Mitochondrial Disorders

  • Stefano Di Donato
  • Daniele Marmolino
  • Franco Taroni
Reference work entry


Mitochondria, double-membrane organelles, are the major site of energy production and vital components of all eukaryotic cells because of the presence in their inner membrane of the respiratory chain (RC) which accomplishes oxidative phosphorylation (OXPHOS). In addition to respiration, mitochondria carry out diverse tasks which include import of proteins, ions, and metabolites, anaplerotic and degradative metabolic reactions, organelle dynamics, and signaling for apoptosis. Despite this multiplicity of functions, the term “mitochondrial disorders” is currently ascribed to OXPHOS diseases. Given the complexity of its biochemistry and of its peculiar dual genetic control, proper OXPHOS is a process that requires the assembly of numerous different proteins coded either by the mitochondrial genome or by the nuclear genome, and the orchestrated function of the five respiratory chain enzyme complexes packaged in the RC, the special hetero-multimeric structure of the inner mitochondrial membrane. Hence, mutations in mitochondrial DNA genes or in nuclear DNA genes encoding integral proteins of the RC subcomplexes, their regulatory and assembly factors, and the set of proteins that complete and regulate cellular bioenergetics, cause OXPHOS dysfunction and a corresponding variety of genetic diseases with heterogeneous clinical manifestations. This chapter focuses on mitochondrial disorders that express significant pathology in the cerebellum and in its long-tract connections with the peripheral organs, particularly the neuromuscular and osteoarticular systems, and manifest with spinocerebellar ataxia as the prominent symptom or sign.


Purkinje Cell Spinocerebellar Ataxia Cerebellar Atrophy Friedreich Ataxia FRDA Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abu-Amero K, Al-Dhalaan H, Bohlega S et al (2009) A patient with typical clinical features of mitochondrial encephalopathy, lactic acidosis and stroke-like episodes (MELAS) but without an obvious genetic cause: a case report. J Med Case Rep 3:77PubMedCrossRefGoogle Scholar
  2. Allikmets R, Raskind WH, Hutchinson A et al (1999) Mutation of a putative mitochondrial iron transporter gene (ABC7) in X-linked sideroblastic anemia and ataxia (XLSA/A). Hum Mol Genet 8:743–749PubMedCrossRefGoogle Scholar
  3. Alper G, Narayanan V (2003) Friedreich’s ataxia. Pediatr Neurol 28:335–341PubMedCrossRefGoogle Scholar
  4. Ankel-Simons F, Cummins J (1996) Misconceptions about mitochondria and mammalian fertilization: implications for theories on human evolution. Proc Natl Acad Sci USA 93:13859–63PubMedCrossRefGoogle Scholar
  5. Babcock M, de Silva D, Oaks R et al (1997) Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin. Science 276:1709PubMedCrossRefGoogle Scholar
  6. Baughman J, Mootha V (2006) Buffering mitochondrial DNA variation. Nat Genet 38:1232–1233PubMedCrossRefGoogle Scholar
  7. Bekri S, Kispal G, Lange H et al (2000) Human ABC7 transporter: gene structure and mutation causing X-linked sideroblastic anemia with ataxia with disruption of cytosolic iron-sulfur protein maturation. Blood 96:3256–3264PubMedGoogle Scholar
  8. Belevich I, Verkohovsky M, Wilstrom M (2006) Proton-coupled electron transfer drives the proton pump of cytochrome c oxidase. Nature 440:829–832PubMedCrossRefGoogle Scholar
  9. Berenberg R, Pellock J, Di Mauro S et al (1977) Lumping or splitting? “Ophthalmoplegia-plus” or Kearns-Sayre syndrome? Ann Neurol 1:37–54PubMedCrossRefGoogle Scholar
  10. Berkovic SF, Cochius J, Andermann E et al (1993) Progressive myoclonus epilepsies: clinical and genetic aspects. Epilepsia 3:19–30Google Scholar
  11. Bhidayasiri R, Perlman SL, Pulst SM et al (2005) Late-onset Friedreich ataxia: phenotypic analysis, magnetic resonance imaging findings, and review of the literature. Arch Neurol 62:1865–1869PubMedCrossRefGoogle Scholar
  12. Bidichandani SI, Ashizawa T, Patel PI (1997) Atypical Friedreich’s ataxia caused by compound heterozygosity for a novel missense mutation and the GAA triplet-repeat expansion. Am J Hum Genet 60:1251–1256PubMedGoogle Scholar
  13. Bidichandani SI, Ashizawa T, Patel PI (1998) The GAA triplet-repeat expansion in Friedreich ataxia interferes with transcription and may be associated with an unusual DNA structure. Am J Hum Genet 62:111–121PubMedCrossRefGoogle Scholar
  14. Bidichandani SI, Garcia CA, Patel PI et al (2000) Very late-onset Friedreich ataxia despite large GAA triplet repeat expansions. Arch Neurol 57:246–251PubMedCrossRefGoogle Scholar
  15. Blok R, Thorburn D, Thompson G et al (1995) A topoisomerase II cleavage site is associated with a novel mitochondrial DNA deletion. Hum Genet 95:75–81PubMedCrossRefGoogle Scholar
  16. Boddaert N, Le Quan Sang KH, Rotig A et al (2007) Selective iron chelation in Friedreich ataxia: biologic and clinical implications. Blood 110:401–408PubMedCrossRefGoogle Scholar
  17. Boesch S, Sturm B, Hering S et al (2008) Neurological effects of recombinant human erythropoietin in Friedreich’s ataxia: a clinical pilot trial. Mov Disord 23:1940–1944PubMedCrossRefGoogle Scholar
  18. Borner G, Zeviani M, Tiranti V et al (2000) Decreased aminoacylation of mutant tRNAs in MELAS but not in MERRF patients. Hum Mol Genet 9:467–475PubMedCrossRefGoogle Scholar
