (1986) Immunocytochemical demonstration of topographic ordering of Purkinje cell axon terminals in the fastigial nucleus of the rat. J Comp Neurol 244:481–491PubMedCrossRefGoogle Scholar
  87. Hawkes R, Leclerc N (1987) Antigenic map of the rat cerebellar cortex: the distribution of parasagittal bands as revealed by monoclonal anti-Purkinje cell antibody mapQ113. J Comp Neurol 256:29–41PubMedCrossRefGoogle Scholar
  88. Hess DT (1982) The tecto-olivo-cerebellar pathway in the rat. Brain Res 250:143–148PubMedCrossRefGoogle Scholar
  89. Hess DT, Voogd J (1986) Chemoarchitectonic zonation of the monkey cerebellum. Brain Res 369:383–387PubMedCrossRefGoogle Scholar
  90. Holmes G, Steward TG (1908) On the connections of the inferior olives with the cerebellum in man. Brain 31:125–137CrossRefGoogle Scholar
  91. Holstege G, Collewijn H (1982) The efferent connections of the nucleus of the optic tract and the superior colliculus in the rabbit. J Comp Neurol 209:139–175PubMedCrossRefGoogle Scholar
  92. Homma Y, Nonaka S, Matsuyama K, Mori S (1995) Fastigiofugal projection to the brainstem nuclei in the cat: an anterograde PHA-L tracing study. Neurosci Res 23:89–102PubMedGoogle Scholar
  93. Huerta MF, Harting JK (1984) Connectional organization of the superior colliculus. Trends Neurosci 7:286–289CrossRefGoogle Scholar
  94. Huerta MF, Kaas H (1990) Supplementary eye field as defined by intracortical microstimulation: connections in macaques. J Comp Neurol 293:299–330PubMedCrossRefGoogle Scholar
  95. Huerta MF, Frankfurter A, Harting JK (1983) Studies of the principal sensory and spinal trigeminal nuclei of the rat: projections to the superior colliculus, inferior olive and cerebellum. J Comp Neurol 220:147–167PubMedCrossRefGoogle Scholar
  96. Huerta MF, Krubitzer LA, Kaas JH (1986) Frontal eye field as defined by intracortical microstimulation in squirrel monkeys, owl monkeys, and macaque monkeys: I. Subcortical connections. J Comp Neurol 253:415–439PubMedCrossRefGoogle Scholar
  97. Huisman AM, Kuypers HG, Conde F, Keizer K (1983) Collaterals of rubrospinal neurons to the cerebellum in rat. A retrograde fluorescent double labeling study. Brain Res 264:181–196PubMedCrossRefGoogle Scholar
  98. Humphrey DR, Gold R, Reed DJ (1984) Sites, laminar and topographical origins of cortical projections to the major divisions of the red nucleus in the monkey. J Comp Neurol 225:75–94PubMedCrossRefGoogle Scholar
  99. Ito M (2012) The cerebellum. Brain for an implicit self. FT Press, Upper Saddle RiverGoogle Scholar
  100. Itoh K, Takada M, Yasui Y, Kudo M, Mizuno N (1983) Direct projections from the anterior pretectal nucleus to the dorsal accessory olive in the cat: an anterograde and retrograde WGA-HRP study. Brain Res 272:350–353PubMedCrossRefGoogle Scholar
  101. Jansen J, Brodal A (1940) Experimental studies on the intrinsic fibers of the cerebellum. II. The corticonuclear projection. J Comp Neurol 73:267–321CrossRefGoogle Scholar
  102. Jansen J, Brodal A (1942) Experimental studies on the intrinsic fibers of the cerebellum. III. Cortico-nuclear projection in the rabbit and the monkey. Norsk Vid Akad Avh 1 Math Nat Kl 3:1–50Google Scholar
  103. Jürgens U (1984) The efferent and afferent connections of the supplementary motor area. Brain Res 300:63–81PubMedCrossRefGoogle Scholar
  104. Kalil K (1979) Projections of the cerebellar and dorsal column nuclei upon the inferior olive in the rhesus monkey: an autoradiographic study. J Comp Neurol 188:43–62PubMedCrossRefGoogle Scholar
  105. Kawamura K, Onodera S (1984) Olivary projections from the pretectal region in the cat studied with horseradish peroxidase and tritiated amino acids axonal transport. Arch Ital Biol 122:155–168PubMedGoogle Scholar
