Novel Therapeutic Challenges in Cerebellar Diseases

  • Antoni Matilla-Dueñas
  • Carme Serrano
  • Yerko Ivánovic
  • Ramiro Alvarez
  • Pilar Latorre
  • David Genís

Abstract

In the last decade, substantial scientific progress has enabled a better understanding of the pathogenesis of cerebellar diseases and the improvement of their diagnoses. Extensive preclinical work is expanding the possibilities of using experimental models to analyze disease-specific mechanisms and to approach candidate therapeutic strategies to create a rationale for clinical trials that might finally lead to successful treatment. At present, drug treatment of cerebellar disorders has shown limited effectiveness and current treatment is primarily supportive. Until effective and selective pharmacological treatment leading to better quality of life as well as increased survival of patients with cerebellar diseases is found, physical and sensory rehabilitation techniques are revealing effective approaches for improving the patient’s quality of life. The objective of this chapter is to provide an updated summary of the treatments currently available for cerebellar disorders, in particular for spinocerebellar ataxias, and to discuss the new emerging therapeutic strategies that are resulting from the intensive ongoing basic and translational research devoted to cerebellar diseases.

Keywords

Phytanic Acid Spinal Muscular Atrophy Spinocerebellar Ataxia International Cooperative Ataxia Rate Scale Episodic Ataxia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Dr. Ivelisse Sanchez’s helpful comments and suggestions are kindly acknowledged. Dr. Antoni Matilla’s scientific research on ataxias is funded by the Spanish Ministry of Science and Innovation (BFU2008-00527/BMC), the Carlos III Health Institute (CP08/00027), the Latin American Science and Technology Development Programme (CYTED) (210RT0390), the European Commission (EUROSCA project, LHSM-CT-2004-503304), and the Fundació de la Marató de TV3 (Televisió de Catalunya). We are indebted to the Spanish Ataxia Association (FEDAES), the Spanish Federation for Rare Diseases (FEDER), and the ataxia patients for their continuous support and motivation. Antoni Matilla is a Miguel Servet Investigator in Neurosciences of the Spanish National Health System.

References

  1. Alvina K, Khodakhah K (2010a) KCa channels as therapeutic targets in episodic ataxia type-2. J Neurosci 30:7249–7257PubMedCrossRefGoogle Scholar
  2. Alvina K, Khodakhah K (2010b) The therapeutic mode of action of 4-aminopyridine in cerebellar ataxia. J Neurosci 30:7258–7268PubMedCrossRefGoogle Scholar
  3. Amiel J, Maziere JC, Beucler I et al (1995) Familial isolated vitamin E deficiency. Extensive study of a large family with a 5-year therapeutic follow-up. J Inherit Metab Dis 18:333–340PubMedCrossRefGoogle Scholar
  4. Artuch R, Aracil A, Mas A et al (2002) Friedreich’s ataxia: idebenone treatment in early stage patients. Neuropediatrics 33:190–193PubMedCrossRefGoogle Scholar
  5. Baldwin EJ, Gibberd FB, Harley C et al (2010) The effectiveness of long-term dietary therapy in the treatment of adult Refsum disease. J Neurol Neurosurg Psychiatry 81:954–957PubMedCrossRefGoogle Scholar
  6. Berginer VM, Salen G, Shefer S (1984) Long-term treatment of cerebrotendinous xanthomatosis with chenodeoxycholic acid. N Engl J Med 311:1649–1652PubMedCrossRefGoogle Scholar
  7. Boddaert N, Le Quan Sang KH, Rotig A et al (2007) Selective iron chelation in Friedreich ataxia: biologic and clinical implications. Blood 110:401–408PubMedCrossRefGoogle Scholar
  8. Boesch S, Sturm B, Hering S et al (2007) Friedreich’s ataxia: clinical pilot trial with recombinant human erythropoietin. Ann Neurol 62:521–524PubMedCrossRefGoogle Scholar
  9. Boesch S, Sturm B, Hering S et al (2008) Neurological effects of recombinant human erythropoietin in Friedreich’s ataxia: a clinical pilot trial. Mov Disord 23:1940–1944PubMedCrossRefGoogle Scholar
