Development of Glutamatergic and GABAergic Synapses

  • Marco Sassoè-Pognetto
  • Annarita Patrizi


More than a century ago, Ramón y Cajal based on the cerebellum his initial description of neurons labeled with the silver impregnation method, obtaining evidence in favor of the neuron doctrine. It is perhaps less known that Cajal also made an accurate description of cerebellar development, laying the foundation for successive studies of cell migration, neuronal differentiation, and synaptogenesis. Building on this work, subsequent analyses of cerebellar development have greatly increased the understanding of cellular and molecular events that regulate the assembly of synaptic circuits in the central nervous system. What makes the cerebellum a particularly useful model system is its delayed course of development, largely extending into postnatal life. This chapter describes the current state of knowledge relating to cerebellar synapse development, and reviews recent studies on the molecular and activity-dependent mechanisms that control the spatial specificity of synaptogenesis.


Granule Cell Layer Inhibitory Synapse Deep Cerebellar Nucleus Basket Cell Axon Initial Segment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ahmad-Annuar A, Ciani L, Simeonidis I et al (2006) Signaling across the synapse: a role for Wnt and Dishevelled in presynaptic assembly and neurotransmitter release. J Cell Biol 174:127–139PubMedCrossRefGoogle Scholar
  2. Altman J (1972a) Postnatal development of the cerebellar cortex in the rat.III. Maturation of the components of the granular layer. J Comp Neurol 145:465–514PubMedCrossRefGoogle Scholar
  3. Altman J (1972b) Postnatal development of the cerebellar cortex in the rat. I. The external germinal layer and the transitional molecular layer. J Comp Neurol 145:353–398PubMedCrossRefGoogle Scholar
  4. Altman J (1972c) Postnatal development of the cerebellar cortex in the rat.II. Phases in the maturation of Purkinje cells and of the molecular layer. J Comp Neurol 145:399–464PubMedCrossRefGoogle Scholar
  5. Ango F, di Cristo G, Higashiyama H et al (2004) Ankyrin-based subcellular gradient of neurofascin, an immunoglobulin family protein, directs GABAergic innervation at Purkinje axon initial segment. Cell 119:257–272PubMedCrossRefGoogle Scholar
  6. Ango F, Wu C, Van der Want JJ et al (2008) Bergmann glia and the recognition molecule CHL1 organize GABAergic axons and direct innervation of Purkinje cell dendrites. PLoS Biol 6:e103PubMedCrossRefGoogle Scholar
  7. Apps R, Garwicz M (2005) Anatomical and physiological foundations of cerebellar information processing. Nat Rev Neurosci 6:297–311PubMedCrossRefGoogle Scholar
  8. Barski JJ, Dethleffsen K, Meyer M (2000) Cre recombinase expression in cerebellar Purkinje cells. Genesis 28:93–98PubMedCrossRefGoogle Scholar
  9. Bosman LW, Takechi H, Hartmann J et al (2008) Homosynaptic long-term synaptic potentiation of the "winner" climbing fiber synapse in developing Purkinje cells. J Neurosci 28:798–807PubMedCrossRefGoogle Scholar
  10. Bravin M, Morando L, Vercelli A et al (1999) Control of spine formation by electrical activity in the adult rat cerebellum. Proc Natl Acad Sci USA 96:1704–1709PubMedCrossRefGoogle Scholar
  11. Briatore F, Patrizi A, Viltono L et al (2010) Quantitative organization of GABAergic synapses in the molecular layer of the mouse cerebellar cortex. PLoS ONE 5:e12119PubMedCrossRefGoogle Scholar
  12. Cajal S (1890) Sobre ciertos elementos bipolares del cerebelo joven y algunos detalles mas acerca del crecimiento y evolución de las fibras cerebelosas. Gaceta Sanitaria, Barcelona, 10 Febrero p 1–20Google Scholar
  13. Cajal S (1911) Histologie du système nerveux de l’homme et des vertébrés. Maloine, ParisGoogle Scholar