  106. Kawamura S, Hattori S, Higo S, Matsuyama T (1982) The cerebellar projections to the superior colliculus and pretectum in the cat: an autoradiographic and horseradish peroxidase study. Neuroscience 7:1673–1689PubMedCrossRefGoogle Scholar
  107. Kievit J (1979) Cerebello-thalamische projecties en de afferente verbindingen naar de frontaalschors in de rhesusaap. Thesis, Erasmus University, RotterdamGoogle Scholar
  108. King JS, Martin GF, Bowman MH (1975) The direct spinal area of the inferior olivary nucleus: an electron microscopic study. Exp Brain Res 22:13–24PubMedCrossRefGoogle Scholar
  109. Kitao Y, Nakamura Y, Kudo M, Moriizumi T, Tokuno H (1989) The cerebral and cerebellar connections of pretecto-thalamic and pretecto-olivary neurons in the anterior pretectal nucleus of the cat. Brain Res 484:304–313PubMedCrossRefGoogle Scholar
  110. Kooy FH (1917) The inferior olive in vertebrates. Folia Neurobiol 10:205–369Google Scholar
  111. Kuypers HG, Lawrence DG (1967) Cortical projections to the red nucleus and the brain stem in the rhesus monkey. Brain Res 4(2):151–188PubMedCrossRefGoogle Scholar
  112. Langer T, Fuchs AF, Scudder CA, Chubb MC (1985) Afferents to the flocculus of the cerebellum in the rhesus macaque as revealed by retrograde transport of horseradish peroxidase. J Comp Neurol 235:1–25PubMedCrossRefGoogle Scholar
  113. Legendre A, Courville J (1986) Cerebellar nucleocortical projection with a survey of factors affecting the transport of radioactive tracers. J Comp Neurol 252:392–403PubMedCrossRefGoogle Scholar
  114. Leichnetz GR (1982) The medial accessory nucleus of Bechterew: a cell group within the anatomical limits of the rostral oculomotor complex receives a direct prefrontal projection in the monkey. J Comp Neurol 210:147–151PubMedCrossRefGoogle Scholar
  115. Leichnetz GR (2001) Connections of the medial posterior parietal cortex (area 7 m) in the monkey. Anat Rec 263:215–236PubMedCrossRefGoogle Scholar
  116. Leichnetz GR, Gonzalo-Ruiz A (1996) Prearcuate cortex in the cebus monkey has cortical and subcortical connections like the macaque frontal eye field and projects to fastigial-recipient oculomotor-related brainstem nuclei. Brain Res Bull 41:1–29PubMedCrossRefGoogle Scholar
  117. Leichnetz GR, Spencer RF, Smith DJ (1984) Cortical projections to nuclei adjacent to the oculomotor complex in the medial dien-mesencephalic tegmentum in the monkey. J Comp Neurol 228:359–387PubMedCrossRefGoogle Scholar
  118. Leto K, Carletti B, Williams IM, Magrassi L, Rossi F (2006) Different types of cerebellar GABAergic interneurons originate from a common pool of multipotent progenitor cells. J Neurosci 26:11682–11694PubMedCrossRefGoogle Scholar
  119. Loewy AD, Burton H (1978) Nuclei of the solitary tract: efferent projections to the lower brain stem and spinal cord of the cat. J Comp Neurol 181:421–449PubMedCrossRefGoogle Scholar
  120. Lynch JC, Tian JR (2006) Cortico-cortical networks and cortico-subcortical loops for the higher control of eye movements. Prog Brain Res 151:461–501PubMedCrossRefGoogle Scholar
  121. Lynch JC, Hoover JE, Strick PL (1994) Input to the primate frontal eye field from the substantia nigra, superior colliculus, and dentate nucleus demonstrated by transneuronal transport. Exp Brain Res 100:181–186PubMedCrossRefGoogle Scholar
  122. Marechal P (1934) L’olive bulbaire. Anatomie, ontogénèse, phylogenèse, physiologie et physiopathologie. Doin et Cie, ParisGoogle Scholar
  123. Marr D (1969) A theory of cerebellar cortex. J Physiol 202:437–470PubMedGoogle Scholar