  10. Bordet T, Buisson B, Michaud M et al (2007) Identification and characterization of cholest-4-en-3-one, oxime (TRO19622), a novel drug candidate for amyotrophic lateral sclerosis. J Pharmacol Exp Ther 322:709–720PubMedCrossRefGoogle Scholar
  11. Botez MI, Young SN, Botez T et al (1991) Treatment of heredo-degenerative ataxias with amantadine hydrochloride. Can J Neurol Sci 18:307–311PubMedGoogle Scholar
  12. Buhmann C, Bussopulos A, Oechsner M (2003) Dopaminergic response in Parkinsonian phenotype of Machado-Joseph disease. Mov Disord 18:219–221PubMedCrossRefGoogle Scholar
  13. Burnett R, Melander C, Puckett JW et al (2006) DNA sequence-specific polyamides alleviate transcription inhibition associated with long GAA.TTC repeats in Friedreich’s ataxia. Proc Natl Acad Sci USA 103:11497–11502PubMedCrossRefGoogle Scholar
  14. Buyse G, Mertens L, Di Salvo G et al (2003) Idebenone treatment in Friedreich’s ataxia: neurological, cardiac, and biochemical monitoring. Neurology 60:1679–1681PubMedCrossRefGoogle Scholar
  15. Cavalier L, Ouahchi K, Kayden HJ et al (1998) Ataxia with isolated vitamin E deficiency: heterogeneity of mutations and phenotypic variability in a large number of families. Am J Hum Genet 62:301–310PubMedCrossRefGoogle Scholar
  16. Cernak K, Stevens V, Price R et al (2008) Locomotor training using body-weight support on a treadmill in conjunction with ongoing physical therapy in a child with severe cerebellar ataxia. Phys Ther 88:88–97PubMedCrossRefGoogle Scholar
  17. Chan HY, Warrick JM, Gray-Board GL et al (2000) Mechanisms of chaperone suppression of polyglutamine disease: selectivity, synergy and modulation of protein solubility in Drosophila. Hum Mol Genet 9:2811–2820PubMedCrossRefGoogle Scholar
  18. Chen M, Ona VO, Li M et al (2000) Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nat Med 6:797–801PubMedCrossRefGoogle Scholar
  19. Chintawar S, Hourez R, Ravella A et al (2009) Grafting neural precursor cells promotes functional recovery in an SCA1 mouse model. J Neurosci 29:13126–13135PubMedCrossRefGoogle Scholar
  20. Cooper JM, Korlipara LV, Hart PE et al (2008) Coenzyme Q10 and vitamin E deficiency in Friedreich’s ataxia: predictor of efficacy of vitamin E and coenzyme Q10 therapy. Eur J Neurol 15:1371–1379PubMedCrossRefGoogle Scholar
  21. D’Ambrosio R, Leone M, Rosso MG et al (1987) Disability and quality of life in hereditary ataxias: a self-administered postal questionnaire. Int Disabil Stud 9:10–14PubMedCrossRefGoogle Scholar
  22. De Rosa A, Striano P, Barbieri F et al (2006) Suppression of myoclonus in SCA2 by piracetam. Mov Disord 21:116–118PubMedCrossRefGoogle Scholar
  23. Dedeoglu A, Kubilus JK, Jeitner TM et al (2002) Therapeutic effects of cystamine in a murine model of Huntington’s disease. J Neurosci 22:8942–8950PubMedGoogle Scholar
  24. Del Gaizo V, Payne RM (2003) A novel TAT-mitochondrial signal sequence fusion protein is processed, stays in mitochondria, and crosses the placenta. Mol Ther 7:720–730PubMedCrossRefGoogle Scholar
  25. Di Prospero NA, Baker A, Jeffries N et al (2007) Neurological effects of high-dose idebenone in patients with Friedreich’s ataxia: a randomised, placebo-controlled trial. Lancet Neurol 6:878–886PubMedCrossRefGoogle Scholar
  26. Dokmanovic M, Marks PA (2005) Prospects: histone deacetylase inhibitors. J Cell Biochem 96:293–304PubMedCrossRefGoogle Scholar
  27. Dotti MT, Lutjohann D, von Bergmann K et al (2004) Normalisation of serum cholestanol concentration in a patient with cerebrotendinous xanthomatosis by combined treatment with chenodeoxycholic acid, simvastatin and LDL apheresis. Neurol Sci 25:185–191PubMedCrossRefGoogle Scholar
  28. Erceg S, Ronaghi M, Ivan Z et al (2010) Efficient differentiation of human embryonic stem cells into functional cerebellar-like cells. Stem Cells Dev 19:1745–1756PubMedCrossRefGoogle Scholar
  29. Eunson LH, Rea R, Zuberi SM et al (2000) Clinical, genetic, and expression studies of mutations in the potassium channel gene KCNA1 reveal new phenotypic variability. Ann Neurol 48:647–656PubMedCrossRefGoogle Scholar
