Skip to main content

Autosomal Recessive Cerebellar Ataxias

  • Reference work entry

Abstract

The hereditary ataxias represent a mixed group of conditions that can be classified according to their mode of inheritance into autosomal dominant, autosomal recessive, X-linked, and mitochondrial ataxias. The group of autosomal “recessive ataxias” alone comprises a very heterogeneous group of disorders for which mutations in several causative genes have been identified. This chapter will review autosomal recessives ataxias with an emphasis on those that are best defined: Friedreich’s Ataxia (FA), Autosomal Recessive Spastic Ataxia of Charlevoix-Saguenay (ARSACS), Autosomal Recessive Cerebellar Ataxia type 1 (ARCA-1) and type 2 (ARCA-2), Ataxia with Oculomotor Apraxia type 1 (AOA-1) and type 2 (AOA-2) and Ataxia with Vitamin E Deficiency (AVED). For each disorder an overview of the clinical signs will be presented, the causative gene, as well as any clues about the disease pathogenesis and currently available or potential treatment.

This is a preview of subscription content, log in via an institution.

References

  • Airoldi G, Guidarelli A, Cantoni O et al (2010) Characterization of two novel SETX mutations in AOA2 patients reveals aspects of the pathophysiological role of senataxin. Neurogenetics 11:91–100

    Article  PubMed  CAS  Google Scholar 

  • Alper G, Narayanan V (2003) Friedreich’s ataxia. Pediatr Neurol 28:335–341

    Article  PubMed  Google Scholar 

  • Amouri R, Moreira MC, Zouari M et al (2004) Aprataxin gene mutations in Tunisian families. Neurology 63:928–929

    Article  PubMed  CAS  Google Scholar 

  • Anheim M, Fleury M, Monga B et al (2010) Epidemiological, clinical, paraclinical and molecular study of a cohort of 102 patients affected with autosomal recessive progressive cerebellar ataxia from Alsace, Eastern France: implications for clinical management. Neurogenetics 11:1–12

    Article  PubMed  CAS  Google Scholar 

  • Arita M, Sato Y, Miyata A et al (1995) Human alpha-tocopherol transfer protein: cDNA cloning, expression and chromosomal localization. Biochem J 306(Pt 2):437–443

    PubMed  CAS  Google Scholar 

  • Attali R, Warwar N, Israel A et al (2009) Mutation of SYNE-1, encoding an essential component of the nuclear lamina, is responsible for autosomal recessive arthrogryposis. Hum Mol Genet 18:3462–3469

    Article  PubMed  CAS  Google Scholar 

  • Babcock M, de Silva D, Oaks R et al (1997) Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin. Science 276:1709–1712

    Article  PubMed  CAS  Google Scholar 

  • Barbot C, Coutinho P, Chorao R et al (2001) Recessive ataxia with ocular apraxia: review of 22 Portuguese patients. Arch Neurol 58:201–205

    Article  PubMed  CAS  Google Scholar 

  • Bidichandani SI, Ashizawa T, Patel PI (1998) The GAA triplet-repeat expansion in Friedreich ataxia interferes with transcription and may be associated with an unusual DNA structure. Am J Hum Genet 62:111–121

    Article  PubMed  CAS  Google Scholar 

  • Bomont P, Watanabe M, Gershoni-Barush R et al (2000) Homozygosity mapping of spinocerebellar ataxia with cerebellar atrophy and peripheral neuropathy to 9q33-34, and with hearing impairment and optic atrophy to 6p21-23. Eur J Hum Genet 8:986–990

    Article  PubMed  CAS  Google Scholar 

  • Bouchard JP (1991) Recessive spastic ataxia of Charlevoix-Saguenay. In: de Jonghe JMBV (ed) Hereditary Neuropathies and Spinocerebellar Atrophies. Elsevier Science, Amsterdam

    Google Scholar 

  • Bouchard JP, Barbeau A, Bouchard R et al (1978) Autosomal recessive spastic ataxia of Charlevoix-Saguenay. Can J Neurol Sci 5:61–69