  124. Martin GF, Culberson J, Laxson C, Linauts M, Panneton M, Tschimadia I (1980) Afferent connexions of the inferior olivary nucleus with preliminary notes on their development: studies using the North American opossum. In: Courville J, De Montigny C, Lamarre Y (eds) The inferior olivary nucleus. Raven, New YorkGoogle Scholar
  125. Matelli M, Luppino G (1996) Thalamic input to mesial and superior area 6 in the macaque monkey. J Comp Neurol 372:59–87PubMedCrossRefGoogle Scholar
  126. Matelli M, Luppino G, Fogassi L, Rizzolatti G (1989) Thalamic input to inferior area 6 and area 4 in the macaque monkey. J Comp Neurol 280:468–488PubMedCrossRefGoogle Scholar
  127. May PJ, Hartwich-Young R, Nelson J, Sparks DL, Porter JD (1990) Cerebellotectal pathways in the macaque: implications for collicular generation of saccades. Neuroscience 36(2):305–324PubMedCrossRefGoogle Scholar
  128. May PJ, Porter JD, Gamlin PD (1992) Interconnections between the primate cerebellum and midbrain near-response regions. J Comp Neurol 315(1):98–116PubMedCrossRefGoogle Scholar
  129. McCrea RA, Baker R (1985) Anatomical connections of the nucleus prepositus of the cat. J Comp Neurol 237:377–407PubMedCrossRefGoogle Scholar
  130. McCrea RA, Bishop GA, Kitai ST (1978) Morphological and electrophysiological characteristics of projection neurons in the nucleus interpositus of the cat cerebellum. J Comp Neurol 181:397–419PubMedCrossRefGoogle Scholar
  131. McCurdy ML, Gibson AR, Houk JC (1992) Spatial overlap of rubrospinal and corticospinal terminals with input to the inferior olive. Neuroimage 1:23–41PubMedCrossRefGoogle Scholar
  132. Mehler WR (1969) Some neurological species differences:a posteriori. Ann NY Acad Sci 167:424–468CrossRefGoogle Scholar
  133. Miyashita E, Tamai Y (1989) Subcortical connections of frontal ‘oculomotor’ areas in the cat. Brain Res 502:75–87PubMedCrossRefGoogle Scholar
  134. Mizuno N (1966) An experimental study of the spino-olivary fibers in the rabbit and the cat. J Comp Neurol 127:267–292PubMedCrossRefGoogle Scholar
  135. Molinari HH (1984) Ascending somatosensory projections to the dorsal accessory olive: an anatomical study in cats. J Comp Neurol 223:110–123PubMedCrossRefGoogle Scholar
  136. Molinari HH (1985) Ascending somatosensory projections to the medial accessory portion of the inferior olive: a retrograde study in cats. J Comp Neurol 232:523–533PubMedCrossRefGoogle Scholar
  137. Molinari HH, Starr KA (1989) Spino-olivary termination on spines in cat medial accessory olive. J Comp Neurol 288:254–262PubMedCrossRefGoogle Scholar
  138. Molinari HH, Starr KA, Sluyters RN (1991) Gracile projection to the cat medial accessory olive: ultrastructural termination patterns and convergence with spino-olivary projection. J Comp Neurol 309:363–374PubMedCrossRefGoogle Scholar
  139. Molinari HH, Schultze KE, Strominger NL (1996) Gracile, cuneate, and spinal trigeminal projections to inferior olive in rat and monkey. J Comp Neurol 375:467–480PubMedCrossRefGoogle Scholar
  140. Mugnaini E, Oertel WH (1985) GABAergic neurons and terminals in rat CNS as revealed by GAD immuno-histochemistry. In: Björklund A, Hokfelt T (eds) GABA and neuropeptides in the CNS: the handbook of chemical neuroanatomy, Part 1, vol 4. Elsevier, AmsterdamGoogle Scholar
  141. Nakamura Y, Kitao Y, Okoyama S (1983) Projections from the pericruciate cortex to the nucleus of Darkschewitsch and other structures at the mesodiencephalic junction in the cat. Brain Res Bull 10:517–521PubMedCrossRefGoogle Scholar
  142. Nelson BJ, Mugnaini E (1989) Origin of GABAergic inputs to the inferior olive. Exp Brain Res Ser 17:86–107Google Scholar