  14. Cathala L, Holderith NB, Nusser Z et al (2005) Changes in synaptic structure underlie the developmental speeding of AMPA receptor-mediated EPSCs. Nat Neurosci 8:1310–1318PubMedCrossRefGoogle Scholar
  15. Celio M (1990) Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience 35:375–475PubMedCrossRefGoogle Scholar
  16. Cesa R, Strata P (2009) Axonal competition in the synaptic wiring of the cerebellar cortex during development and in the mature cerebellum. Neuroscience 162:624–632PubMedCrossRefGoogle Scholar
  17. Chen S, Hillman DE (1993) Colocalization of neurotransmitters in the deep cerebellar nuclei. J Neurocytol 22:81–91PubMedCrossRefGoogle Scholar
  18. Coutinho V, Mutoh J, Knöpfel T (2004) Functional topology of the mossy fibre-granule cell–Purkinje cell system revealed by imaging of intrinsic fluorescence in mouse cerebellum. Eur J Neurosci 20:740–748PubMedCrossRefGoogle Scholar
  19. Craig AM, Lichtman JW (2001) Synapse formation and maturation. In: Cowan WM, Südhof TC, Stevens CF (eds) Synapses. The Johns Hopkins University Press, BaltimoreGoogle Scholar
  20. Crepel F, Mariani J, Delhaye-Bouchaud N (1976) Evidence for a multiple innervation of Purkinje cells by climbing fibers in the immature rat cerebellum. J Neurobiol 7:567–578PubMedCrossRefGoogle Scholar
  21. De Schutter E, Vos B, Maex R (2000) The function of cerebellar Golgi cells revisited. Prog Brain Res 124:81–93PubMedCrossRefGoogle Scholar
  22. De Zeeuw CI, Berrebi AS (1995) Postsynaptic targets of Purkinje cell terminals in the cerebellar and vestibular nuclei of the rat. Eur J Neurosci 7:2322–2333PubMedCrossRefGoogle Scholar
  23. Dieudonné S, Dumoulin A (2000) Serotonin-driven long-range inhibitory connections in the cerebellar cortex. J Neurosci 20:1837–1848PubMedGoogle Scholar
  24. Dugué GP, Dumoulin A, Triller A et al (2005) Target-dependent use of co-released inhibitory transmitters at central synapses. J Neurosci 25:6490–6498PubMedCrossRefGoogle Scholar
  25. Dumoulin A, Triller A, Dieudonné S (2001) IPSC kinetics at identified GABAergic and mixed GABAergic and glycinergic synapses onto cerebellar Golgi cells. J Neurosci 21:6045–6057PubMedGoogle Scholar
  26. Eccles JC, Ito M, Szentágothai J (1967) The cerebellum as a neuronal machine. Springer, BerlinGoogle Scholar
  27. Eisenman LM, Schalekamp MP, Voogd J (1991) Development of the cerebellar cortical efferent projection: an in-vitro anterograde tracing study in rat brain slices. Dev Brain Res 60:261–266CrossRefGoogle Scholar
  28. Fremeau RT Jr, Troyer MD, Pahner I et al (2001) The expression of vesicular glutamate transporters defines two classes of excitatory synapse. Neuron 31:247–260PubMedCrossRefGoogle Scholar
  29. Fritschy JM, Panzanelli P, Kralic JE et al (2006) Differential dependence of axo-dendritic and axo-somatic GABAergic synapses on GABAA receptors containing the a1 subunit in Purkinje cells. J Neurosci 26:3245–3255PubMedCrossRefGoogle Scholar
  30. Garin N, Escher G (2001) The development of inhibitory synaptic specializations in the mouse deep cerebellar nuclei. Neuroscience 105:431–441PubMedCrossRefGoogle Scholar
  31. Geurts FJ, De Schutter E, Dieudonné S (2003) Unraveling the cerebellar cortex: cytology and cellular physiology of large-sized interneurons in the granular layer. Cerebellum 2:290–299PubMedCrossRefGoogle Scholar
  32. Greif KF, Erlander MG, Tillakaratne NJ et al (1991) Postnatal expression of glutamate decarboxylases in developing rat cerebellum. Neurochem Res 16:235–242PubMedCrossRefGoogle Scholar
  33. Hall AC, Lucas FR, Salinas PC (2000) Axonal remodeling and synaptic differentiation in the cerebellum is regulated by WNT-7a signaling. Cell 100:525–535PubMedCrossRefGoogle Scholar
  34. Hámori J, Somogyi J (1983) Differentiation of cerebellar mossy fiber synapses in the rat: a quantitative electron microscope study. J Comp Neurol 220:367–377CrossRefGoogle Scholar