  19. Cagnoli C, Stevanin G, Brussino A et al (2010) Missense mutations in the AFG3L2 proteolytic domain account for approximately 1.5% of European autosomal dominant cerebellar ataxias. Hum Mutat 31:1117–1124PubMedCrossRefGoogle Scholar
  20. Campos Y, Martin M, Rubio J et al (1997) Leigh syndrome associated with the T9176C mutation in the ATPase6 gene of mitochondrial DNA. Neurology 49:595–597PubMedCrossRefGoogle Scholar
  21. Campuzano V, Montermini L, Molto MD et al (1996) Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271:1423–1427PubMedCrossRefGoogle Scholar
  22. Campuzano V, Montermini L, Lutz Y et al (1997) Frataxin is reduced in Friedreich ataxia patients and is associated with mitochondrial membranes. Hum Mol Genet 6:1771–1780PubMedCrossRefGoogle Scholar
  23. Carelli V, Giordano C, d’Amati G (2003) Pathogenic expression of homoplasmic mtDNA mutations needs a complex nuclear–mitochondrial interaction. Trends Genet 19:257–262PubMedCrossRefGoogle Scholar
  24. Casali C, Fabrizi GM, Santorelli FM et al (1999) Mitochondrial G8363A mutation presenting as cerebellar ataxia and lipomas in an Italian family. Neurology 52:1103–1104PubMedCrossRefGoogle Scholar
  25. Casari G, De Fusco M, Ciarmatori S et al (1998) Spastic paraplegia and OXPHOS impairment caused by mutations in paraplegin, a nuclear-encoded mitochondrial metalloprotease. Cell 93:973–983PubMedCrossRefGoogle Scholar
  26. Casazza F, Morpurgo M (1996) The varying evolution of Friedreich’s ataxia cardiomyopathy. Am J Cardiol 77:895–898PubMedCrossRefGoogle Scholar
  27. Castagna A, Addis J, McInnes R et al (2007) Late onset Leigh syndrome and ataxia due to a T to C mutation at bp 9,185 of mitochondrial DNA. Am J Med Genet 143:808–816CrossRefGoogle Scholar
  28. Cavadini P, Gellera C, Patel P et al (2000) Human frataxin maintains mitochondrial iron homeostasis in Saccharomyces cerevisiae. Hum Mol Genet 9:2523–2530PubMedCrossRefGoogle Scholar
  29. Chan D (2006) Mitochondria: dynamic organelles in disease, aging, and development. Cell 125:124152CrossRefGoogle Scholar
  30. Chan D (2007) Mitochondrial dynamics in disease. New Engl J Med 356:1707–709PubMedCrossRefGoogle Scholar
  31. Chantrel-Groussard K, Geromel V, Puccio H et al (2001) Disabled early recruitment of antioxidant defenses in Friedreich’s ataxia. Hum Mol Genet 10:2061–2067PubMedCrossRefGoogle Scholar
  32. Chen H, McCaffery J, Chan D (2007) Mitochondrial fusion protects against neurodegeneration in the cerebellum. Cell 130:548–562PubMedCrossRefGoogle Scholar
  33. Childs A, Hutchin T, Pysden K et al (2007) Variable phenotype including Leigh syndrome with a 9185 T > C mutation in the MTATP6 gene. Neuropediatrics 38:313–316PubMedCrossRefGoogle Scholar
  34. Chinnery P, Howell N, Lightowlers R et al (1997) Molecular pathology of MELAS and MERRF. The relationship between mutation load and clinical phenotypes. Brain 120:1713–1721PubMedCrossRefGoogle Scholar
  35. Cho SJ, Lee MG, Yang JK et al (2000) Crystal structure of Escherichia coli CyaY protein reveals a previously unidentified fold for the evolutionarily conserved frataxin family. Proc Natl Acad Sci USA 97:8932–8937PubMedCrossRefGoogle Scholar
  36. Cohen BH, Chinnery PF, Copeland WC (2010) POLG-related disorders (Updated March 16, 2010). In: Pagon RA, Bird TD, Dolan CR, Stephens K (eds). GeneReviews at GeneTests: Medical Genetics Information Resource (database online). University of Washington, Seattle. 1993–2011.
  37. Corona P, Lamantea E, Greco M et al (2002) Novel heteroplasmic mtDNA mutation in a family with heterogeneous clinical presentations. Ann Neurol 51:118–122PubMedCrossRefGoogle Scholar
  38. Cossée M, Puccio H, Gansmuller A et al (2000) Inactivation of the Friedreich ataxia mouse gene leads to early embryonic lethality without iron accumulation. Hum Mol Genet 9:1219–1226PubMedCrossRefGoogle Scholar
  39. Craig K, Ferrari G, Tiangyou W et al. (2007) The A467T and W748S POLG substitutions are a rare cause of adult-onset ataxia in Europe. Brain 130: E69; author reply E70Google Scholar
  40. de Brito O, Scorrano L (2008) Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456:605–610PubMedCrossRefGoogle Scholar
  41. De Michele G, Filla A, Cavalcanti F et al (1994) Late onset Friedreich’s disease: clinical features and mapping of mutation to the FRDA locus. J Neurol Neurosurg Psychiatry 57:977–979PubMedCrossRefGoogle Scholar
  42. De Vries D, van Engelen B, Gabreels F et al (1993) A second missense mutation in the mitochondrial ATPase 6 gene in Leigh’s syndrome. Ann Neurol 34:410–412PubMedCrossRefGoogle Scholar
  43. Debray F, Lambert M, Lortie A et al (2007) Longterm outcome of Leigh syndrome caused by the NARP-T8993C mtDNA mutation. Am J Med Genet 143:2046–2051CrossRefGoogle Scholar
  44. Delatycki MB, Williamson R, Forrest SM (2000) Friedreich ataxia: an overview. J Med Genet 37:1–8PubMedCrossRefGoogle Scholar
  45. Deschauer M, Tennant S, Rokicka A et al (2007) MELAS associated with mutations in the POLG1 gene. Neurology 68:1741–1742PubMedCrossRefGoogle Scholar
  46. Desguerre I, Pinton F, Nabbout R et al (2003) Infantile spasms with basal ganglia MRI hypersignal may reveal mitochondrial disorder due to T8993G mt DNA mutation. Neuropediatrics 34:265–269PubMedCrossRefGoogle Scholar