  143. Noda H, Sugita S, Ikeda Y (1990) Afferent and efferent connections of the oculomotor region of the fastigial nucleus in the macaque monkey. J Comp Neurol 302:330–348PubMedCrossRefGoogle Scholar
  144. Ogawa T (1935) Beiträge zur vergleichende Anatomie des Zentralnervensystems der Wassersäugetiere. Ueber die Kleinhirnkerne der Pinnipedien und Cetaceen. Arb Anat Inst Sendai 17:63–136Google Scholar
  145. Ogawa T (1939) The tractus tegmenti medialis and its connection with the inferior olive in the cat. J Comp Neurol 70:181–190CrossRefGoogle Scholar
  146. Oka H (1988) Functional organization of the parvocellular red nucleus in the cat. Behav Brain Res 28:233–240PubMedCrossRefGoogle Scholar
  147. Onodera S (1984) Olivary projections from the mesodiencephalic structures in the cat studied by means of axonal transport of horseradish peroxidase and tritiated amino acids. J Comp Neurol 227:37–49PubMedCrossRefGoogle Scholar
  148. Orioli PJ, Strick PL (1989) Cerebellar connections with the motor cortex and the arcuate premotor area: an analysis employing retrograde transneuronal transport of WGA-HRP. J Comp Neurol 288:612–626PubMedCrossRefGoogle Scholar
  149. Oscarsson O (1969) Termination and functional organization of the dorsal spino-olivocerebellar path. J Physiol 200:129–149PubMedGoogle Scholar
  150. Oscarsson O, Sjölund B (1977a) The ventral spine-olivocerebellar system in the cat. II. Termination zones in the cerebellar posterior lobe. Exp Brain Res 28:487–503PubMedGoogle Scholar
  151. Oscarsson O, Sjölund B (1977b) The ventral spino-olivocerebellar system in the cat. I. Identification of five paths and their termination in the cerebellar anterior lobe. Exp Brain Res 28:469–486PubMedGoogle Scholar
  152. Oscarsson O, Sjölund B (1977c) The ventral spino-olivocerebellar system in the cat. III. Functional characteristics of the five paths. Exp Brain Res 28:505–520PubMedGoogle Scholar
  153. Oscarsson O, Uddenberg N (1966) Somatotopic termination of spino-olivocerebellar path. Brain Res 3:204–207PubMedCrossRefGoogle Scholar
  154. Pijpers A, Voogd J, Ruigrok TJ (2005) Topography of olivo-cortico-nuclear modules in the intermediate cerebellum of the rat. J Comp Neurol 492:193–213PubMedCrossRefGoogle Scholar
  155. Porter CM, Van Kan PLE, Horn KM, Bloedel JR, Gibson AR (1993) Functional divisions of cat rMAO. Abstr Soc Neurosci 19:499–510Google Scholar
  156. Prevosto V, Graf W, Ugolini G (2009) Cerebellar inputs to intraparietal cortex areas LIP and MIP: functional frameworks for adaptive control of eye movements, reaching, and arm/eye/head movement coordination. Cereb Cortex 20:214–228CrossRefGoogle Scholar
  157. Probst M (1901) Zur Kenntniss des Beinderams, der Haubenstrahlung und des Regio Subthalamica. Mschr f Psychiat u Neurol 35:692–777CrossRefGoogle Scholar
  158. Rexed B (1952) The cytoarchitectonic organization of the spinal cord in the cat. J Comp Neurol 96:441–495CrossRefGoogle Scholar
  159. Richmond FJ, Courville J, Saint-Cyr JA (1982) Spino-olivary projections from the upper cervical spinal cord: an experimental study using autoradiography and horseradish peroxidase. Exp Brain Res 47:239–251PubMedCrossRefGoogle Scholar
  160. Ruigrok TJ (2003) Collateralization of climbing and mossy fibers projecting to the nodulus and flocculus of the rat cerebellum. J Comp Neurol 466:278–298PubMedCrossRefGoogle Scholar
  161. Ruigrok TJ (2004) Precerebellar nuclei and red nucleus. In: Paxinos G (ed) The rat nervous system, 3rd edn. Elsevier, Amsterdam, pp 167–204Google Scholar