    PubMed  CAS  Google Scholar 

  • Bouchard JP, Richter A, Mathieu J et al (1998) Autosomal recessive spastic ataxia of Charlevoix-Saguenay. Neuromuscul Disord 8:474–479

    Article  PubMed  CAS  Google Scholar 

  • Bouhlal Y, El Euch-Fayeche G, Hentati F et al (2009) A novel SACS gene mutation in a Tunisian family. J Mol Neurosci 39:333–336

    Article  PubMed  CAS  Google Scholar 

  • Burk K, Zuhlke C, Konig IR et al (2004) Spinocerebellar ataxia type 5: clinical and molecular genetic features of a German kindred. Neurology 62:327–329

    Article  PubMed  CAS  Google Scholar 

  • Burnett R, Melander C, Puckett JW et al (2006) DNA sequence-specific polyamides alleviate transcription inhibition associated with long GAA.TTC repeats in Friedreich’s ataxia. Proc Natl Acad Sci USA 103:11497–11502

    Article  PubMed  CAS  Google Scholar 

  • Campuzano V, Montermini L, Molto MD et al (1996) Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271:1423–1427

    Article  PubMed  CAS  Google Scholar 

  • Cavalier L, Ouahchi K, Kayden HJ et al (1998) Ataxia with isolated vitamin E deficiency: heterogeneity of mutations and phenotypic variability in a large number of families. Am J Hum Genet 62:301–310

    Article  PubMed  CAS  Google Scholar 

  • Chamberlain SSJ, Rowland A et al (1988) Mapping of mutations causing Friedreich’s ataxia to human chromosome 9. Nature 334:248–250

    Article  PubMed  CAS  Google Scholar 

  • Chantrel-Groussard K, Geromel V, Puccio H et al (2001) Disabled early recruitment of antioxidant defenses in Friedreich’s ataxia. Hum Mol Genet 10:2061–2067

    Article  PubMed  CAS  Google Scholar 

  • Clements PM, Breslin C, Deeks ED et al (2004) The ataxia-oculomotor apraxia 1 gene product has a role distinct from ATM and interacts with the DNA strand break repair proteins XRCC1 and XRCC4. DNA Repair Amst 3:1493–1502

    Article  PubMed  CAS  Google Scholar 

  • Cooper JM, Schapira AH (2003) Friedreich’s Ataxia: disease mechanisms, antioxidant and Coenzyme Q10 therapy. Biofactors 18:163–171

    Article  PubMed  CAS  Google Scholar 

  • Cooper JM, Schapira AH (2007) Friedreich’s ataxia: coenzyme Q10 and vitamin E therapy. Mitochondrion 7(Suppl):S127–S135

    Article  PubMed  CAS  Google Scholar 

  • Cossee M, Durr A, Schmitt M et al (1999) Friedreich’s ataxia: point mutations and clinical presentation of compound heterozygotes. Ann Neurol 45:200–206

    Article  PubMed  CAS  Google Scholar 

  • Criscuolo C, Banfi S, Orio M et al (2004) A novel mutation in SACS gene in a family from southern Italy. Neurology 62:100–102

    Article  PubMed  CAS  Google Scholar 

  • Criscuolo C, Sacca F, De Michele G et al (2005) Novel mutation of SACS gene in a Spanish family with autosomal recessive spastic ataxia. Mov Disord 20:1358–1361

    Article  PubMed  Google Scholar 

  • Date H, Onodera O, Tanaka H et al (2001) Early-onset ataxia with ocular motor apraxia and hypoalbuminemia is caused by mutations in a new HIT superfamily gene. Nat Genet 29:184–188

    Article  PubMed  CAS  Google Scholar 

  • De Braekeleer M, Giasson F, Mathieu J et al (1993) Genetic epidemiology of autosomal recessive spastic ataxia of Charlevoix-Saguenay in northeastern Quebec. Genet Epidemiol 10:17–25

    Article  PubMed  Google Scholar 

  • Delatycki MB, Williamson R, Forrest SM (2000) Friedreich ataxia: an overview. J Med Genet 37:1–8