  30. Fernandez AM, Carro EM, Lopez-Lopez C et al (2005) Insulin-like growth factor I treatment for cerebellar ataxia: Addressing a common pathway in the pathological cascade? Brain Res Rev 50:134–141PubMedCrossRefGoogle Scholar
  31. Ferrara JM, Adam OR, Ondo WG (2009) Treatment of fragile-X-associated tremor/ataxia syndrome with deep brain stimulation. Mov Disord 24:149–151PubMedCrossRefGoogle Scholar
  32. Freeman W, Wszolek Z (2005) Botulinum toxin type A for treatment of spasticity in spinocerebellar ataxia type 3 (Machado–Joseph disease). Mov Disord 20:644PubMedCrossRefGoogle Scholar
  33. Freund JE, Stetts DM (2010) Use of trunk stabilization and locomotor training in an adult with cerebellar ataxia: a single system design. Physiother Theory Pract 26:447–458PubMedCrossRefGoogle Scholar
  34. Gabsi S, Gouider-Khouja N, Belal S et al (2001) Effect of vitamin E supplementation in patients with ataxia with vitamin E deficiency. Eur J Neurol 8:477–481PubMedCrossRefGoogle Scholar
  35. Gage FH (2002) Neurogenesis in the adult brain. J Neurosci 22:612–613PubMedGoogle Scholar
  36. Gatchel JR, Watase K, Thaller C et al (2008) The insulin-like growth factor pathway is altered in spinocerebellar ataxia type 1 and type 7. Proc Natl Acad Sci USA 105:1291–1296PubMedCrossRefGoogle Scholar
  37. Gauthier S (2009) Dimebon improves cognitive function in people with mild to moderate Alzheimer’s disease. Evid Based Ment Health 12:21PubMedCrossRefGoogle Scholar
  38. Gomez-Sebastian S, Gimenez-Cassina A, Diaz-Nido J et al (2007) Infectious delivery and expression of a 135 kb human FRDA genomic DNA locus complements Friedreich’s ataxia deficiency in human cells. Mol Ther 15:248–254PubMedCrossRefGoogle Scholar
  39. Gottesfeld JM (2007) Small molecules affecting transcription in Friedreich ataxia. Pharmacol Ther 116:236–248PubMedCrossRefGoogle Scholar
  40. Graham JV, Eustace C, Brock K et al (2009) The Bobath concept in contemporary clinical practice. Top Stroke Rehabil 16:57–68PubMedCrossRefGoogle Scholar
  41. Grant L, Sun J, Xu H et al (2006) Rational selection of small molecules that increase transcription through the GAA repeats found in Friedreich’s ataxia. FEBS Lett 580:5399–5405PubMedCrossRefGoogle Scholar
  42. Griggs RC, Moxley RT 3rd, Lafrance RA et al (1978) Hereditary paroxysmal ataxia: response to acetazolamide. Neurology 28:1259–1264PubMedCrossRefGoogle Scholar
  43. Gutsche HU, Siegmund JB, Hoppmann I (1996) Lipapheresis: an immunoglobulin-sparing treatment for Refsum’s disease. Acta Neurol Scand 94:190–193PubMedCrossRefGoogle Scholar
  44. Harris-Love MO, Siegel KL, Paul SM et al (2004) Rehabilitation management of Friedreich ataxia: lower extremity force-control variability and gait performance. Neurorehabil Neural Repair 18:117–124PubMedCrossRefGoogle Scholar
  45. Hausse AO, Aggoun Y, Bonnet D et al (2002) Idebenone and reduced cardiac hypertrophy in Friedreich’s ataxia. Heart 87:346–349PubMedCrossRefGoogle Scholar
  46. Heiser V, Scherzinger E, Boeddrich A et al (2000) Inhibition of huntingtin fibrillogenesis by specific antibodies and small molecules: implications for Huntington’s disease therapy. Proc Natl Acad Sci USA 97:6739–6744PubMedCrossRefGoogle Scholar
  47. Heiser V, Engemann S, Brocker W et al (2002) Identification of benzothiazoles as potential polyglutamine aggregation inhibitors of Huntington’s disease by using an automated filter retardation assay. Proc Natl Acad Sci USA 99:16400–16406PubMedCrossRefGoogle Scholar
  48. Hening WA, Allen RP, Ondo WG et al (2010) Rotigotine improves restless legs syndrome: a 6-month randomized, double-blind, placebo-controlled trial in the United States. Mov Disord 25:1675–1683PubMedCrossRefGoogle Scholar
  49. Herman D, Jenssen K, Burnett R et al (2006) Histone deacetylase inhibitors reverse gene silencing in Friedreich’s ataxia. Nat Chem Biol 2:551–558PubMedCrossRefGoogle Scholar