  162. Ruigrok TJ, Voogd J (1990) Cerebellar nucleo-olivary projections in the rat: an anterograde tracing study with Phaseolus vulgaris-leucoagglutinin (PHA-L). J Comp Neurol 298:315–333PubMedCrossRefGoogle Scholar
  163. Ruigrok TJ, Voogd J (2000) Organization of projections from the inferior olive to the cerebellar nuclei in the rat. J Comp Neurol 426:209–228PubMedCrossRefGoogle Scholar
  164. Ruigrok TJ, Osse RJ, Voogd J (1992) Organization of inferior olivary projections to the flocculus and ventral paraflocculus of the rat cerebellum. J Comp Neurol 316:129–150PubMedCrossRefGoogle Scholar
  165. Saint-Cyr JA (1983) The projection from the motor cortex to the inferior olive in the cat. An experimental study using axonal transport techniques. Neuroscience 10:667–684PubMedCrossRefGoogle Scholar
  166. Saint-Cyr JA (1987) Anatomical organization of cortico-mesencephalo-olivary pathways in the cat as demonstrated by axonal transport techniques. J Comp Neurol 257:39–59PubMedCrossRefGoogle Scholar
  167. Saint-Cyr JA, Courville J (1979) Projection from the vestibular nuclei to the inferior olive in the cat: an autoradiographic and horseradish peroxidase study. Brain Res 165:189–200PubMedCrossRefGoogle Scholar
  168. Saint-Cyr JA, Courville J (1982) Descending projections to the inferior olive from the mesencephalon and superior colliculus in the cat. An autoradiographic study. Exp Brain Res 45:333–348PubMedCrossRefGoogle Scholar
  169. Schonewille M, Luo C, Ruigrok TJ, Voogd J, Schmolesky MT, Rutteman M, Hoebeek FE, De Jeu MT, De Zeeuw CI (2006) Zonal organization of the mouse flocculus: physiology, input, and output. J Comp Neurol 497:670–682PubMedCrossRefGoogle Scholar
  170. Scott TG (1964) A unique pattern of localization within the cerebellum of the mouse. J Comp Neurol 22:1–8CrossRefGoogle Scholar
  171. Shook BL, Schlag-Rey M, Schlag J (1990) Primate supplementary eye field: I. Comparative aspects of mesencephalic and pontine connections. J Comp Neurol 301:618–642PubMedCrossRefGoogle Scholar
  172. Sillitoe RV, Marzban H, Larouche M, Zahedi S, Affanni J, Hawkes R (2005) Conservation of the architecture of the anterior lobe vermis of the cerebellum across mammalian species. Prog Brain Res 148:283–297PubMedCrossRefGoogle Scholar
  173. Stanton GB (1980a) Afferents to oculomotor nuclei from area “Y” in Macaca mulatta: an antegrade degeneration study. J Comp Neurol 192:377–385PubMedCrossRefGoogle Scholar
  174. Stanton GB (1980b) Topographical organization of ascending cerebellar projections from the dentate and interposed nuclei in Macaca mulatta: an anterograde degeneration study. J Comp Neurol 190:699–731PubMedCrossRefGoogle Scholar
  175. Steiger HJ, Büttner-Ennever JA (1979) Oculomotor nucleus afferents in the monkey demonstrated with horseradish peroxidase. Brain Res 160:1–15PubMedCrossRefGoogle Scholar
  176. Stilling B (1843) Ueber die Textur und Function der Medulla oblongata. F.Enke, ErlangenGoogle Scholar
  177. Stilling B (1864) Untersuchungen über den Bau des kleinen Gehirns des Menschen. Fischer, CasselGoogle Scholar
  178. Strick PL, Dum RP, Fiez JA (2009) Cerebellum and nonmotor function. Annu Rev Neurosci 32:413–434PubMedCrossRefGoogle Scholar
  179. Strominger NL, Truscott TC, Miller RA, Royce GJ (1979) An autoradiographic study of the rubroolivary tract in the rhesus monkey. J Comp Neurol 183:33–45PubMedCrossRefGoogle Scholar
  180. Sugihara I, Quy PN (2007) Identification of aldolase C compartments in the mouse cerebellar cortex by olivocerebellar labeling. J Comp Neurol 500:1076–1092PubMedCrossRefGoogle Scholar
  181. Sugihara I, Shinoda Y (2004) Molecular, topographic, and functional organization of the cerebellar cortex: a study with combined aldolase C and olivocerebellar labeling. J Neurosci 24:8771–8785PubMedCrossRefGoogle Scholar