    Article  PubMed  CAS  Google Scholar 

  • Di Donato I, Bianchi S, Federico A (2010) Ataxia with vitamin E deficiency: update of molecular diagnosis. Neurol Sci 31:511–515

    Article  PubMed  Google Scholar 

  • Dupre N, Bouchard JP, Brais B et al (2006) Hereditary ataxia, spastic paraparesis and neuropathy in the French-Canadian population. Can J Neurol Sci 33:149–157

    PubMed  Google Scholar 

  • Dupre N, Bouchard JP, Gros-Louis F et al (2007a) Mutations in SYNE-1 lead to a newly discovered form of autosomal recessive cerebellar ataxia. Med Sci Paris 23:261–262

    Article  PubMed  Google Scholar 

  • Dupre N, Gros-Louis F, Chrestian N et al (2007b) Clinical and genetic study of autosomal recessive cerebellar ataxia type 1. Ann Neurol 62:93–98

    Article  PubMed  CAS  Google Scholar 

  • Duquette A, Roddier K, McNabb-Baltar J et al (2005) Mutations in senataxin responsible for Quebec cluster of ataxia with neuropathy. Ann Neurol 57:408–414

    Article  PubMed  CAS  Google Scholar 

  • Durr A, Cossee M, Agid Y et al (1996) Clinical and genetic abnormalities in patients with Friedreich’s ataxia. N Engl J Med 335:1169–1175

    Article  PubMed  CAS  Google Scholar 

  • El Euch-Fayache G, Lalani I, Amouri R et al (2003) Phenotypic features and genetic findings in sacsin-related autosomal recessive ataxia in Tunisia. Arch Neurol 60:982–988

    Article  PubMed  Google Scholar 

  • Engert JC, Berube P, Mercier J et al (2000) ARSACS, a spastic ataxia common in northeastern Quebec, is caused by mutations in a new gene encoding an 11.5-kb ORF. Nat Genet 24:120–125

    Article  PubMed  CAS  Google Scholar 

  • Foury F, Cazzalini O (1997) Deletion of the yeast homologue of the human gene associated with Friedreich’s ataxia elicits iron accumulation in mitochondria. FEBS Lett 411:373–377

    Article  PubMed  CAS  Google Scholar 

  • Gabsi S, Gouider-Khouja N, Belal S et al (2001) Effect of vitamin E supplementation in patients with ataxia with vitamin E deficiency. Eur J Neurol 8:477–481

    Article  PubMed  CAS  Google Scholar 

  • Geoffroy G, Barbeau A, Breton G et al (1976) Clinical description and roentgenologic evaluation of patients with Friedreich’s ataxia. Can J Neurol Sci 3:279–286

    PubMed  CAS  Google Scholar 

  • Gohil K, Azzi A (2008) Reply to Drug Insight: antioxidant therapy in inherited ataxias. Nat Clin Pract Neurol 4:E1, author reply E2

    Article  PubMed  Google Scholar 

  • Gottesfeld JM (2007) Small molecules affecting transcription in Friedreich ataxia. Pharmacol Ther 116:236–248

    Article  PubMed  CAS  Google Scholar 

  • Grabczyk E, Usdin K (2000) Alleviating transcript insufficiency caused by Friedreich’s ataxia triplet repeats. Nucleic Acids Res 28:4930–4937

    Article  PubMed  CAS  Google Scholar 

  • Grieco GS, Malandrini A, Comanducci G et al (2004) Novel SACS mutations in autosomal recessive spastic ataxia of Charlevoix-Saguenay type. Neurology 62:103–106

    Article  PubMed  CAS  Google Scholar 

  • Gros-Louis F, Dupre N, Dion P et al (2007) Mutations in SYNE1 lead to a newly discovered form of autosomal recessive cerebellar ataxia. Nat Genet 39:80–85

    Article  PubMed  CAS  Google Scholar 

  • Gucuyener K, Ozgul K, Paternotte C et al (2001) Autosomal recessive spastic ataxia of Charlevoix-Saguenay in two unrelated Turkish families. Neuropediatrics 32:142–146

    Article  PubMed  CAS  Google Scholar 

  • Harding AE (1981) Friedreich’s ataxia: a clinical and genetic study of 90 families with an analysis of early diagnostic criteria and intrafamilial clustering of clinical features. Brain 104:589–620

    Article  PubMed  CAS  Google Scholar 

  • Harding AE (1993) Clinical features and classification of inherited ataxias. Adv Neurol 61:1–14

    PubMed  CAS  Google Scholar 

  • Hart PE, Lodi R, Rajagopalan B et al (2005) Antioxidant treatment of patients with Friedreich ataxia: four-year follow-up. Arch Neurol 62:621–626

    Article  PubMed  Google Scholar 

  • Hentati A, Deng HX, Hung WY et al (1996) Human alpha-tocopherol transfer protein: gene structure and mutations in familial vitamin E deficiency. Ann Neurol 39:295–300

    Article  PubMed  CAS  Google Scholar 

  • Ikeda Y, Dick KA, Weatherspoon MR et al (2006) Spectrin mutations cause spinocerebellar ataxia type 5. Nat Genet 38:184–190

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa K, Toru S, Tsunemi T et al (2005) An autosomal dominant cerebellar ataxia linked to chromosome 16q22.1 is associated with a single-nucleotide substitution in the 5′ untranslated region of the gene encoding a protein with spectrin repeat and Rho guanine-nucleotide exchange-factor domains. Am J Hum Genet 77:280–296

    Article  PubMed  CAS  Google Scholar 

  • Kara B, Uzumcu A, Uyguner O et al (2008) Ataxia with vitamin E deficiency associated with deafness. Turk J Pediatr 50:471–475

    PubMed  Google Scholar 

  • Klockgether T (2007) Parkinsonism & related disorders. Ataxias. Parkinsonism Relat Disord 13(Suppl 3):S391–S394

    Article  PubMed  Google Scholar 

  • Koenig M, Hoffman EP, Bertelson CJ et al (1987) Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell 50:509–517

    Article  PubMed  CAS  Google Scholar 

  • Laforce R Jr, Buteau JP, Bouchard JP et al (2010) Cognitive Impairment in ARCA-1, a Newly Discovered Pure Cerebellar Ataxia Syndrome. Cerebellum 9:443–453

    Article  PubMed  Google Scholar 

  • Lagier-Tourenne C, Tazir M, Lopez LC et al (2008) ADCK3, an ancestral kinase, is mutated in a form of recessive ataxia associated with coenzyme Q10 deficiency. Am J Hum Genet 82:661–672

    Article  PubMed  CAS  Google Scholar 

  • Lamperti C, Naini A, Hirano M et al (2003) Cerebellar ataxia and coenzyme Q10 deficiency. Neurology 60:1206–1208

    Article  PubMed  CAS  Google Scholar 

  • Lamy CMS, Taussig D et al (1998) Ataxie spastique récessive de type Charlevoix-Saguenay dans une famille marocaine. Rev Neurol 154:463

    Google Scholar 

  • Le Ber I, Bouslam N, Rivaud-Pechoux S et al (2004) Frequency and phenotypic spectrum of ataxia with oculomotor apraxia 2: a clinical and genetic study in 18 patients. Brain 127:759–767

    Article  PubMed  Google Scholar 

  • Manor D, Morley S (2007) The alpha-tocopherol transfer protein. Vitam Horm 76:45–65

    Article  PubMed  CAS  Google Scholar 

  • Mariotti C, Solari A, Torta D et al (2003) Idebenone treatment in Friedreich patients: one-year-long randomized placebo-controlled trial. Neurology 60:1676–1679

    Article  PubMed  CAS  Google Scholar 

  • Mariotti C, Gellera C, Rimoldi M et al (2004) Ataxia with isolated vitamin E deficiency: neurological phenotype, clinical follow-up and novel mutations in TTPA gene in Italian families. Neurol Sci 25:130–137

    Article  PubMed  CAS  Google Scholar 

  • Marmolino D, Acquaviva F (2009) Friedreich’s Ataxia: from the (GAA)n repeat mediated silencing to new promising molecules for therapy. Cerebellum 8:245–259