  50. Hirano M, Quinzii CM, Dimauro S (2006) Restoring balance to ataxia with coenzyme Q10 deficiency. J Neurol Sci 246:11–12PubMedCrossRefGoogle Scholar
  51. Holtmann M, Opp J, Tokarzewski M et al (2002) Human epilepsy, episodic ataxia type 2, and migraine. Lancet 359:170–171PubMedCrossRefGoogle Scholar
  52. Ilg W, Synofzik M, Brotz D et al (2009) Intensive coordinative training improves motor performance in degenerative cerebellar disease. Neurology 73:1823–1830PubMedCrossRefGoogle Scholar
  53. Ince Gunal D, Agan K, Afsar N et al (2008) The effect of piracetam on ataxia: clinical observations in a group of autosomal dominant cerebellar ataxia patients. J Clin Pharm Ther 33:175–178PubMedCrossRefGoogle Scholar
  54. Ito S, Kuwabara S, Sakakibara R et al (2003) Combined treatment with LDL-apheresis, chenodeoxycholic acid and HMG-CoA reductase inhibitor for cerebrotendinous xanthomatosis. J Neurol Sci 216:179–182PubMedCrossRefGoogle Scholar
  55. Jen J, Kim GW, Baloh RW (2004) Clinical spectrum of episodic ataxia type 2. Neurology 62:17–22PubMedCrossRefGoogle Scholar
  56. Kanai K, Kuwabara S, Arai K et al (2003) Muscle cramp in Machado-Joseph disease: altered motor axonal excitability properties and mexiletine treatment. Brain 126:965–973PubMedCrossRefGoogle Scholar
  57. Kanai K, Sakakibara R, Uchiyama T et al (2007) Sporadic case of spinocerebellar ataxia type 17: treatment observations for managing urinary and psychotic symptoms. Mov Disord 22:441–443PubMedCrossRefGoogle Scholar
  58. Karpuj MV, Becher MW, Springer JE et al (2002) Prolonged survival and decreased abnormal movements in transgenic model of Huntington disease, with administration of the transglutaminase inhibitor cystamine. Nat Med 8:143–149PubMedCrossRefGoogle Scholar
  59. Kayden HJ (2001) The genetic basis of vitamin E deficiency in humans. Nutrition 17:797–798PubMedCrossRefGoogle Scholar
  60. Kearney M, Orrell RW, Fahey M et al (2009) Antioxidants and other pharmacological treatments for Friedreich ataxia. Cochrane Database Syst Rev (4): Art. No.: CD007791. DOI: 10.1002/14651858.CD007791.pub2Google Scholar
  61. Keene CD, Rodrigues CM, Eich T et al (2002) Tauroursodeoxycholic acid, a bile acid, is neuroprotective in a transgenic animal model of Huntington’s disease. Proc Natl Acad Sci USA 99:10671–10676PubMedCrossRefGoogle Scholar
  62. Kieran D, Kalmar B, Dick JR et al (2004) Treatment with arimoclomol, a coinducer of heat shock proteins, delays disease progression in ALS mice. Nat Med 10:402–405PubMedCrossRefGoogle Scholar
  63. Klein A, Boltshauser E, Jen J et al (2004) Episodic ataxia type 1 with distal weakness: a novel manifestation of a potassium channelopathy. Neuropediatrics 35:147–149PubMedCrossRefGoogle Scholar
  64. Lee PH, Kim JW, Bang OY et al (2008) Autologous mesenchymal stem cell therapy delays the progression of neurological deficits in patients with multiple system atrophy. Clin Pharmacol Ther 83:723–730PubMedCrossRefGoogle Scholar
  65. Leinninger GM, Feldman EL (2005) Insulin-like growth factors in the treatment of neurological disease. Endocr Dev 9:135–159PubMedCrossRefGoogle Scholar
  66. Lesort M, Lee M, Tucholski J et al (2003) Cystamine inhibits caspase activity. J Biol Chem 278:3825–3830PubMedCrossRefGoogle Scholar
  67. Lim F, Palomo GM, Mauritz C et al (2007) Functional recovery in a Friedreich’s ataxia mouse model by frataxin gene transfer using an HSV-1 amplicon vector. Mol Ther 15:1072–1078PubMedGoogle Scholar
  68. Lim CK, Kalinowski DS, Richardson DR (2008) Protection against hydrogen peroxide-mediated cytotoxicity in Friedreich’s ataxia fibroblasts using novel iron chelators of the 2-pyridylcarboxaldehyde isonicotinoyl hydrazone class. Mol Pharmacol 74:225–235PubMedCrossRefGoogle Scholar
  69. Liu J, Tang TS, Tu H et al (2009) Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 2. J Neurosci 29:9148–9162PubMedCrossRefGoogle Scholar