  47. Di Bella D, Lazzaro F, Brusco A et al (2010) Mutations in the mitochondrial protease gene AFG3L2 cause dominant hereditary ataxia SCA28. Nat Genet 42:313–321PubMedCrossRefGoogle Scholar
  48. Di Donato S (2000) Disorders related to mitochondrial membranes: pathology of the respiratory chain and neurodegeneration. J Inherit Metab Dis 23:247–263PubMedCrossRefGoogle Scholar
  49. Di Donato S (2009) Multisystem manifestations of mitochondrial disorders. J Neurol 256:693–710PubMedCrossRefGoogle Scholar
  50. Di Donato S, Taroni F (2008) Disorders of lipid metabolism. In: Rosemberg R, DiMauro S, Paulson et al. (eds) The molecular and genetic basis of neurological and psychiatric disease, 4th edn. Wolter Kluvers / Lippincot Williams & Wilkins, Philadelphia, pp 610–623Google Scholar
  51. Di Mauro S, Schon E (2008) Mitochondrial disorders in the nervous system. Ann Rev Neurosci 31:91–123CrossRefGoogle Scholar
  52. Di Mauro S, Hirano M, Kaufmann P et al (2002) Clinical features and genetics of myoclonic epilepsy with ragged red fibers. Adv Neurol 89:217–229Google Scholar
  53. Di Prospero NA, Baker A, Jeffries N et al (2007) Neurological effects of high-dose idebenone in patients with Friedreich’s ataxia: a randomised, placebo-controlled trial. Lancet Neurol 6:878–886PubMedCrossRefGoogle Scholar
  54. Duby G, Foury F, Ramazzotti A et al (2000) A non-essential function for yeast frataxin in iron-sulfur cluster assembly. Hum Mol Genet 11:2635–2643CrossRefGoogle Scholar
  55. Dürr A, Cossee M, Agid Y et al (1996) Clinical and genetic abnormalities in patients with Friedreich’s ataxia. N Engl J Med 335:1169–1175PubMedCrossRefGoogle Scholar
  56. Edener U, Wollner J, Hehr U et al (2010) Early onset and slow progression of SCA28, a rare dominant ataxia in a large four-generation family with a novel AFG3L2 mutation. Eur J Hum Genet 18:965–968PubMedCrossRefGoogle Scholar
  57. Engelsen BA, Tzoulis C, Karlsen B et al (2008) POLG1 mutations cause a syndromic epilepsy with occipital lobe predilection. Brain 131:818–828PubMedCrossRefGoogle Scholar
  58. Fadic R, Russell JA, Vedanarayanan VV et al (1997) Sensory ataxic neuropathy as the presenting feature of a novel mitochondrial disease. Neurology 49:239–245PubMedCrossRefGoogle Scholar
  59. Fahey MC, Cremer PD, Aw ST et al (2008) Vestibular, saccadic and fixation abnormalities in genetically confirmed Friedreich ataxia. Brain 131(Pt 4):1035–1045PubMedCrossRefGoogle Scholar
  60. Fan W (2008) A mouse model of mitochondrial disease reveals germline selection against severe mtDNA mutations. Science 319:958–962PubMedCrossRefGoogle Scholar
  61. Fayssoil A (2009) Heart diseases in mitochondrial encephalomyopathy, lactic acidosis, and stroke syndrome. Congest Heart Fail 15:284–287PubMedCrossRefGoogle Scholar
  62. Finocchiaro G, Baio G, Micossi P et al (1988) Glucose metabolism alterations in Friedreich’s ataxia. Neurology 38:1292–1296PubMedCrossRefGoogle Scholar
  63. Finsterer J (2008) Leigh and Leigh-like syndrome in children and adults. Pediatr Neurol 39:223–35PubMedCrossRefGoogle Scholar
  64. Fortuna F, Barboni P, Liguori R et al (2009) Visual system involvement in patients with Friedreich’s ataxia. Brain 132:116–123PubMedCrossRefGoogle Scholar
  65. Frezza C, Cipolat S, de Brito OM et al (2006) OPA1 controls apoptotic christae remodelling independently from mitochondrial fusion. Cell 126:177–189PubMedCrossRefGoogle Scholar
  66. Fukuhara N (1991) MERRF: a clinicopathological study – relationships between myoclonus epilepsies and mitochondrial myopathies. Rev Neurol (Paris) 147:476–79Google Scholar
  67. Fukuhara N (2008) Fukuhara disease. Brain Nerve 60:53–58PubMedGoogle Scholar
  68. Gellera C, Pareyson D, Castellotti B et al (1997) Very late onset Friedreich’s ataxia without genetically confirmed Friedreich ataxia. Brain 131:1035–1045Google Scholar
  69. Gellera C, Castellotti B, Mariotti C et al (2007) Frataxin gene point mutations in Italian Friedreich ataxia patients. Neurogenetics 8:289–299PubMedCrossRefGoogle Scholar
  70. Geoffroy G, Barbeau A, Breton A et al (1976) Clinical description and roentgenologic evaluation of patients with Friedreich’s ataxia. Can J Neurol Sci 3:279–286PubMedGoogle Scholar
  71. Gillis JC, Benefield P, McTavish D (1994) Idebenone A review of its pharmacodynamic and therapeutic use in age-related cognitive disorders. Drugs Aging 5(2):133–152PubMedCrossRefGoogle Scholar
  72. Gottesfeld JM (2007) Small molecules affecting transcription in Friedreich ataxia. Pharmacol Ther 116:236–248PubMedCrossRefGoogle Scholar
  73. Hakonen AH, Heiskanen S, Juvonen V et al (2005) Mitochondrial DNA polymerase W748S mutation: a common cause of autosomal recessive ataxia with ancient European origin. Am J Hum Genet 77:430–441PubMedCrossRefGoogle Scholar
  74. Hakonen AH, Isohanni P, Paetau A et al (2007) Recessive Twinkle mutations in early onset encephalopathy with mtDNA depletion. Brain 130(Pt 11):3032–3040PubMedCrossRefGoogle Scholar
  75. Hakonen AH, Goffart S, Marjavaara S et al (2008) Infantile-onset spinocerebellar ataxia and mitochondrial recessive ataxia syndrome are associated with neuronal complex I defect and mtDNA depletion. Hum Mol Genet 17(23):3822–3835PubMedCrossRefGoogle Scholar