  35. Harvey RJ, Napper RM (1991) Quantitative studies on the mammalian cerebellum. Prog Neurobiol 36:437–463PubMedCrossRefGoogle Scholar
  36. Hashimoto K, Yoshida T, Sakimura K et al (2009a) Influence of parallel fiber-Purkinje cell synapse formation on postnatal development of climbing fiber-Purkinje cell synapses in the cerebellum. Neuroscience 162:601–611PubMedCrossRefGoogle Scholar
  37. Hashimoto K, Ichikawa R, Kitamura K et al (2009b) Translocation of a “winner” climbing fiber to the Purkinje cell dendrite and subsequent elimination of “losers” from the soma in developing cerebellum. Neuron 63:106–118PubMedCrossRefGoogle Scholar
  38. Heckroth JA (1992) Development of glutamic acid decarboxylase-immunoreactive elements in the cerebellar cortex of normal and lurcher mutant mice. J Comp Neurol 315:85–97PubMedCrossRefGoogle Scholar
  39. Hirai H, Pang Z, Bao D et al (2005) Cbln1 is essential for synaptic integrity and plasticity in the cerebellum. Nat Neurosci 8:1534–1541PubMedCrossRefGoogle Scholar
  40. Ichikawa R, Miyazaki T, Kano M et al (2002) Distal extension of climbing fiber territory and multiple innervation caused by aberrant wiring to adjacent spiny branchlets in cerebellar Purkinje cells lacking glutamate receptor delta 2. J Neurosci 22:8487–8503PubMedGoogle Scholar
  41. Ito M (2006) Cerebellar circuitry as a neuronal machine. Prog Neurobiol 78:272–303PubMedCrossRefGoogle Scholar
  42. Ito S, Takeichi M (2009) Dendrites of cerebellar granule cells correctly recognize their target axons for synaptogenesis in vitro. Proc Natl Acad Sci USA 106:12782–12787PubMedCrossRefGoogle Scholar
  43. Kaneda M, Farrant M, Cull-Candy SG (1995) Whole-cell and single-channel currents activated by GABA and glycine in granule cells of the rat cerebellum. J Physiol 485:419–435PubMedGoogle Scholar
  44. Kano M, Hashimoto K (2009) Synapse elimination in the central nervous system. Curr Opin Neurobiol 19:154–161PubMedCrossRefGoogle Scholar
  45. Kashiwabuchi N, Ikeda K, Araki K et al (1995) Impairment of motor coordination, Purkinje cell synapse formation, and cerebellar long-term depression in GluR delta 2 mutant mice. Cell 81:245–252PubMedCrossRefGoogle Scholar
  46. Kurihara H, Hashimoto K, Kano M et al (1997) Impaired parallel fiber→Purkinje cell synapse stabilization during cerebellar development of mutant mice lacking the glutamate receptor delta2 subunit. J Neurosci 17:9613–9623PubMedGoogle Scholar
  47. Lainé J, Axelrad H (2002) Extending the cerebellar Lugaro cell class. Neuroscience 115:363–374PubMedCrossRefGoogle Scholar
  48. Landsend AS, Amiry-Moghaddam M, Matsubara A et al (1997) Differential localization of delta glutamate receptors in the rat cerebellum: coexpression with AMPA receptors in parallel fiber-spine synapses and absence from climbing fiber-spine synapses. J Neurosci 17:834–842PubMedGoogle Scholar
  49. Larramendi LMH (1969) Analysis of synaptogenesis in the cerebellum of the mouse. In: Llinás R (ed) Neurobiology of cerebellar evolution and development. American Medical Association, ChicagoGoogle Scholar
  50. Li J, Ashley J, Budnik V et al (2007) Crucial role of Drosophila neurexin in proper active zone apposition to postsynaptic densities, synaptic growth, and synaptic transmission. Neuron 55:741–755PubMedCrossRefGoogle Scholar
  51. Lichtman JW, Smith SJ (2008) Seeing circuits assemble. Neuron 60:441–448PubMedCrossRefGoogle Scholar
  52. Llinás RR, Walton KD, Lang EJ (2004) Cerebellum. In: Shepherd GM (ed) The synaptic organization of the brain. Oxford University Press, New YorkGoogle Scholar
  53. Lohof AM, Delhaye-Bouchaud N, Mariani J (1996) Synapse elimination in the central nervous system: functional significance and cellular mechanisms. Rev Neurosci 7:85–101PubMedCrossRefGoogle Scholar