  70. Lock RJ, Tengah DP, Williams AJ et al (2006) Cerebellar ataxia, peripheral neuropathy, “gluten sensitivity” and anti-neuronal autoantibodies. Clin Lab 52:589–592PubMedGoogle Scholar
  71. Louboutin JP, Reyes BA, Van Bockstaele EJ et al (2010) Gene transfer to the cerebellum. Cerebellum 9(4):587–597PubMedCrossRefGoogle Scholar
  72. Lynch DR, Perlman SL, Meier T (2010) A phase 3, double-blind, placebo-controlled trial of idebenone in friedreich ataxia. Arch Neurol 67:941–947PubMedCrossRefGoogle Scholar
  73. Manto M (2008) The cerebellum, cerebellar disorders, and cerebellar research–two centuries of discoveries. Cerebellum 7:505–516PubMedCrossRefGoogle Scholar
  74. Manto M, Marmolino D (2009) Cerebellar ataxias. Curr Opin Neurol 22:419–429PubMedCrossRefGoogle Scholar
  75. Maring JR, Croarkin E (2007) Presentation and progression of Friedreich ataxia and implications for physical therapist examination. Phys Ther 87:1687–1696PubMedCrossRefGoogle Scholar
  76. Mariotti C, Solari A, Torta D et al (2003) Idebenone treatment in Friedreich patients: one-year-long randomized placebo-controlled trial. Neurology 60:1676–1679PubMedCrossRefGoogle Scholar
  77. Mariotti C, Gellera C, Rimoldi M et al (2004) Ataxia with isolated vitamin E deficiency: neurological phenotype, clinical follow-up and novel mutations in TTPA gene in Italian families. Neurol Sci 25:130–137PubMedCrossRefGoogle Scholar
  78. Martin CL, Tan D, Bragge P et al (2009) Effectiveness of physiotherapy for adults with cerebellar dysfunction: a systematic review. Clin Rehabil 23:15–26PubMedCrossRefGoogle Scholar
  79. Martinello F, Fardin P, Ottina M et al (1998) Supplemental therapy in isolated vitamin E deficiency improves the peripheral neuropathy and prevents the progression of ataxia. J Neurol Sci 156:177–179PubMedCrossRefGoogle Scholar
  80. Maschke M, Gomez CM, Ebner TJ et al (2004) Hereditary cerebellar ataxia progressively impairs force adaptation during goal-directed arm movements. J Neurophysiol 91:230–238PubMedCrossRefGoogle Scholar
  81. Matilla-Dueñas A, Goold R, Giunti P (2006) Molecular pathogenesis of spinocerebellar ataxias. Brain 129:1357–1370CrossRefGoogle Scholar
  82. Matilla-Dueñas A, Sanchez I, Corral-Juan M et al (2010) Cellular and molecular pathways triggering neurodegeneration in the spinocerebellar ataxias. Cerebellum 9:148–166PubMedCrossRefGoogle Scholar
  83. Menzies FM, Rubinsztein DC (2010) Broadening the therapeutic scope rapamycin treatment. Autophagy 6:286–287PubMedCrossRefGoogle Scholar
  84. Mestre T, Ferreira J, Coelho MM et al (2009) Therapeutic interventions for symptomatic treatment in Huntington’s disease. Cochrane Database Syst Rev (3): Art. No.: CD006456. DOI: 10.1002/14651858.CD006456.pub2Google Scholar
  85. Missaoui B, Thoumie P (2009) How far do patients with sensory ataxia benefit from so-called “proprioceptive rehabilitation”? Neurophysiol Clin 39:229–233PubMedCrossRefGoogle Scholar
  86. Mosser DD, Morimoto RI (2004) Molecular chaperones and the stress of oncogenesis. Oncogene 23:2907–2918PubMedCrossRefGoogle Scholar
  87. Muchowski PJ, Wacker JL (2005) Modulation of neurodegeneration by molecular chaperones. Nat Rev Neurosci 6:11–22PubMedCrossRefGoogle Scholar
  88. Najimi M, Sokal E (2005) Liver cell transplantation. Minerva Pediatr 57:243–257PubMedGoogle Scholar
  89. Nakamura K, Yoshida K, Miyazaki D et al (2009) Spinocerebellar ataxia type 6 (SCA6): clinical pilot trial with gabapentin. J Neurol Sci 278:107–111PubMedCrossRefGoogle Scholar
  90. Nanri K, Okita M, Takeguchi M et al (2009) Intravenous immunoglobulin therapy for autoantibody-positive cerebellar ataxia. Intern Med 48:783–790PubMedCrossRefGoogle Scholar
  91. Naoi M, Maruyama W, Yi H et al (2009) Mitochondria in neurodegenerative disorders: regulation of the redox state and death signaling leading to neuronal death and survival. J Neural Transm 116:1371–1381PubMedCrossRefGoogle Scholar
  92. Ogawa M (2004) Pharmacological treatments of cerebellar ataxia. Cerebellum 3:107–111PubMedCrossRefGoogle Scholar