  76. Harding AE (1981) Friedreich’s ataxia: a clinical and genetic study of 90 families with an analysis of early diagnostic criteria and intrafamilial clustering of clinical features. Brain 104:589–620PubMedCrossRefGoogle Scholar
  77. Harding AE (1983) Classification of the hereditary ataxias and paraplegias. Lancet 1:1151–1155PubMedCrossRefGoogle Scholar
  78. Harding AE (1993) Clinical features and classification of inherited ataxias. Adv Neurol 61:1–14PubMedGoogle Scholar
  79. Hellier KD, Hatchwell E, Duncombe AS et al (2001) X-linked sideroblastic anaemia with ataxia: another mitochondrial disease? J Neurol Neurosurg Psychiatry 70:65–69PubMedCrossRefGoogle Scholar
  80. Hirano M, Pavlakis S (1994) Mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes (MELAS): current concepts. J Child Neurol 9:4–13PubMedCrossRefGoogle Scholar
  81. Holt I, Harding A, Petty R, Morgan-Hughes J (1990) A new mitochondrial disease associated with mitochondrial DNA heteroplasmy. Am J Hum Genet 46:428–433PubMedGoogle Scholar
  82. Huang C, Kuo H, Chu C et al (2002) Clinical phenotype, prognosis and mitochondrial DNA mutation load in mitochondrial encephalomyopathies. J Biomed Sci 9:527–533PubMedCrossRefGoogle Scholar
  83. Hudson G, Deschauer M, Busse K et al (2005) Sensory ataxic neuropathy due to a novel C10Orf2 mutation with probable germline mosaicism. Neurology 64:371–373PubMedCrossRefGoogle Scholar
  84. Huizing M (1998) Mitochondrial transmembrane carriers in mitochondriocytopathies. Work of Thesis, Kattholieke Universiteit Nijmegen, pp 8–34Google Scholar
  85. Hutchin TP, Cortopassi G (2000) Mitochondrial defects and hearing loss. Cell Mol Life Sci 57:1927–1937PubMedCrossRefGoogle Scholar
  86. Iizuka T, Sakai F, Kan S et al (2003) Slowly progressive spread of the stroke-like lesions in MELAS. Neurology 61:1238–1244PubMedCrossRefGoogle Scholar
  87. Ishikawa Y, Goto Y, Ishikawa Y et al (2000) Progression in a case of Kearns-Sayre syndrome. J Child Neurol 11:750–755CrossRefGoogle Scholar
  88. Isnard R, Kalotka H, Durr A et al (1997) Correlation between left ventricular hypertrophy and GAA trinucleotide repeat length in Friedreich’s ataxia. Circulation 95:2247–2249PubMedCrossRefGoogle Scholar
  89. Ito S, Shirai W, Asahina M et al (2008) Clinical and brain MR imaging features focusing on the brain stem and cerebellum in patients with myoclonic epilepsy with ragged-red fibers due to mitochondrial A8344G mutation. AJNR Am J Neuroradiol 29:392–395PubMedCrossRefGoogle Scholar
  90. Jacobs H, Holt I et al (2000) The np 3243 MELAS mutation: damned if you aminoacylate, damned if you don’t. Hum Mol Genet 9:463–465PubMedCrossRefGoogle Scholar
  91. Jaksch M, Klopstock T, Kurlemann G et al (1998) Progressive myoclonus epilepsy and mitochondrial myopathy associated with mutations in the tRNA(Ser(UCN)) gene. Ann Neurol 44:635–640PubMedCrossRefGoogle Scholar
  92. Kaguni LS (2004) DNA polymerase gamma, the mitochondrial replicase. Annu Rev Biochem 73:293–320PubMedCrossRefGoogle Scholar
  93. Kaukonen J, Juselius J, Tiranti V et al (2000) Role of adenine nucleotide translocator 1 in mtDNA maintenance. Science 289:782–785PubMedCrossRefGoogle Scholar
  94. Kearney M, Orrell RW et al. (2009) Antioxidants and other pharmacological treatments for Friedreich ataxia. Cochrane Database Syst Rev CD007791Google Scholar
  95. Kearns T, Sayrne G et al (1958) Retinitis pigmentosa, external ophthalmophegia, and complete heart block: unusual syndrome with histologic study in one of two cases. AMA Arch Ophthalmol 60:280–289PubMedCrossRefGoogle Scholar
  96. Kipps A, Alexander M, Colan SD et al (2009) The longitudinal course of cardiomyopathy in Friedreich’s ataxia during childhood. Pediatr Cardiol 30:306–310PubMedCrossRefGoogle Scholar
  97. Klockgether T, Zühlke C, Schulz JB et al (1996) Friedreich’s ataxia with retained tendon reflexes: molecular genetics, clinical neurophysiology, and magnetic resonance imaging. Neurology 46:118–121PubMedCrossRefGoogle Scholar
  98. Kobayashi Y, Momoi MY, Tominaga K et al (1991) Respiration-deficient cells are caused by a single point mutation in the mitochondrial tRNA-Leu (UUR) gene in mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes (MELAS). Am J Hum Genet 49:590–599PubMedGoogle Scholar
  99. Koehler C, Jarosch E, Tokatlidis K et al (1998) Import of mitochondrial carriers mediated by essential proteins of the inner membrane space. Science 279:369–373PubMedCrossRefGoogle Scholar
  100. Koeppen AH (1998) The hereditary ataxias. J Neuropathol Exp Neurol 57:531–543PubMedCrossRefGoogle Scholar
  101. Kolb S, Costello F, Lee AG et al (2003) Distinguishing ischemic stroke from the stroke-like lesions of MELAS using apparent diffusion coefficient mapping. J Neurol Sci 216:11–15PubMedCrossRefGoogle Scholar
  102. Labuda M, Labuda D, Miranda C et al (2000) Unique origin and specific ethnic distribution of the Friedreich ataxia GAA expansion. Neurology 54:2322–2324PubMedCrossRefGoogle Scholar
  103. Lagier-Tourenne C, Tazir M, Lopez LC et al (2008) ADCK3, an ancestral kinase, is mutated in a form of recessive ataxia associated with coenzyme Q10 deficiency. Am J Hum Genet 82:661–672PubMedCrossRefGoogle Scholar
  104. Lamantea E, Tiranti V, Bordoni A et al (2002) Mutations of mitochondrial DNA polymerase gammaA are a frequent cause of autosomal dominant or recessive progressive external ophthalmoplegia. Ann Neurol 52:211–219PubMedCrossRefGoogle Scholar
  105. Lamarche JB, Cote M, Lemieux B (1980) The cardiomyopathy of Friedreich’s ataxia morphological observations in 3 cases. Can J Neurol Sci 7:389–396PubMedGoogle Scholar
  106. Lamarche JB, Lemieux B, Lieu HB (1984) The neuropathology of "typical" Friedreich’s ataxia in Quebec. Can J Neurol Sci 11:592–600PubMedGoogle Scholar
  107. Lamperti C, Naini A, Hirano M et al (2003) Cerebellar ataxia and coenzyme Q10 deficiency. Neurology 60(7):1206–1208PubMedCrossRefGoogle Scholar
  108. Langer T (2000) AAA proteases: cellular machines for degrading membrane proteins. Trends Biochem Sci 25:247–251PubMedCrossRefGoogle Scholar
  109. Llorens JV, Navarro JA, Martinez-Sebastian MJ et al (2007) Causative role of oxidative stress in a Drosophila model of Friedreich ataxia. FASEB J 21:333–344PubMedCrossRefGoogle Scholar
  110. Lonnqvist T, Paetau A, Nikali K et al (1998) Infantile onset spinocerebellar ataxia with sensory neuropathy (IOSCA): neuropathological features. J Neurol Sci 161:57–65PubMedCrossRefGoogle Scholar
  111. Lonnqvist T, Paetau A, Valanne L et al (2009) Recessive twinkle mutations cause severe epileptic encephalopathy. Brain 132:1553–1562PubMedCrossRefGoogle Scholar
  112. Lynch DR, Perlman SL, Meier T (2010) A phase 3, double-blind, placebo-controlled trial of idebenone in friedreich ataxia. Arch Neurol 67:941–947PubMedCrossRefGoogle Scholar
  113. Manto M (2010) Cerebellar disorders. Cambridge University Press, Cambridge, UKCrossRefGoogle Scholar
  114. Mariotti C, Solari A, Torta D et al (2003) Idebenone treatment in Friedreich patients: one-year-long randomized placebo-controlled trial. Neurology 60:1676–1679PubMedCrossRefGoogle Scholar
  115. Mariotti C, Brusco A, Di Bella D et al (2008) Spinocerebellar ataxia type 28: a novel autosomal dominant cerebellar ataxia characterized by slow progression and ophthalmoparesis. Cerebellum 7:184–188PubMedCrossRefGoogle Scholar
  116. Marmolino D, Acquaviva F (2009) Friedreich’s Ataxia: from the (GAA)n repeat mediated silencing to new promising molecules for therapy. Cerebellum 8:245–259PubMedCrossRefGoogle Scholar
  117. Marmolino D, Acquaviva F, Pinelli M et al (2009) PPAR-gamma agonist Azelaoyl PAF increases frataxin protein and mRNA expression: new implications for the Friedreich’s ataxia therapy. Cerebellum 8:98–103PubMedCrossRefGoogle Scholar
  118. Martelli A, Wattenhofer-Donzé M, Schmucker S, Bouvet S, Reutenauer L, Puccio H (2007) Frataxin is extramitochondrial Fe-S cluster proteins in mammalian tissues. Hum Mol Genet 16:2651–2658PubMedCrossRefGoogle Scholar
  119. Martinelli P, La Mattina V, Bernacchia A et al (2009) Genetic interaction between the m-AAA protease isoenzymes reveals novel roles in cerebellar degeneration. Hum Mol Genet 18:2001–2013PubMedCrossRefGoogle Scholar
  120. Mascalchi M, Salvi F, Piacentini S et al (1994) Friedreich’s ataxia: MR findings involving the cervical portion of the spinal cord. AJR Am J Roentgenol 163:187–191PubMedGoogle Scholar
  121. Mehrazin M, Shanske S, Kaufmann P et al (2009) Longitudinal changes of mtDNA A3243G mutation load and level of functioning in MELAS. Am J Med Genet 149:584–587CrossRefGoogle Scholar
  122. Milone M, Brunetti-Pierri N, Tang LY et al (2008) Sensory ataxic neuropathy with ophthalmoparesis caused by POLG mutations. Neuromuscul Disord 18:626–632PubMedCrossRefGoogle Scholar
  123. Mollet J, Delahodde A, Serre V et al (2008) CABC1 gene mutations cause ubiquinone deficiency with cerebellar ataxia and seizures. Am J Hum Genet 82:623–630PubMedCrossRefGoogle Scholar
  124. Montermini L, Richter A, Morgan K et al (1997) Phenotypic variability in Friedreich ataxia: role of the associated GAA triplet repeat expansion. Ann Neurol 41:675–682PubMedCrossRefGoogle Scholar
  125. Montero R, Pineda M, Aracil A et al (2007) Clinical, biochemical and molecular aspects of cerebellar ataxia and coenzyme Q10 deficiency. Cerebellum 6:118–122PubMedCrossRefGoogle Scholar
  126. Moraes CT, Sciacco M, Ricci E et al (1995) Phenotype-genotype correlations in skeletal muscle of patients with mtDNA deletions. Muscle Nerve 3:150–S153CrossRefGoogle Scholar
  127. Moreno-Loshuertos R, Acín-Pérez R, Fernández-Silva P et al (2006) Differences in reactive oxygen species production explain the phenotypes associated with common mouse mitochondrial DNA variants. Nat Genet 38:1261–1268PubMedCrossRefGoogle Scholar
  128. Morgello S, Peterson H, Kahn L et al (1988) Menkes kinky hair disease with “ragged red” fibers. Dev Med Child Neurol 30:812–816PubMedCrossRefGoogle Scholar
  129. Nakamura M, Nakano S, Goto Y et al (1995) A novel point mutation in the tRNAser(UCN) gene detected in a family with MERRF/MELAS overlap syndrome. Biochem Biophys Res Commun 14:86–93CrossRefGoogle Scholar
  130. Naviaux RK, Nguyen KV et al (2004) POLG mutations associated with Alpers’ syndrome. Neurology 60:1206–1208Google Scholar
  131. Nikali K, Suomalainen A, Saharinen J et al (2005) Infantile onset spinocerebellar ataxia is caused by recessive mutations in mitochondrial proteins Twinkle and Twinky. Hum Mol Genet 14:2981–2990PubMedCrossRefGoogle Scholar
  132. Ohama E, Ohara S, Ikuta F et al (1987) Mitochondrial angiopathy in cerebral blood vessels of mitochondrial encephalomyopathy. Acta Neuropathol 74:226–233PubMedCrossRefGoogle Scholar
  133. Ohshima K, Montermini L, Wells RD et al (1998) Inhibitory effects of expanded GAA.TTC triplet repeats from intron I of the Friedreich ataxia gene on transcription and replication in vivo. J Biol Chem 273:14588–14595PubMedCrossRefGoogle Scholar
  134. Oldfors A, Holme E, Tulinius M et al (1995) Tissue distribution and disease manifestations of the tRNA(Lys) A– > G(8344) mitochondrial DNA mutation in a case of myoclonus epilepsy and ragged red fibres. Acta Neuropathol 90:328–333PubMedCrossRefGoogle Scholar
  135. Ota Y, Miyake Y, Awaya S et al (1994) Early retinal involvement in mitochondrial myopathy with mitochondrial DNA deletion. Retina 14:270–276PubMedCrossRefGoogle Scholar
  136. Palau F, De Michele G, Vilchez JJ et al (1995) Early-onset ataxia with cardiomyopathy and retained tendon reflexes maps to the Friedreich’s ataxia locus on chromosome 9q. Ann Neurol 37:359–362PubMedCrossRefGoogle Scholar
  137. Palmieri L, Lasorsa FM, Vozza A et al (2000) Identification and functions of new transporters in yeast mitochondria. Biochim Biophys Acta 1459(2–3):363–369PubMedGoogle Scholar
  138. Pandolfo M (2006) Friedreich ataxia: Detection of GAA repeat expansions and frataxin point mutations. Methods Mol Med 126:197–216PubMedGoogle Scholar
  139. Pandolfo M (2008a) Drug insight: antioxidant therapy in inherited ataxias. Nat Clin Pract Neurol 4:86–96PubMedCrossRefGoogle Scholar
  140. Pandolfo M (2008b) Friedreich ataxia. Arch Neurol 65:1296–1303PubMedCrossRefGoogle Scholar
  141. Pandolfo M, Pastore A (2009) The pathogenesis of Friedreich ataxia and the structure and function of frataxin. J Neurol 1:9–17CrossRefGoogle Scholar
  142. Petruzzella V, Zoccolella S, Amati A et al (2004) Cerebellar ataxia as atypical manifestation of the 3243A > G MELAS mutation. Clin Genet 65:64–65PubMedCrossRefGoogle Scholar
  143. Pineda M, Montero R, Aracil A et al (2010) Coenzyme Q(10)-responsive ataxia: 2-year-treatment follow-up. Mov Disord 25:1262–1268PubMedCrossRefGoogle Scholar
  144. Piruat J, Lopez-Barneo J (2005) Oxygen tension regulates mitochondrial DNA-encoded complex I gene expression. J Biol Chem 52:42676–42684CrossRefGoogle Scholar
  145. Poulton J, Deadman M, Gardiner R (1989) Duplications of mitochondrial DNA in mitochondrial myopathy. Lancet 1:236–240PubMedCrossRefGoogle Scholar
  146. Poyton R, McEwen JE (1996) Crosstalk between nuclear and mitochondrial genomes. Annu Rev Biochem 65:563–607PubMedCrossRefGoogle Scholar
  147. Puccio H (2009) Multicellular models of Friedreich ataxia. J Neurol 1:18–24CrossRefGoogle Scholar
  148. Puccio H, Simon D, Cossee M et al (2001) Mouse models for Friedreich ataxia exhibit cardiomyopathy, sensory nerve defect and Fe-S enzyme deficiency followed by intramitochondrial iron deposits. Nat Genet 27:181–186PubMedCrossRefGoogle Scholar
  149. Quinzii CM, Hirano M (2010) Coenzyme Q and mitochondrial disease. Dev Disabil Res Rev 16:183–188PubMedCrossRefGoogle Scholar
  150. Quinzii CM, Lopez LC, Naini A et al (2008) Human CoQ10 deficiencies. Biofactors 32:113–118PubMedCrossRefGoogle Scholar
  151. Ramelli G, Gallati S, Weis J et al (2006) Point mutation tRNA(Ser(UCN)) in a child with hearing loss and myoclonus epilepsy. J Child Neurol 21:253–255PubMedGoogle Scholar
  152. Ricquier D, Bouillard F (2000) Mitochondrial uncoupling proteins: from mitochondria to the regulation of energy balance. J Physiol 529:3–10PubMedCrossRefGoogle Scholar
  153. Rizzuto R, Bernardi P, Pozzan T (2000) Mitochondria as all-round players of the calcium game. J Physiol 529:37–47PubMedCrossRefGoogle Scholar
  154. Robain O, Aubourg P, Routon M (1988) Menkes disease: a Golgi and electron microscopic study of the cerebellar cortex. Clin Neuropathol 7:47–52PubMedGoogle Scholar
  155. Rojo A, Campos Y, Sánchez J et al (2006) NARP-MILS syndrome caused by 8993 T > G mitochondrial DNA mutation: a clinical, genetic and neuropathological study. Acta Neuropathol 111:610–616PubMedCrossRefGoogle Scholar
  156. Rötig A, de Lonlay P, Chretien D et al (1997) Aconitase and mitochondrial iron-sulphur protein deficiency in Friedreich ataxia. Nat Genet 17:215–217PubMedCrossRefGoogle Scholar
  157. Sandi C, Pinto RM, Al-Mahdawi S et al (2011) Prolonged treatment with pimelic o-aminobenzamide HDAC inhibitors ameliorates the disease phenotype of a Friedreich ataxia mouse model. Neurobiol Dis 42(3):496–505PubMedCrossRefGoogle Scholar
  158. Sano M, Ishii K, Momose Y et al (1995) Cerebral metabolism of oxygen and glucose in a patient with MELAS syndrome. Acta Neurol Scand 92:497–502PubMedCrossRefGoogle Scholar
  159. Santorelli F, Shanske S, Macaya A et al (1993) The mutation at nt 8993 of mitochondrial DNAis a common cause of Leigh’s syndrome. Ann Neurol 34:827–34PubMedCrossRefGoogle Scholar
  160. Santorelli F, Tanji K, Shanske S et al (1997) Heterogeneous clinical presentation of the mtDNA NARP/T8993G mutation. Neurology 49:270–273PubMedCrossRefGoogle Scholar
  161. Santos R, Lefevre S, Sliwa D et al (2010) Friedreich ataxia: molecular mechanisms, redox considerations, and therapeutic opportunities. Antioxid Redox Signal 13(5):651–90PubMedCrossRefGoogle Scholar
  162. Saraste M (1999) Oxidative phosphorylation fin siecle. Science 283:1488–1492PubMedCrossRefGoogle Scholar