    Article  PubMed  CAS  Google Scholar 

  • Martelli A, Wattenhofer-Donze M et al (2007) Frataxin is essential for extramitochondrial Fe-S cluster proteins in mammalian tissues. Hum Mol Genet 16:2651–2658

    Article  PubMed  CAS  Google Scholar 

  • Marzouki N, Benomar A, Yahyaoui M et al (2005) Vitamin E deficiency ataxia with (744 del A) mutation on alpha-TTP gene: genetic and clinical peculiarities in Moroccan patients. Eur J Med Genet 48:21–28

    Article  PubMed  Google Scholar 

  • Mercier J, Prevost C, Engert JC et al (2001) Rapid detection of the sacsin mutations causing autosomal recessive spastic ataxia of Charlevoix-Saguenay. Genet Test 5:255–259

    Article  PubMed  CAS  Google Scholar 

  • Meydani SN, Meydani M, Blumberg JB et al (1998) Assessment of the safety of supplementation with different amounts of vitamin E in healthy older adults. Am J Clin Nutr 68:311–318

    PubMed  CAS  Google Scholar 

  • Montermini L, Andermann E, Labuda M et al (1997a) The Friedreich ataxia GAA triplet repeat: premutation and normal alleles. Hum Mol Genet 6:1261–1266

    Article  PubMed  CAS  Google Scholar 

  • Montermini L, Richter A, Morgan K et al (1997b) Phenotypic variability in Friedreich ataxia: role of the associated GAA triplet repeat expansion. Ann Neurol 41:675–682

    Article  PubMed  CAS  Google Scholar 

  • Moreira MC, Barbot C, Tachi N et al (2001a) Homozygosity mapping of Portuguese and Japanese forms of ataxia-oculomotor apraxia to 9p13, and evidence for genetic heterogeneity. Am J Hum Genet 68:501–508

    Article  PubMed  CAS  Google Scholar 

  • Moreira MC, Barbot C, Tachi N et al (2001b) The gene mutated in ataxia-ocular apraxia 1 encodes the new HIT/Zn-finger protein aprataxin. Nat Genet 29:189–193

    Article  PubMed  CAS  Google Scholar 

  • Moreira MC, Klur S, Watanabe M et al (2004) Senataxin, the ortholog of a yeast RNA helicase, is mutant in ataxia-ocular apraxia 2. Nat Genet 36:225–227

    Article  PubMed  CAS  Google Scholar 

  • Mrissa N, Belal S, Hamida CB et al (2000) Linkage to chromosome 13q11-12 of an autosomal recessive cerebellar ataxia in a Tunisian family. Neurology 54:1408–1414

    Article  PubMed  CAS  Google Scholar 

  • Muhlenhoff U, Gerber J et al (2003) Components involved in assembly and dislocation or iron-sulfur clusters on the scaffold protein Isu1p. EMBO J 22:4815–4825

    Article  PubMed  Google Scholar 

  • Nahas SA, Duquette A, Roddier K et al (2007) Ataxia-oculomotor apraxia 2 patients show no increased sensitivity to ionizing radiation. Neuromuscul Disord 17:968–969

    Article  PubMed  CAS  Google Scholar 

  • Nemeth AH, Bochukova E, Dunne E et al (2000) Autosomal recessive cerebellar ataxia with oculomotor apraxia (ataxia-telangiectasia-like syndrome) is linked to chromosome 9q34. Am J Hum Genet 67:1320–1326

    PubMed  CAS  Google Scholar 

  • Ogawa T, Takiyama Y, Sakoe K et al (2004) Identification of a SACS gene missense mutation in ARSACS. Neurology 62:107–109

    Article  PubMed  CAS  Google Scholar 

  • Ouahchi K, Arita M, Kayden H et al (1995) Ataxia with isolated vitamin E deficiency is caused by mutations in the alpha-tocopherol transfer protein. Nat Genet 9:141–145