  54. Lomeli H, Sprengel R, Laurie DJ et al (1993) The rat delta-1 and delta-2 subunits extend the excitatory amino acid receptor family. FEBS Lett 315:318–322PubMedCrossRefGoogle Scholar
  55. Lorenzetto E, Caselli L, Feng G et al (2009) Genetic perturbation of postsynaptic activity regulates synapse elimination in developing cerebellum. Proc Natl Acad Sci USA 106:16475–16480PubMedCrossRefGoogle Scholar
  56. Mason CA, Gregory E (1984) Postnatal maturation of cerebellar mossy and climbing fibers: transient expression of dual features on single axons. J Neurosci 4:1715–1735PubMedGoogle Scholar
  57. Matsuda K, Miura E, Miyazaki T et al (2010) Cbln1 is a ligand for an orphan glutamate receptor delta2, a bidirectional synapse organizer. Science 328:363–368PubMedCrossRefGoogle Scholar
  58. McAllister AK (2007) Dynamic aspects of CNS synapse formation. Annu Rev Neurosci 30:425–450PubMedCrossRefGoogle Scholar
  59. McLaughlin BJ, Wood JG, Saito K (1975) The fine structural localization of glutamate decarboxylase in developing axonal processes and presynaptic terminals of rodent cerebellum. Brain Res 85:355–371PubMedCrossRefGoogle Scholar
  60. Millen KJ, Gleeson JG (2008) Cerebellar development and disease. Curr Opin Neurobiol 18:12–19PubMedCrossRefGoogle Scholar
  61. Missler M, Zhang W, Rohlmann A et al (2003) Alpha-neurexins couple Ca2+ channels to synaptic vesicle exocytosis. Nature 423:939–948PubMedCrossRefGoogle Scholar
  62. Miura E, Iijima T, Yuzaki M et al (2006) Distinct expression of Cbln family mRNAs in developing and adult mouse brains. Eur J Neurosci 24:750–760PubMedCrossRefGoogle Scholar
  63. Miyazaki T, Fukaya M, Shimizu H et al (2003) Subtype switching of vesicular glutamate transporters at parallel fibre-Purkinje cell synapses in developing mouse cerebellum. Eur J Neurosci 17:2563–2572PubMedCrossRefGoogle Scholar
  64. Miyazaki T, Hashimoto K, Shin HS et al (2004) P/Q-type Ca2+ channel alpha1A regulates synaptic competition on developing cerebellar Purkinje cells. J Neurosci 24:1734–1743PubMedCrossRefGoogle Scholar
  65. Morara S, van der Want JJ, de Weerd H et al (2001) Ultrastructural analysis of climbing fiber-Purkinje cell synaptogenesis in the rat cerebellum. Neuroscience 108:655–671PubMedCrossRefGoogle Scholar
  66. Mugnaini E, Sekerková G, Martina M (2011) The unipolar brush cell: A remarkable neuron finally receiving deserved attention. Brain Res Rev 66:220–245PubMedCrossRefGoogle Scholar
  67. Ohtsuki G, Hirano T (2008) Bidirectional plasticity at developing climbing fiber-Purkinje neuron synapses. Eur J Neurosci 28:2393–2400PubMedCrossRefGoogle Scholar
  68. Ottersen OP, Storm-Mathisen J, Somogyi P (1988) Colocalization of glycine-like and GABA-like immunoreactivities in Golgi cell terminals in the rat cerebellum: a postembedding light and electron microscopic study. Brain Res 450:342–353PubMedCrossRefGoogle Scholar
  69. Palay S, Chan-Palay V (1974) Cerebellar Cortex: Cytology and Organization. Springer, BerlinCrossRefGoogle Scholar
  70. Palkovits M, Mezey E, Hámori J et al (1977) Quantitative histological analysis of the cerebellar nuclei in the cat. I. Numerical data on cells and on synapses. Exp Brain Res 28:189–209PubMedCrossRefGoogle Scholar
  71. Patrizi A, Scelfo B, Viltono L et al (2008) Synapse formation and clustering of neuroligin-2 in the absence of GABAA receptors. Proc Natl Acad Sci USA 105:13151–13156PubMedCrossRefGoogle Scholar
  72. Pouzat C, Hestrin S (1997) Developmental regulation of basket/stellate cell→Purkinje cell synapses in the cerebellum. J Neurosci 17:9104–9112PubMedGoogle Scholar
  73. Robain O, Bideau I, Farkas E (1981) Developmental changes of synapses in the cerebellar cortex of the rat. A quantitative analysis. Brain Res 206:1–8PubMedCrossRefGoogle Scholar
  74. Rosina A, Morara S, Provini L (1999) GAT-1 developmental expression in the rat cerebellar cortex: basket and pinceau formation. Neuroreport 10:1613–1618PubMedCrossRefGoogle Scholar