  182. Sugihara I, Shinoda Y (2007) Molecular, topographic, and functional organization of the cerebellar nuclei: analysis by three-dimensional mapping of the olivonuclear projection and aldolase C labeling. J Neurosci 27(36):9696–9710PubMedCrossRefGoogle Scholar
  183. Sugihara I, Ebata S, Shinoda Y (2004) Functional compartmentalization in the flocculus and the ventral dentate and dorsal group y nuclei: an analysis of single olivocerebellar axonal morphology. J Comp Neurol 470:113–133PubMedCrossRefGoogle Scholar
  184. Sugihara I, Fujita H, Na J, Quy PN, Li BY, Ikeda D (2009) Projection of reconstructed single Purkinje cell axons in relation to the cortical and nuclear aldolase C compartments of the rat cerebellum. J Comp Neurol 512:282–304PubMedCrossRefGoogle Scholar
  185. Sugimoto T, Mizuno N, Uchida K (1982) Distribution of cerebellar fiber terminals in the midbrain visuomotor areas: an autoradiographic study in the cat. Brain Res 238:353–370PubMedCrossRefGoogle Scholar
  186. Swenson RS, Castro AJ (1983a) The afferent connections of the inferior olivary complex in rats. An anterograde study using autoradiographic and axonal degeneration techniques. Neuroscience 8:259–275PubMedCrossRefGoogle Scholar
  187. Swenson RS, Castro AJ (1983b) The afferent connections of the inferior olivary complex in rats: a study using the retrograde transport of horseradish peroxidase. Am J Anat 166:329–341PubMedCrossRefGoogle Scholar
  188. Tan J, Epema AH, Voogd J (1995a) Zonal organization of the flocculovestibular nucleus projection in the rabbit: a combined axonal tracing and acetylcholinesterase histochemical study. J Comp Neurol 356:51–71PubMedCrossRefGoogle Scholar
  189. Tan J, Gerrits NM, Nanhoe R, Simpson JI, Voogd J (1995b) Zonal organization of the climbing fiber projection to the flocculus and nodulus of the rabbit: a combined axonal tracing and acetylcholinesterase histochemical study. J Comp Neurol 356:23–50PubMedCrossRefGoogle Scholar
  190. Tan J, Simpson JI, Voogd J (1995c) Anatomical compartments in the white matter of the rabbit flocculus. J Comp Neurol 356:1–22PubMedCrossRefGoogle Scholar
  191. Teune TM, van der Burg J, van der Moer J, Voogd J, Ruigrok TJH (2000) Topography of cerebellar nuclear projections to the brain stem in the rat. In: Gerrits NM, Ruigrok TJH, De Zeeuw CI (eds) Cerebellar modules: molecules, morphology and function, vol 124. Progr Brain Res Elsevier Science B.V., Amsterdam, pp 141–172CrossRefGoogle Scholar
  192. Thomas A (1897) Le cervelet: étude anatomique, clinique et physiologique. G. Steinheil, ParisGoogle Scholar
  193. Tian JR, Lynch JC (1997) Subcortical input to the smooth and saccadic eye movement subregions of the frontal eye field in cebus monkey. J Neurosci 17:9233–9247PubMedGoogle Scholar
  194. Tokuno H, Takada M, Nambu A, Inase M (1995) Somatotopical projections from the supplementary motor area to the red nucleus in the macaque monkey. Exp Brain Res 106:351–355PubMedCrossRefGoogle Scholar
  195. Tolbert DL, Massopust LC, Murphy MG, Young PA (1976) The anatomical organization of the cerebello-olivary projection in the cat. J Comp Neurol 170:525–544PubMedCrossRefGoogle Scholar
  196. Trott JR, Armstrong DM (1987) The cerebellar corticonuclear projection from lobule Vb/c of the cat anterior lobe: a combined electrophysiological and autoradiographic study. Exp Brain Res 68:339–354PubMedCrossRefGoogle Scholar
  197. Trott JR, Apps R, Armstrong DM (1998) Zonal organization of cortico-nuclear and nucleo-cortical projections of the paramedian lobule of the cat cerebellum. 1 the C1 zone. Exp Brain Res 118:298–315PubMedCrossRefGoogle Scholar
  198. Uddenberg N (1968) Differential localization in dorsal funiculus of fibres originating from different receptors. Exp Brain Res 4:367–376PubMedGoogle Scholar
  199. Uusisaari M, Knopfel T (2010) GlyT2+ neurons in the lateral cerebellar nucleus. Cerebellum 9:42–55PubMedCrossRefGoogle Scholar
  200. Van Ham JJ, Yeo CH (1992) Somatosensory trigeminal projections to the inferior olive, cerebellum and other precerebellar nuclei in rabbits. Eur J Neurosci 4:302–317PubMedCrossRefGoogle Scholar
  201. van Kan PLE, Houk JC, Gibson AR (1993) Output organization of intermediate cerebellum of the monkey. J Neurophysiol 69:57–73PubMedGoogle Scholar
  202. Verhaart WJC (1936) Die zentrale Haubenbahn bei Affen und Menschen. Schweiz Arch Neurol Psychiat 38:270–283Google Scholar
  203. Verhaart WJ, Wieringen-Rauws GA (1950) On cerebro-cerebellar atrophy. Folia Psychiatr Neurol Neurochir Neerl 53:481–501PubMedGoogle Scholar
  204. von Hartmann-Monakow KH, Akert K, Künzle H (1979) Projections of precentral and premotor cortex to the red nucleus and other midbrain areas in Macaca fascicularis. Exp Brain Res 34:91–105Google Scholar
  205. Voogd J (1964) The cerebellum of the cat. Van Gorcum, AssenGoogle Scholar
  206. Voogd J (1969) The importance of fiber connections in the comparative anatomy of the mammalian cerebellum. In: Llinas R (ed) Neurobiology of cerebellar evolution and development. AMA, Chicago, pp 493–514Google Scholar
  207. Voogd J (2004) Cerebellum and precerebellar nuclei. In: Paxinos G, Mai JK (eds) The human nervous system. Elsevier, Amsterdam, pp 322–392Google Scholar
  208. Voogd J, Barmack NH (2006) Oculomotor cerebellum. Prog Brain Res 151:231–268PubMedCrossRefGoogle Scholar
  209. Voogd J, Bigaré F (1980) Topographical distribution of olivary and cortico-nuclear fibres in the cerebellum: a review. In: Courville J (ed) The olivary nucleus. Anatomy and physiology. Raven, New York, pp 207–234Google Scholar
  210. Voogd J, Ruigrok TJ (2004) The organization of the corticonuclear and olivocerebellar climbing fiber projections to the rat cerebellar vermis: the congruence of projection zones and the zebrin pattern. J Neurocytol 33:5–21PubMedCrossRefGoogle Scholar
  211. Voogd J, Gerrits NM, Hess DT (1987a) Parasagittal zonation of the cerebellum in macaques: an analysis based on acetylcholinesterase histochemistry. In: Glickstein M, Yeo C, Stein J (eds) Cerebellum and neuronal plasticity. Plenum Press, London, pp 15–39CrossRefGoogle Scholar
  212. Voogd J, Hess DT, Marani E (1987b) The parasagittal zonation of the cerebellar cortex in cat and monkey. Topography, distribution of acetylcholinesterase and development. In: King JS (ed) New concepts in cerebellar neurobiology. Liss, New York, pp 183–220Google Scholar
  213. Voogd J, Gerrits NM, Ruigrok TJ (1996) Organization of the vestibulocerebellum. Ann NY Acad Sci 781:553–579PubMedCrossRefGoogle Scholar
  214. Voogd J, Pardoe J, Ruigrok TJ, Apps R (2003) The distribution of climbing and mossy fiber collateral branches from the copula pyramidis and the paramedian lobule: congruence of climbing fiber cortical zones and the pattern of zebrin banding within the rat cerebellum. J Neurosci 23:4645–4656PubMedGoogle Scholar
  215. Voogd J, Schraa-Tam CK, van der Geest JN, De Zeeuw CI (2011) Visuomotor cerebellum in human and nonhuman primates. Cerebellum. doi:10.1007/s12311-010-0204-7Google Scholar
  216. Walberg F (1982) The trigemino-olivary projection in the cat as studied with retrograde transport of horseradish peroxidase. Exp Brain Res 45:101–107PubMedCrossRefGoogle Scholar
  217. Weber JT, Partlow GD, Harting JK (1978) The projection of the superior colliculus upon the inferior olivary complex of the cat: an autoradiographic and horseradish peroxidase study. Brain Res 144:369–377PubMedCrossRefGoogle Scholar
  218. Weidenreich F (1899) Zur Anatomie der zentralen Kleinhirnkerne der Säuger. Z Morphol Anthropol 1:259–312Google Scholar
  219. Whitworth RH Jr, Haines DE (1983) The inferior olive of a prosimian primate Galago senegalensis. I. Conformation and spino-olivary projections. J Comp Neurol 219:215–227PubMedCrossRefGoogle Scholar
  220. Whitworth RH Jr, Haines DE (1986a) The inferior olive of Saimiri sciureus: olivocerebellar projections to the anterior lobe. Brain Res 372:55–71PubMedCrossRefGoogle Scholar
  221. Whitworth RH Jr, Haines DE (1986b) On the question of nomenclature of homologous subdivisions of the inferior olivary complex. Arch Ital Biol 124:271–317PubMedGoogle Scholar
  222. Wiberg M, Blomqvist A (1984a) The projection to the mesencephalon from the dorsal column nuclei. An anatomical study in the cat. Brain Res 311:225–244PubMedCrossRefGoogle Scholar
  223. Wiberg M, Blomqvist A (1984b) The spinomesencephalic tract in the cat: its cells of origin and termination pattern as demonstrated by the intraaxonal transport method. Brain Res 291:1–18PubMedCrossRefGoogle Scholar
  224. Wiberg M, Westman J, Blomqvist A (1986) The projection to the mesencephalon from the sensory trigeminal nuclei. An anatomical study in the cat. Brain Res 399:51–68PubMedCrossRefGoogle Scholar
  225. Wiberg M, Westman J, Blomqvist A (1987) Somatosensory projection to the mesencephalon: an anatomical study in the monkey. J Comp Neurol 264:92–117PubMedCrossRefGoogle Scholar
  226. Wiesendanger R, Wiesendanger M (1985) Cerebello-cortical linkage in the monkey as revealed by transcellular labeling with the lectin wheat germ agglutinin conjugated to the marker horseradish peroxidase. Exp Brain Res 59:105–117PubMedGoogle Scholar
  227. Wylie DR, De Zeeuw CI, DiGiorgi PL, Simpson JI (1994) Projections of individual Purkinje cells of identified zones in the ventral nodulus to the vestibular and cerebellar nuclei in the rabbit. J Comp Neurol 349:448–463PubMedCrossRefGoogle Scholar
  228. Xiong G, Nagao S (2002) The lobulus petrosus of the paraflocculus relays cortical visual inputs to the posterior interposed and lateral cerebellar nuclei: an anterograde and retrograde tracing study in the monkey. Exp Brain Res 147:252–263PubMedCrossRefGoogle Scholar
  229. Yamamoto M (1978) Localization of rabbit’s flocculus Purkinje cells projecting to cerebellar lateral nucleus and the nucleus prepositus hypoglossi investigated by means of the horseradish peroxidase retrograde transport. Neurosci Lett 7:197–202PubMedCrossRefGoogle Scholar
  230. Yamamoto M (1979) Topographical representation in rabbit flocculus for various afferent inputs from the brain stem investigated by means of retrograde transport of horseradish peroxidase. Neurosci Lett 12:29–34PubMedCrossRefGoogle Scholar
  231. Yamamoto F, Sato Y, Kawasaki T (1986) The neuronal pathway from the flocculus to the oculomotor nucleus: an electrophysiological study of group y neurons in cats. Brain Res 371:350–354PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Jan Voogd
    • 1
    • 3
  • Yoshikazu Shinoda
    • 2
  • Tom J. H. Ruigrok
    • 1
  • Izumi Sugihara
    • 2
  1. 1.Department of NeuroscienceErasmus Medical Center RotterdamRotterdamThe Netherlands
  2. 2.Department of Systems NeurophysiologyGraduate School of Medicine, Tokyo Medical and Dental UniversityBunkyo-kuJapan
  3. 3.OegstgeestThe Netherlands

Personalised recommendations