    Article  PubMed  CAS  Google Scholar 

  • Ouyang Y, Takiyama Y, Sakoe K et al (2006) Sacsin-related ataxia (ARSACS): expanding the genotype upstream from the gigantic exon. Neurology 66:1103–1104

    Article  PubMed  CAS  Google Scholar 

  • Ouyang Y, Segers K, Bouquiaux O et al (2008) Novel SACS mutation in a Belgian family with sacsin-related ataxia. J Neurol Sci 264:73–76

    Article  PubMed  CAS  Google Scholar 

  • Palau F, De Michele G, Vilchez JJ et al (1995) Early-onset ataxia with cardiomyopathy and retained tendon reflexes maps to the Friedreich’s ataxia locus on chromosome 9q. Ann Neurol 37:359–362

    Article  PubMed  CAS  Google Scholar 

  • Pandolfo M (1998) Molecular genetics and pathogenesis of Friedreich ataxia. Neuromuscul Disord 8:409–415

    Article  PubMed  CAS  Google Scholar 

  • Pandolfo M, Montermini L (1998) Molecular genetics of the hereditary ataxias. Adv Genet 38:31–68

    Article  PubMed  CAS  Google Scholar 

  • Parfitt DA, Michael GJ, Vermeulen EG et al (2009) The ataxia protein sacsin is a functional co-chaperone that protects against polyglutamine-expanded ataxin-1. Hum Mol Genet 18:1556–1565

    Article  PubMed  CAS  Google Scholar 

  • Parkinson NJ, Olsson CL, Hallows JL et al (2001) Mutant beta-spectrin 4 causes auditory and motor neuropathies in quivering mice. Nat Genet 29:61–65

    Article  PubMed  CAS  Google Scholar 

  • Peyronnard JM, Charron L, Barbeau A (1979) The neuropathy of Charlevoix-Saguenay ataxia: an electrophysiological and pathological study. Can J Neurol Sci 6:199–203

    PubMed  CAS  Google Scholar 

  • Puccio H (2009) Multicellular models of Friedreich ataxia. J Neurol 256(Suppl 1):18–24

    Article  PubMed  Google Scholar 

  • Puccio H, Simon D et al (2001) Mouse models for Friedreich ataxia exhibit cardiomyopathy, sensory nerve defect and Fe-S enzyme deficiency followed by intramitochondrial iron deposits. Nat Genet 17:215–217

    Google Scholar 

  • Rass U, Ahel I, West SC (2007) Defective DNA repair and neurodegenerative disease. Cell 130:991–1004

    Article  PubMed  CAS  Google Scholar 

  • Ribai P, Pousset F, Tanguy ML et al (2007) Neurological, cardiological, and oculomotor progression in 104 patients with Friedreich ataxia during long-term follow-up. Arch Neurol 64:558–564

    Article  PubMed  Google Scholar 

  • Ricciarelli R, Argellati F, Pronzato MA et al (2007) Vitamin E and neurodegenerative diseases. Mol Aspects Med 28:591–606

    Article  PubMed  CAS  Google Scholar 

  • Richter A, Rioux JD, Bouchard JP et al (1999) Location score and haplotype analyses of the locus for autosomal recessive spastic ataxia of Charlevoix-Saguenay, in chromosome region 13q11. Am J Hum Genet 64:768–775

    Article  PubMed  CAS  Google Scholar 

  • Richter AM, Ozgul RK, Poisson VC et al (2004) Private SACS mutations in autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) families from Turkey. Neurogenetics 5:165–170

    Article  PubMed  CAS  Google Scholar 

  • Rotig A, de Lonlay P et al (1997) Aconitase and mitochondrial iron-sulfur protein deficiency in Friedreich ataxia. Nat Genet 17:215–217

    Article  PubMed  CAS  Google Scholar 

  • Rustin P, Rotig A, Munnich A et al (2002) Heart hypertrophy and function are improved by idebenone in Friedreich’s ataxia. Free Radic Res 36:467–469

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto N, Chastain PD, Parniewski P et al (1999) Sticky DNA: self-association properties of long GAA.TTC repeats in R.R.Y triplex structures from Friedreich’s ataxia. Mol Cell 3:465–475