  93. Ona VO, Li M, Vonsattel JP et al (1999) Inhibition of caspase-1 slows disease progression in a mouse model of Huntington’s disease. Nature 399:263–267PubMedCrossRefGoogle Scholar
  94. Pandolfo M (2008) Drug Insight: antioxidant therapy in inherited ataxias. Nat Clin Pract Neurol 4:86–96PubMedCrossRefGoogle Scholar
  95. Pandolfo M, Pastore A (2009) The pathogenesis of Friedreich ataxia and the structure and function of frataxin. J Neurol 256(Suppl 1):9–17PubMedCrossRefGoogle Scholar
  96. Perlman SL (2004) Symptomatic and disease-modifying therapy for the progressive ataxias. Neurologist 10:275–289PubMedCrossRefGoogle Scholar
  97. Perlmutter E, Gregory PC (2003) Rehabilitation treatment options for a patient with paraneoplastic cerebellar degeneration. Am J Phys Med Rehabil 82:158–162PubMedCrossRefGoogle Scholar
  98. Pineda M, Arpa J, Montero R et al (2008) Idebenone treatment in paediatric and adult patients with Friedreich ataxia: long-term follow-up. Eur J Paediatr Neurol 12:470–475PubMedCrossRefGoogle Scholar
  99. Pineda M, Montero R, Aracil A et al (2010) Coenzyme Q(10)-responsive ataxia: 2-year-treatment follow-up. Mov Disord 15:1262–1268CrossRefGoogle Scholar
  100. Rai M, Soragni E, Jenssen K et al (2008) HDAC inhibitors correct frataxin deficiency in a Friedreich ataxia mouse model. PLoS ONE 3:e1958PubMedCrossRefGoogle Scholar
  101. Rai M, Soragni E, Chou CJ et al (2010) Two new pimelic diphenylamide HDAC inhibitors induce sustained frataxin upregulation in cells from Friedreich’s ataxia patients and in a mouse model. PLoS ONE 5:e8825PubMedCrossRefGoogle Scholar
  102. Rapoport M, Lorberboum-Galski H (2009) TAT-based drug delivery system–new directions in protein delivery for new hopes? Expert Opin Drug Deliv 6:453–463PubMedCrossRefGoogle Scholar
  103. Ravikumar B, Vacher C, Berger Z et al (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 36:585–595PubMedCrossRefGoogle Scholar
  104. Regal L, Ebberink MS, Goemans N et al (2010) Mutations in PEX10 are a cause of autosomal recessive ataxia. Ann Neurol 68:259–263PubMedGoogle Scholar
  105. Ribai P, Pousset F, Tanguy ML et al (2007) Neurological, cardiological, and oculomotor progression in 104 patients with Friedreich ataxia during long-term follow-up. Arch Neurol 64:558–564PubMedCrossRefGoogle Scholar
  106. Richter S, Dimitrova A, Maschke M et al (2005) Degree of cerebellar ataxia correlates with three-dimensional mri-based cerebellar volume in pure cerebellar degeneration. Eur Neurol 54:23–27PubMedCrossRefGoogle Scholar
  107. Rimoldi M, Servadio A, Zimarino V (2001) Analysis of heat shock transcription factor for suppression of polyglutamine toxicity. Brain Res Bull 56:353–362PubMedCrossRefGoogle Scholar
  108. Rinaldi C, Tucci T, Maione S et al (2009) Low-dose idebenone treatment in Friedreich’s ataxia with and without cardiac hypertrophy. J Neurol 256:1434–1437PubMedCrossRefGoogle Scholar
  109. Ristori G, Romano S, Visconti A et al (2010) Riluzole in cerebellar ataxia: a randomized, double-blind, placebo-controlled pilot trial. Neurology 74:839–845PubMedCrossRefGoogle Scholar
  110. Rustin P, von Kleist-Retzow JC, Chantrel-Groussard K et al (1999) Effect of idebenone on cardiomyopathy in Friedreich’s ataxia: a preliminary study. Lancet 354:477–479PubMedCrossRefGoogle Scholar
  111. Ryu H, Rosas HD, Hersch SM et al (2005) The therapeutic role of creatine in Huntington’s disease. Pharmacol Ther 108:193–207PubMedCrossRefGoogle Scholar
  112. Saha K, Jaenisch R (2009) Technical challenges in using human induced pluripotent stem cells to model disease. Cell Stem Cell 5:584–595PubMedCrossRefGoogle Scholar
  113. Salen G, Batta AK, Tint GS et al (1994) Comparative effects of lovastatin and chenodeoxycholic acid on plasma cholestanol levels and abnormal bile acid metabolism in cerebrotendinous xanthomatosis. Metabolism 43:1018–1022PubMedCrossRefGoogle Scholar
  114. Sanchez I, Xu CJ, Juo P et al (1999) Caspase-8 is required for cell death induced by expanded polyglutamine repeats. Neuron 22:623–633PubMedCrossRefGoogle Scholar
  115. Sanchez I, Mahlke C, Yuan J (2003) Pivotal role of oligomerization in expanded polyglutamine neurodegenerative disorders. Nature 421:373–379PubMedCrossRefGoogle Scholar
  116. Saute JA, da Silva AC, Muller AP et al (2011) Serum insulin-like system alterations in patients with spinocerebellar ataxia type 3. Mov Disord 26:731–735Google Scholar
  117. Schmitz-Hubsch T, du Montcel ST, Baliko L et al (2006) Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology 66:1717–1720PubMedCrossRefGoogle Scholar
  118. Schmitz-Hubsch T, Fimmers R, Rakowicz M et al (2010) Responsiveness of different rating instruments in spinocerebellar ataxia patients. Neurology 74:678–684PubMedCrossRefGoogle Scholar
  119. Schols L, Haan J, Riess O et al (1998) Sleep disturbance in spinocerebellar ataxias: is the SCA3 mutation a cause of restless legs syndrome? Neurology 51:1603–1607PubMedCrossRefGoogle Scholar
  120. Schulz JB, Boesch S, Burk K et al (2009) Diagnosis and treatment of Friedreich ataxia: a European perspective. Nat Rev Neurol 5:222–234PubMedCrossRefGoogle Scholar
  121. Serra A, Liao K, Martinez-Conde S et al (2008) Suppression of saccadic intrusions in hereditary ataxia by memantine. Neurology 70:810–812PubMedCrossRefGoogle Scholar
  122. Shults CW (2003) Coenzyme Q10 in neurodegenerative diseases. Curr Med Chem 10:1917–1921PubMedCrossRefGoogle Scholar
  123. Sliwa JA, Thatcher S, Jet J (1994) Paraneoplastic subacute cerebellar degeneration: functional improvement and the role of rehabilitation. Arch Phys Med Rehabil 75:355–357PubMedCrossRefGoogle Scholar
  124. Sokal EM, Smets F, Bourgois A et al (2003) Hepatocyte transplantation in a 4-year-old girl with peroxisomal biogenesis disease: technique, safety, and metabolic follow-up. Transplantation 76:735–738PubMedCrossRefGoogle Scholar
  125. Strupp M, Schuler O, Krafczyk S et al (2003) Treatment of downbeat nystagmus with 3,4-diaminopyridine: a placebo-controlled study. Neurology 61:165–170PubMedCrossRefGoogle Scholar
  126. Strupp M, Kalla R, Dichgans M et al (2004) Treatment of episodic ataxia type 2 with the potassium channel blocker 4-aminopyridine. Neurology 62:1623–1625PubMedCrossRefGoogle Scholar
  127. Strupp M, Kalla R, Glasauer S et al (2008) Aminopyridines for the treatment of cerebellar and ocular motor disorders. Prog Brain Res 171:535–541PubMedCrossRefGoogle Scholar
  128. Sturm B, Stupphann D, Kaun C et al (2005) Recombinant human erythropoietin: effects on frataxin expression in vitro. Eur J Clin Invest 35:711–717PubMedCrossRefGoogle Scholar
  129. Tanaka M, Machida Y, Niu S et al (2004) Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease. Nat Med 10:148–154PubMedCrossRefGoogle Scholar
  130. Tenzen T, Zembowicz F, Cowan CA (2010) Genome modification in human embryonic stem cells. J Cell Physiol 222:278–281PubMedCrossRefGoogle Scholar
  131. Thomas EA, Coppola G, Desplats PA et al (2008) The HDAC inhibitor 4b ameliorates the disease phenotype and transcriptional abnormalities in Huntington’s disease transgenic mice. Proc Natl Acad Sci USA 105:15564–15569PubMedCrossRefGoogle Scholar
  132. Traber MG, Sokol RJ, Kohlschutter A et al (1993) Impaired discrimination between stereoisomers of alpha-tocopherol in patients with familial isolated vitamin E deficiency. J Lipid Res 34:201–210PubMedGoogle Scholar
  133. Tredget J, Kirov A, Kirov G (2010) Effects of chronic lithium treatment on renal function. J Affect Disord 126:436–440PubMedCrossRefGoogle Scholar
  134. Trujillo-Martin MM, Serrano-Aguilar P, Monton-Alvarez F et al (2009) Effectiveness and safety of treatments for degenerative ataxias: a systematic review. Mov Disord 24:1111–1124PubMedCrossRefGoogle Scholar
  135. Tsunemi T, Ishikawa K, Tsukui K et al (2010) The effect of 3,4-diaminopyridine on the patients with hereditary pure cerebellar ataxia. J Neurol Sci 292:81–84PubMedCrossRefGoogle Scholar
  136. Tuite PJ, Rogaeva EA, St George-Hyslop PH et al (1995) Dopa-responsive parkinsonism phenotype of Machado-Joseph disease: confirmation of 14q CAG expansion. Ann Neurol 38:684–687PubMedCrossRefGoogle Scholar
  137. Vaz DV, Schettino Rde C, Rolla de Castro TR et al (2008) Treadmill training for ataxic patients: a single-subject experimental design. Clin Rehabil 22:234–241PubMedCrossRefGoogle Scholar
  138. Velasco-Sanchez D, Aracil A, Montero R et al (2010) Combined therapy with idebenone and deferiprone in patients with Friedreich’s Ataxia. Cerebellum 10(1):1–8CrossRefGoogle Scholar
  139. Verrips A, Wevers RA, Van Engelen BG et al (1999) Effect of simvastatin in addition to chenodeoxycholic acid in patients with cerebrotendinous xanthomatosis. Metabolism 48:233–238PubMedCrossRefGoogle Scholar
  140. Vyas PM, Payne RM (2008) TAT opens the door. Mol Ther 16:647–648PubMedCrossRefGoogle Scholar
  141. Watson MJ (2009) Systematic review of the effectiveness of physiotherapy for cerebellar dysfunction. Clin Rehabil 23:764–765PubMedCrossRefGoogle Scholar
  142. Weinstein R (1999) Phytanic acid storage disease (Refsum’s disease): clinical characteristics, pathophysiology and the role of therapeutic apheresis in its management. J Clin Apher 14:181–184PubMedCrossRefGoogle Scholar
  143. Xia H, Mao Q, Eliason SL et al (2004) RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nat Med 10:816–820PubMedCrossRefGoogle Scholar
  144. Yokota T, Shiojiri T, Gotoda T et al (1997) Friedreich-like ataxia with retinitis pigmentosa caused by the His101Gln mutation of the alpha-tocopherol transfer protein gene. Ann Neurol 41:826–832PubMedCrossRefGoogle Scholar
  145. Yoshida H, Yoshizawa T, Shibasaki F et al (2002) Chemical chaperones reduce aggregate formation and cell death caused by the truncated Machado-Joseph disease gene product with an expanded polyglutamine stretch. Neurobiol Dis 10:88–99PubMedCrossRefGoogle Scholar
  146. Zamel R, Khan R, Pollex RL et al (2008) Abetalipoproteinemia: two case reports and literature review. Orphanet J Rare Dis 3:19PubMedCrossRefGoogle Scholar
  147. Zesiewicz TA, Sullivan KL (2008) Treatment of ataxia and imbalance with varenicline (chantix): report of 2 patients with spinocerebellar ataxia (types 3 and 14). Clin Neuropharmacol 31:363–365PubMedCrossRefGoogle Scholar
  148. Zesiewicz TA, Sullivan KL, Gooch CL et al (2009) Subjective improvement in proprioception in 2 patients with atypical Friedreich ataxia treated with varenicline (Chantix). J Clin Neuromuscul Dis 10:191–193PubMedCrossRefGoogle Scholar
  149. Zhang X, Smith DL, Meriin AB et al (2005) A potent small molecule inhibits polyglutamine aggregation in Huntington’s disease neurons and suppresses neurodegeneration in vivo. Proc Natl Acad Sci USA 102:892–897PubMedCrossRefGoogle Scholar
  150. Zintzaras E, Kitsios GD, Papathanasiou AA et al (2010) Randomized trials of dopamine agonists in restless legs syndrome: a systematic review, quality assessment, and meta-analysis. Clin Ther 32:221–237PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Antoni Matilla-Dueñas
    • 1
  • Carme Serrano
    • 2
  • Yerko Ivánovic
    • 6
    • 3
  • Ramiro Alvarez
    • 4
  • Pilar Latorre
    • 4
  • David Genís
    • 5
  1. 1.Department of NeurosciencesBasic, Translational and Molecular Neurogenetics Research Unit, Health Sciences Research Institute Germans Trias I Pujol (IGTP), Universitat Autònoma de BarcelonaBadalona (Barcelona)Spain
  2. 2.Neurology ServiceHospital de MartorellBarcelonaSpain
  3. 3.National Reference Care Centre for People with Rare Diseases and Their Families–CREER–(Burgos)IMSERSOBurgosSpain
  4. 4.Neurodegeneration Unit, Neurology ServiceUniversity Hospital Germans Trias i Pujol (HUGTP)Badalona (Barcelona)Spain
  5. 5.Neurodegenerative Diseases UnitUniversity Hospital of Girona Dr. Josep TruetaGironaSpain
  6. 6.Monte Alto Rehabilitation Medical Center, (Madrid)Private PracticeMadridSpain

Personalised recommendations