  75. Sahin M, Hockfield S (1990) Molecular identification of the Lugaro cell in the cat cerebellar cortex. J Comp Neurol 301:575–584PubMedCrossRefGoogle Scholar
  76. Satz JS, Ostendorf AP, Hou S et al (2010) Distinct functions of glial and neuronal dystroglycan in the developing and adult mouse brain. J Neurosci 30:14560–14572PubMedCrossRefGoogle Scholar
  77. Schild RF (1970) On the inferior olive of the albino rat. J Comp Neurol 140:255–260PubMedCrossRefGoogle Scholar
  78. Schilling K, Oberdick J, Rossi F et al (2008) Besides Purkinje cells and granule neurons: an appraisal of the cell biology of the interneurons of the cerebellar cortex. Histochem Cell Biol 130:601–615PubMedCrossRefGoogle Scholar
  79. Shimono T, Nosaka S, Sasaki K (1976) Electrophysiological study on the postnatal development of neuronal mechanisms in the rat cerebellar cortex. Brain Res 108:279–294PubMedCrossRefGoogle Scholar
  80. Siddiqui TJ, Craig AM (2010) Synaptic organizing complexes. Curr Opin Neurobiol. doi:10.1016/j.conb.2010.08.016PubMedGoogle Scholar
  81. Simat M, Parpan F, Fritschy JM (2007a) Heterogeneity of glycinergic and gabaergic interneurons in the granule cell layer of mouse cerebellum. J Comp Neurol 500:71–83PubMedCrossRefGoogle Scholar
  82. Simat M, Ambrosetti L, Lardi-Studler B et al (2007b) GABAergic synaptogenesis marks the onset of differentiation of basket and stellate cells in mouse cerebellum. Eur J Neurosci 26:2239–2256PubMedCrossRefGoogle Scholar
  83. Sotelo C (1990) Cerebellar synaptogenesis: what can we learn from mutant mice. J Exp Biol 153:225–249PubMedGoogle Scholar
  84. Sotelo C (2004) Cellular and genetic regulation of the development of the cerebellar system. Prog Neurobiol 72:295–339PubMedCrossRefGoogle Scholar
  85. Sotelo C (2008) Development of "Pinceaux" formations and dendritic translocation of climbing fibers during the acquisition of the balance between glutamatergic and gamma-aminobutyric acidergic inputs in developing Purkinje cells. J Comp Neurol 506:240–262PubMedCrossRefGoogle Scholar
  86. Südhof TC (2001) The synaptic cleft and synaptic cell adhesion. In: Cowan WM, Südhof TC, Stevens CF (eds) Synapses. The Johns Hopkins University Press, BaltimoreGoogle Scholar
  87. Sugita F, Saito S, Tang J et al (2002) A stoichiometric complex of neurexins and dystroglycan in brain. J Cell Biol 154:435–445CrossRefGoogle Scholar
  88. Szapiro G, Barbour B (2007) Multiple climbing fibers signal to molecular layer interneurons exclusively via glutamate spillover. Nat Neurosci 10:735–742PubMedCrossRefGoogle Scholar
  89. Takayama C, Inoue Y (2004) GABAergic signaling in the developing cerebellum. Anat Sci Int 79:124–136PubMedCrossRefGoogle Scholar
  90. Takayama C, Inoue Y (2005) Developmental expression of GABA transporter-1 and 3 during formation of the GABAergic synapses in the mouse cerebellar cortex. Dev Brain Res 158:41–49CrossRefGoogle Scholar
  91. Takeda T, Maekawa K (1989) Transient direct connection of vestibular mossy fibers to the vestibulocerebellar Purkinje cells in early postnatal development of kittens. Neuroscience 32:99–111PubMedCrossRefGoogle Scholar
  92. Takeuchi T, Miyazaki T, Watanabe M et al (2005) Control of synaptic connection by glutamate receptor delta2 in the adult cerebellum. J Neurosci 25:2146–2156PubMedCrossRefGoogle Scholar
  93. Teune TM, van der Burg J, de Zeeuw CI et al (1998) Single Purkinje cell can innervate multiple classes of projection neurons in the cerebellar nuclei of the rat: a light microscopic and ultrastructural triple-tracer study in the rat. J Comp Neurol 392:164–178PubMedCrossRefGoogle Scholar
  94. Trigo FF, Bouhours B, Rostaing P et al (2010) Presynaptic miniature GABAergic currents in developing interneurons. Neuron 66:235–247PubMedCrossRefGoogle Scholar