  163. Sasarman F, Antonicka H, Shoubridge E (2008) The A3243G tRNALeu(UUR) MELAS mutation causes amino acid misincorporation and a combined respiratory chain assembly defect partially suppressed by overexpression of EFTu and EFG2. Hum Mol Genet 17:3697–3707PubMedCrossRefGoogle Scholar
  164. Schatz G, Dobberstein B (1996) Common principles of protein translocation across membranes. Science 271:1519–26PubMedCrossRefGoogle Scholar
  165. Schmucker S, Puccio H (2010) Understanding the molecular mechanisms of Friedreich’s ataxia to develop therapeutic approaches. Hum Mol Genet 19:R103–R110PubMedCrossRefGoogle Scholar
  166. Schmucker S, Martelli A, Colin F et al (2011) Mammalian frataxin: an essential function for cellular viability through an interaction with a preformed ISCU/NFS1/ISD11 iron-sulfur assembly complex. PLoS ONE 6:e16199PubMedCrossRefGoogle Scholar
  167. Schols L, Amoiridis G, Przuntek H et al (1997) Friedreich’s ataxia. Revision phenotype according molecular genetics. Brain 120:2131–2140PubMedCrossRefGoogle Scholar
  168. Schulz JB, Boesch S, Burk K et al (2009) Diagnosis and treatment of Friedreich ataxia: a European perspective. Nat Rev Neurol 5:222–234PubMedCrossRefGoogle Scholar
  169. Sciacco M, Prelle A, D’Adda E et al (2003) Familial mtDNA T8993C transition causing both the NARP and the MILS phenotype in the same generation. A morphological, genetic and spectroscopic study. J Neurol 250:1498–1500PubMedCrossRefGoogle Scholar
  170. Seznec H, Simon D, Monassier L et al (2004) Idebenone delays the onset of cardiac functional alteration without correction of Fe-S enzymes deficit in a mouse model for Friedreich Ataxia. Hum Mol Genet 13(10):1017–1024PubMedCrossRefGoogle Scholar
  171. Seznec H, Simon D, Bouton C et al (2005) Friedreich ataxia: the oxidative stress paradox. Hum Mol Genet 14:463–474PubMedCrossRefGoogle Scholar
  172. Shanske S, Coku J, Lu J et al (2008) The G13513A mutation in the ND5 gene of mitochondrial DNA as a common cause of MELAS or Leigh syndrome: evidence from 12 cases. Arch Neurol 65:368–372PubMedCrossRefGoogle Scholar
  173. Shoffner J, Lott M, Lezza A et al (1990) Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNA-lys mutation. Cell 61:931–937PubMedCrossRefGoogle Scholar
  174. Silvestri G, Moraes C, Shanske S et al (1992) A new mtDNA mutation in the tRNA(Lys) gene associated with myoclonic epilepsy and ragged-red fibers (MERRF). Am J Hum Genet 51:1213–1217PubMedGoogle Scholar
  175. Simaan EM, Mikati MA, Touma EH, Rötig A (1999) Unusual presentation of Kearns-Sayre syndrome in early childhood. Pediatr Neurol 21(5):830–831PubMedCrossRefGoogle Scholar
  176. Smeitink J, Zeviani M, Turnbull D et al (2006) Mitochondrial medicine: a metabolic perspective on the pathology of oxidative phosphorylation disorders. Cell Metab 3:9–13PubMedCrossRefGoogle Scholar
  177. So N, Berkovic S, Andermann F et al (1989) Myoclonus epilepsy and ragged-red fibres (MERRF). 2 Electrophysiological studies and comparison with other progressive myoclonus epilepsies. Brain 112:1261–1276PubMedCrossRefGoogle Scholar
  178. Sohn YS, Breuer W, Munnich A et al (2008) Redistribution of accumulated cell iron: a modality of chelation with therapeutic implications. Blood 111:1690–1699PubMedCrossRefGoogle Scholar
  179. Sparaco M, Bonilla E, DiMauro S et al (1993) Neuropathy of mitochondrial encephalomyopathies due to mitochondrial DNA defects. J Neuropathol Exp Neurol 52:1–10PubMedCrossRefGoogle Scholar
  180. Spelbrink JN, Li FY, Tiranti V et al (2001) Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein localized in mitochondria. Nat Genet 28:223–231PubMedCrossRefGoogle Scholar
  181. Stehling O, Elsasser HP, Bruckel B et al (2004) Iron-sulfur protein maturation in human cells: evidence for a function of frataxin. Hum Mol Genet 13:3007–3015PubMedCrossRefGoogle Scholar
  182. Stepien G, Torroni A, Chung A et al (1992) Differential expression of adenine nucleotide translocator isoforms in mammalian tissues and during muscle cell differentiation. J Biol Chem 267:14592–14597PubMedGoogle Scholar
  183. Stewart JD, Horvath R, Baruffini E et al (2010) Polymerase gamma gene POLG determines the risk of sodium valproate-induced liver toxicity. Hepatology 52:1791–1796PubMedCrossRefGoogle Scholar
  184. Stryer L (1988) Biochemistry, 3rd edn. Freeman WH and company, New York, pp 373–379Google Scholar
  185. Tanahashi C, Nakayama A, Yoshida M et al (2000) MELAS with the mitochondrial DNA 3243 point mutation: a neuropathological study. Acta Neuropathol 99:31–38PubMedCrossRefGoogle Scholar
  186. Tanji K, Vu T, Schon E et al (1999) Kearns-Sayre syndrome: unusual pattern of expression of subunits of the respiratory chain in the cerebellar system. Ann Neurol 45:377–383PubMedCrossRefGoogle Scholar
  187. Tatsuta T, Langer T (2008) Quality control of mitochondria: protection against neurodegeneration and ageing. EMBO J 27:306–314PubMedCrossRefGoogle Scholar
  188. Tatuch Y, Christodoulou J, Feigenbaum A et al (1992) Heteroplasmic mtDNA mutation (T-G) at 8993 can cause Leigh disease when the percentage of abnormal mtDNA is high. Am J Hum Genet 50:852–858PubMedGoogle Scholar
  189. Tay S, Nordli D, Bonilla E et al (2006) Aortic rupture in mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes. Arch Neurol 63:281–283PubMedCrossRefGoogle Scholar
  190. Taylor R, Turnbull D (2005) Mitochondrial DNA mutations in human disease. Nat Rev Genet 6:389–402PubMedCrossRefGoogle Scholar
  191. Testai F, Gorelick P (2010) Inherited metabolic disorders and stroke part 1: Fabry disease and mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke like episodes. Arch Neurol 67:19–24PubMedCrossRefGoogle Scholar
  192. Tiranti V, Chariot P, Carella F et al (1995) Maternally inherited hearing loss, ataxia and myoclonus associated with a novel point mutation in mitochondrial tRNASer(UCN) gene. Hum Mol Genet 4:1421–1427PubMedCrossRefGoogle Scholar
  193. Tsai CL, Barondeau DP (2010) Human frataxin is an allosteric switch that activates the Fe-S cluster biosynthetic complex. Biochemistry 49:9132–9139PubMedCrossRefGoogle Scholar
  194. Tzoulis C, Bindoff LA (2009) The syndrome of mitochondrial spinocerebellar ataxias and epilepsy caused by POLG mutations. Adv Clin Neurosci Rehabil 9:13–16Google Scholar
  195. Tzoulis C, Engelsen BA, Telstad W et al (2006) The spectrum of clinical disease caused by the A467T and W748S POLG mutations: a study of 26 cases. Brain 129:1685–1692PubMedCrossRefGoogle Scholar
  196. Uziel G, Moroni I, Lamantea E et al (1997) Mitochondrial disease associated with the T8993G mutation of the mitochondrial ATPase 6 gene: a clinical, biochemical, and molecular study in six families. J Neurol Neurosurg Psychiatry 63:16–22PubMedCrossRefGoogle Scholar
  197. Van Goethem G, Dermaut B, Lofgren A et al (2001) Mutation of POLG is associated with progressive external ophthalmoplegia characterized by mtDNA deletions. Nat Genet 28:211–212PubMedCrossRefGoogle Scholar
  198. Van Goethem G, Martin JJ, Dermaut B et al (2003a) Recessive POLG mutations presenting with sensory and ataxic neuropathy in compound heterozygote patients with progressive external ophthalmoplegia. Neuromuscul Disord 13:133–142PubMedCrossRefGoogle Scholar
  199. Van Goethem G, Mercelis R, Lofgren A et al (2003b) Patient homozygous for a recessive POLG mutation presents with features of MERRF. Neurology 61:1811–1813PubMedCrossRefGoogle Scholar
  200. Van Goethem G, Luoma P, Rantamaki M et al (2004) POLG mutations in neurodegenerative disorders with ataxia but no muscle involvement. Neurology 63:1251–1257PubMedCrossRefGoogle Scholar
  201. Wallace D (2007) Why do we still have a maternally inherited mitochondrial DNA? Insights from evolutionary medicine. Annu Rev Biochem 76:781–821PubMedCrossRefGoogle Scholar
  202. Wallace D (2010) Bioenergetics, the origins of complexity, and the ascent of man. Proc Natl Acad Sci USA 107:8947–8953PubMedCrossRefGoogle Scholar
  203. Wallace D, Zheng X, Lott M et al (1988) Familial mitochondrial encephalomyopathy (MERRF): genetic, pathophysiological, and biochemical characterization of a mitochondrial DNA disease. Cell 55:601–610PubMedCrossRefGoogle Scholar
  204. Wang T, Craig EA (2008) Binding of yeast frataxin to the scaffold for Fe-S cluster biogenesis, Isu. J Biol Chem 283:12674–12679PubMedCrossRefGoogle Scholar
  205. Watanabe Y, Hashikawa K, Moriwaki H et al (1998) SPECT findings in mitochondrial encephalomyopathy. J Nucl Med 39:961PubMedGoogle Scholar
  206. Wells RD (2008) DNA triplexes and Friedreich ataxia. FASEB J 22:1625–1634PubMedCrossRefGoogle Scholar
  207. Winterthun S, Ferrari G, He L et al (2005) Autosomal recessive mitochondrial ataxic syndrome due to mitochondrial polymerase gamma mutations. Neurology 64:1204–1208PubMedCrossRefGoogle Scholar
  208. Wong A, Yang J, Cavadini P et al (1999) The Friedreich’s ataxia mutation confers cellular sensitivity to oxidant stress which is rescued by chelators of iron and calcium and inhibitors of apoptosis. Hum Mol Genet 8:425–430PubMedCrossRefGoogle Scholar
  209. Wong LJ, Naviaux RK, Brunetti-Pierri N et al (2008) Molecular and clinical genetics of mitochondrial diseases due to POLG mutations. Hum Mutat 29:E150–E172PubMedCrossRefGoogle Scholar
  210. Wullner U, Klockgether T, Petersen D (1993) Magnetic resonance imaging in hereditary and idiopathic ataxia. Neurology 43:318–325PubMedCrossRefGoogle Scholar
  211. Yakubovskaya E, Chen Z, Carrodeguas JA et al (2006) Functional human mitochondrial DNA polymerase gamma forms a heterotrimer. J Biol Chem 281:374–382PubMedCrossRefGoogle Scholar
  212. Youle R, Karbowski M (2005) Mitochondrial fission in apoptosis. Nat Rev Mol Cell Biol 6:657–663PubMedCrossRefGoogle Scholar
  213. Zeviani M, Di Donato S (2004) Mitochondrial disorders. Brain 127:2153–2172PubMedCrossRefGoogle Scholar
  214. Zouari M, Feki M, Ben Hamida C et al (1998) Electrophysiology and nerve biopsy: comparative study in Friedreich’s ataxia and Friedreich’s ataxia phenotype with vitamin E deficiency. Neuromuscul Disord 8:416–425PubMedCrossRefGoogle Scholar
  215. Zsurka G, Baron M, Stewart JD et al (2008) Clonally expanded mitochondrial DNA mutations in epileptic individuals with mutated DNA polymerase gamma. J Neuropathol Exp Neurol 67:857–866PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Stefano Di Donato
    • 1
  • Daniele Marmolino
    • 2
  • Franco Taroni
    • 1
    • 3
  1. 1.Fondazione IRCCS Istituto Neurologico C.MilanoItaly
  2. 2.Laboratoire de Neurologie expérimentaleUniversité Libre de Bruxeles (ULB)BruxellesBelgium
  3. 3.Department of Diagnostics and Applied TechnologyUnit of Genetics of Neurodegenerative and Metabolic Diseases Istituto Neurologico “Carlo Besta”MilanItaly

Personalised recommendations