    Article  PubMed  CAS  Google Scholar 

  • Schmucker S, Puccio H (2010) Understanding the molecular mechanisms of Friedreich’s ataxia to develop therapeutic approaches. Hum Mol Genet 19:R103–R110

    Article  PubMed  CAS  Google Scholar 

  • Schulz JB, Boesch S, Burk K et al (2009) Diagnosis and treatment of Friedreich ataxia: a European perspective. Nat Rev Neurol 5:222–234

    Article  PubMed  Google Scholar 

  • Seznec H, Simon D, Monassier L et al (2004) Idebenone delays the onset of cardiac functional alteration without correction of Fe-S enzymes deficit in a mouse model for Friedreich ataxia. Hum Mol Genet 13:1017–1024

    Article  PubMed  CAS  Google Scholar 

  • Shimazaki H, Takiyama Y, Sakoe K et al (2002) Early-onset ataxia with ocular motor apraxia and hypoalbuminemia: the aprataxin gene mutations. Neurology 59:590–595

    Article  PubMed  CAS  Google Scholar 

  • Stevanin G, Herman A, Brice A et al (1999) Clinical and MRI findings in spinocerebellar ataxia type 5. Neurology 53:1355–1357

    Article  PubMed  CAS  Google Scholar 

  • Sturm B, Stupphann D, Kaun C et al (2005) Recombinant human erythropoietin: effects on frataxin expression in vitro. Eur J Clin Invest 35:711–717

    Article  PubMed  CAS  Google Scholar 

  • Suraweera A, Becherel OJ, Chen P et al (2007) Senataxin, defective in ataxia oculomotor apraxia type 2, is involved in the defense against oxidative DNA damage. J Cell Biol 177:969–979

    Article  PubMed  CAS  Google Scholar 

  • Suraweera A, Lim Y, Woods R et al (2009) Functional role for senataxin, defective in ataxia oculomotor apraxia type 2, in transcriptional regulation. Hum Mol Genet 18:3384–3396

    Article  PubMed  CAS  Google Scholar 

  • Tsou AY, Friedman LS, Wilson RB et al (2009) Pharmacotherapy for Friedreich ataxia. CNS Drugs 23:213–223

    Article  PubMed  CAS  Google Scholar 

  • Vermeer S, Meijer RP, Pijl BJ et al (2008) ARSACS in the Dutch population: a frequent cause of early-onset cerebellar ataxia. Neurogenetics 9:207–214

    Article  PubMed  Google Scholar 

  • Watanabe M, Sugai Y, Concannon P et al (1998) Familial spinocerebellar ataxia with cerebellar atrophy, peripheral neuropathy, and elevated level of serum creatine kinase, gamma-globulin, and alpha-fetoprotein. Ann Neurol 44:265–269

    Article  PubMed  CAS  Google Scholar 

  • Wong A, Yang J, Cavadini P et al (1999) The Friedreich’s ataxia mutation confers cellular sensitivity to oxidant stress which is rescued by chelators of iron and calcium and inhibitors of apoptosis. Hum Mol Genet 8:425–430

    Article  PubMed  CAS  Google Scholar 

  • Yokota T, Shiojiri T, Gotoda T et al (1997) Friedreich-like ataxia with retinitis pigmentosa caused by the His101Gln mutation of the alpha-tocopherol transfer protein gene. Ann Neurol 41:826–832

    Article  PubMed  CAS  Google Scholar 

  • Zingg JM (2007) Vitamin E: an overview of major research directions. Mol Aspects Med 28:400–422

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy A. Rouleau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Noreau, A., Dupré, N., Bouchard, JP., Dion, P.A., Rouleau, G.A. (2013). Autosomal Recessive Cerebellar Ataxias. In: Manto, M., Schmahmann, J.D., Rossi, F., Gruol, D.L., Koibuchi, N. (eds) Handbook of the Cerebellum and Cerebellar Disorders. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1333-8_100

Download citation

Publish with us

Policies and ethics