  95. Uemura T, Lee SJ, Yasumura M et al (2010) Trans-synaptic interaction of GluRdelta2 and Neurexin through Cbln1 mediates synapse formation in the cerebellum. Cell 141:1068–1079PubMedCrossRefGoogle Scholar
  96. Umemori H, Linhoff MW, Ornitz DM et al (2004) FGF22 and its close relatives are presynaptic organizing molecules in the mammalian brain. Cell 118:257–270PubMedCrossRefGoogle Scholar
  97. Vicini S, Ortinski P (2004) Genetic manipulations of GABAA receptor in mice make inhibition exciting. Pharmacol Ther 103:109–120PubMedCrossRefGoogle Scholar
  98. Viltono L, Patrizi A, Fritschy JM et al (2008) Synaptogenesis in the cerebellar cortex: Differential regulation of gephyrin and GABAA receptors at somatic and dendritic synapses of Purkinje cells. J Comp Neurol 508:579–591PubMedCrossRefGoogle Scholar
  99. Voogd J (2004) Cerebellum. In: Paxinos G (ed) The rat nervous system, 3rd edn. Elsevier Academic Press, San DiegoGoogle Scholar
  100. Waite A, Tinsley CL, Locke M et al (2009) The neurobiology of the dystrophin-associated glycoprotein complex. Ann Med 41:344–359PubMedCrossRefGoogle Scholar
  101. Waites CM, Craig AM, Garner CC (2005) Mechanisms of vertebrate synaptogenesis. Annu Rev Neurosci 28:251–274PubMedCrossRefGoogle Scholar
  102. Wang VY, Zoghbi HY (2001) Genetic regulation of cerebellar development. Nat Rev Neurosci 2:484–491PubMedCrossRefGoogle Scholar
  103. Wassef M, Sotelo C (1984) Asynchrony in the expression of guanosine 3':5'-phosphate-dependent protein kinase by clusters of Purkinje cells during the perinatal development of rat cerebellum. Neuroscience 13:1217–1241PubMedCrossRefGoogle Scholar
  104. Wassef M, Simons J, Tappaz ML et al (1986) Non-Purkinje cell GABAergic innervation of the deep cerebellar nuclei: a quantitative immunocytochemical study in C57BL and in Purkinje cell degeneration mutant mice. Brain Res 399:125–135PubMedCrossRefGoogle Scholar
  105. Watanabe D, Nakanishi S (2003) mGluR2 postsynaptically senses granule cell inputs at Golgi cell synapses. Neuron 39:821–829PubMedCrossRefGoogle Scholar
  106. Watt AJ, Cuntz H, Mori M et al (2009) Traveling waves in developing cerebellar cortex mediated by asymmetrical Purkinje cell connectivity. Nat Neurosci 12:463–473PubMedCrossRefGoogle Scholar
  107. Wulff P, Goetz T, Leppä E et al (2007) From synapse to behavior: rapid modulation of defined neuronal types with engineered GABAA receptors. Nat Neurosci 10:923–929PubMedCrossRefGoogle Scholar
  108. Wulff P, Schonewille M, Renzi M et al (2009) Synaptic inhibition of Purkinje cells mediates consolidation of vestibulo-cerebellar motor learning. Nat Neurosci 12:1042–1049PubMedCrossRefGoogle Scholar
  109. Yan XX, Ribak CE (1998) Developmental expression of gamma-aminobutyric acid transporters (GAT-1 and GAT-3) in the rat cerebellum: evidence for a transient presence of GAT-1 in Purkinje cells. Dev Brain Res 111:253–269CrossRefGoogle Scholar
  110. Yuste R, Bonhoeffer T (2004) Genesis of dendritic spines: insights from ultrastructural and imaging studies. Nat Rev Neurosci 5:24–34PubMedCrossRefGoogle Scholar
  111. Yuzaki M (2003) The delta2 glutamate receptor: ten years later. Neurosci Res 46:11–22PubMedCrossRefGoogle Scholar
  112. Yuzaki M (2010) Synapse formation and maintenance by C1q family proteins: a new class of secreted synapse organizers. Eur J Neurosci 32:191–197PubMedCrossRefGoogle Scholar
  113. Zhao HM, Wenthold RJ, Petralia RS (1998) Glutamate receptor targeting to synaptic populations on Purkinje cells is developmentally regulated. J Neurosci 18:5517–5528PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Anatomy, Pharmacology, and Forensic MedicineNational Institute of Neuroscience–ItalyTurinItaly
  2. 2.F.M. Kirby Neurobiology CenterChildren’s Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations