Advertisement

Autosomal Recessive Cerebellar Ataxias

  • Anne Noreau
  • Nicolas Dupré
  • Jean-Pierre Bouchard
  • Patrick A. Dion
  • Guy A. Rouleau

Abstract

The hereditary ataxias represent a mixed group of conditions that can be classified according to their mode of inheritance into autosomal dominant, autosomal recessive, X-linked, and mitochondrial ataxias. The group of autosomal “recessive ataxias” alone comprises a very heterogeneous group of disorders for which mutations in several causative genes have been identified. This chapter will review autosomal recessives ataxias with an emphasis on those that are best defined: Friedreich’s Ataxia (FA), Autosomal Recessive Spastic Ataxia of Charlevoix-Saguenay (ARSACS), Autosomal Recessive Cerebellar Ataxia type 1 (ARCA-1) and type 2 (ARCA-2), Ataxia with Oculomotor Apraxia type 1 (AOA-1) and type 2 (AOA-2) and Ataxia with Vitamin E Deficiency (AVED). For each disorder an overview of the clinical signs will be presented, the causative gene, as well as any clues about the disease pathogenesis and currently available or potential treatment.

Keywords

Cerebellar Ataxia Cerebellar Atrophy Oculomotor Apraxia Autosomal Recessive Cerebellar Ataxia Recessive Ataxia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Airoldi G, Guidarelli A, Cantoni O et al (2010) Characterization of two novel SETX mutations in AOA2 patients reveals aspects of the pathophysiological role of senataxin. Neurogenetics 11:91–100PubMedCrossRefGoogle Scholar
  2. Alper G, Narayanan V (2003) Friedreich’s ataxia. Pediatr Neurol 28:335–341PubMedCrossRefGoogle Scholar
  3. Amouri R, Moreira MC, Zouari M et al (2004) Aprataxin gene mutations in Tunisian families. Neurology 63:928–929PubMedCrossRefGoogle Scholar
  4. Anheim M, Fleury M, Monga B et al (2010) Epidemiological, clinical, paraclinical and molecular study of a cohort of 102 patients affected with autosomal recessive progressive cerebellar ataxia from Alsace, Eastern France: implications for clinical management. Neurogenetics 11:1–12PubMedCrossRefGoogle Scholar
  5. Arita M, Sato Y, Miyata A et al (1995) Human alpha-tocopherol transfer protein: cDNA cloning, expression and chromosomal localization. Biochem J 306(Pt 2):437–443PubMedGoogle Scholar
  6. Attali R, Warwar N, Israel A et al (2009) Mutation of SYNE-1, encoding an essential component of the nuclear lamina, is responsible for autosomal recessive arthrogryposis. Hum Mol Genet 18:3462–3469PubMedCrossRefGoogle Scholar
  7. Babcock M, de Silva D, Oaks R et al (1997) Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin. Science 276:1709–1712PubMedCrossRefGoogle Scholar
  8. Barbot C, Coutinho P, Chorao R et al (2001) Recessive ataxia with ocular apraxia: review of 22 Portuguese patients. Arch Neurol 58:201–205PubMedCrossRefGoogle Scholar
  9. Bidichandani SI, Ashizawa T, Patel PI (1998) The GAA triplet-repeat expansion in Friedreich ataxia interferes with transcription and may be associated with an unusual DNA structure. Am J Hum Genet 62:111–121PubMedCrossRefGoogle Scholar
  10. Bomont P, Watanabe M, Gershoni-Barush R et al (2000) Homozygosity mapping of spinocerebellar ataxia with cerebellar atrophy and peripheral neuropathy to 9q33-34, and with hearing impairment and optic atrophy to 6p21-23. Eur J Hum Genet 8:986–990PubMedCrossRefGoogle Scholar
  11. Bouchard JP (1991) Recessive spastic ataxia of Charlevoix-Saguenay. In: de Jonghe JMBV (ed) Hereditary Neuropathies and Spinocerebellar Atrophies. Elsevier Science, AmsterdamGoogle Scholar
  12. Bouchard JP, Barbeau A, Bouchard R et al (1978) Autosomal recessive spastic ataxia of Charlevoix-Saguenay. Can J Neurol Sci 5:61–69PubMedGoogle Scholar
  13. Bouchard JP, Richter A, Mathieu J et al (1998) Autosomal recessive spastic ataxia of Charlevoix-Saguenay. Neuromuscul Disord 8:474–479PubMedCrossRefGoogle Scholar
  14. Bouhlal Y, El Euch-Fayeche G, Hentati F et al (2009) A novel SACS gene mutation in a Tunisian family. J Mol Neurosci 39:333–336PubMedCrossRefGoogle Scholar
  15. Burk K, Zuhlke C, Konig IR et al (2004) Spinocerebellar ataxia type 5: clinical and molecular genetic features of a German kindred. Neurology 62:327–329PubMedCrossRefGoogle Scholar
  16. Burnett R, Melander C, Puckett JW et al (2006) DNA sequence-specific polyamides alleviate transcription inhibition associated with long GAA.TTC repeats in Friedreich’s ataxia. Proc Natl Acad Sci USA 103:11497–11502PubMedCrossRefGoogle Scholar
  17. Campuzano V, Montermini L, Molto MD et al (1996) Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271:1423–1427PubMedCrossRefGoogle Scholar
  18. Cavalier L, Ouahchi K, Kayden HJ et al (1998) Ataxia with isolated vitamin E deficiency: heterogeneity of mutations and phenotypic variability in a large number of families. Am J Hum Genet 62:301–310PubMedCrossRefGoogle Scholar
  19. Chamberlain SSJ, Rowland A et al (1988) Mapping of mutations causing Friedreich’s ataxia to human chromosome 9. Nature 334:248–250PubMedCrossRefGoogle Scholar
  20. Chantrel-Groussard K, Geromel V, Puccio H et al (2001) Disabled early recruitment of antioxidant defenses in Friedreich’s ataxia. Hum Mol Genet 10:2061–2067PubMedCrossRefGoogle Scholar
  21. Clements PM, Breslin C, Deeks ED et al (2004) The ataxia-oculomotor apraxia 1 gene product has a role distinct from ATM and interacts with the DNA strand break repair proteins XRCC1 and XRCC4. DNA Repair Amst 3:1493–1502PubMedCrossRefGoogle Scholar
  22. Cooper JM, Schapira AH (2003) Friedreich’s Ataxia: disease mechanisms, antioxidant and Coenzyme Q10 therapy. Biofactors 18:163–171PubMedCrossRefGoogle Scholar
  23. Cooper JM, Schapira AH (2007) Friedreich’s ataxia: coenzyme Q10 and vitamin E therapy. Mitochondrion 7(Suppl):S127–S135PubMedCrossRefGoogle Scholar
  24. Cossee M, Durr A, Schmitt M et al (1999) Friedreich’s ataxia: point mutations and clinical presentation of compound heterozygotes. Ann Neurol 45:200–206PubMedCrossRefGoogle Scholar
  25. Criscuolo C, Banfi S, Orio M et al (2004) A novel mutation in SACS gene in a family from southern Italy. Neurology 62:100–102PubMedCrossRefGoogle Scholar
  26. Criscuolo C, Sacca F, De Michele G et al (2005) Novel mutation of SACS gene in a Spanish family with autosomal recessive spastic ataxia. Mov Disord 20:1358–1361PubMedCrossRefGoogle Scholar
  27. Date H, Onodera O, Tanaka H et al (2001) Early-onset ataxia with ocular motor apraxia and hypoalbuminemia is caused by mutations in a new HIT superfamily gene. Nat Genet 29:184–188PubMedCrossRefGoogle Scholar
  28. De Braekeleer M, Giasson F, Mathieu J et al (1993) Genetic epidemiology of autosomal recessive spastic ataxia of Charlevoix-Saguenay in northeastern Quebec. Genet Epidemiol 10:17–25PubMedCrossRefGoogle Scholar
  29. Delatycki MB, Williamson R, Forrest SM (2000) Friedreich ataxia: an overview. J Med Genet 37:1–8PubMedCrossRefGoogle Scholar
  30. Di Donato I, Bianchi S, Federico A (2010) Ataxia with vitamin E deficiency: update of molecular diagnosis. Neurol Sci 31:511–515PubMedCrossRefGoogle Scholar
  31. Dupre N, Bouchard JP, Brais B et al (2006) Hereditary ataxia, spastic paraparesis and neuropathy in the French-Canadian population. Can J Neurol Sci 33:149–157PubMedGoogle Scholar
  32. Dupre N, Bouchard JP, Gros-Louis F et al (2007a) Mutations in SYNE-1 lead to a newly discovered form of autosomal recessive cerebellar ataxia. Med Sci Paris 23:261–262PubMedCrossRefGoogle Scholar
  33. Dupre N, Gros-Louis F, Chrestian N et al (2007b) Clinical and genetic study of autosomal recessive cerebellar ataxia type 1. Ann Neurol 62:93–98PubMedCrossRefGoogle Scholar
  34. Duquette A, Roddier K, McNabb-Baltar J et al (2005) Mutations in senataxin responsible for Quebec cluster of ataxia with neuropathy. Ann Neurol 57:408–414PubMedCrossRefGoogle Scholar
  35. Durr A, Cossee M, Agid Y et al (1996) Clinical and genetic abnormalities in patients with Friedreich’s ataxia. N Engl J Med 335:1169–1175PubMedCrossRefGoogle Scholar
  36. El Euch-Fayache G, Lalani I, Amouri R et al (2003) Phenotypic features and genetic findings in sacsin-related autosomal recessive ataxia in Tunisia. Arch Neurol 60:982–988PubMedCrossRefGoogle Scholar
  37. Engert JC, Berube P, Mercier J et al (2000) ARSACS, a spastic ataxia common in northeastern Quebec, is caused by mutations in a new gene encoding an 11.5-kb ORF. Nat Genet 24:120–125PubMedCrossRefGoogle Scholar
  38. Foury F, Cazzalini O (1997) Deletion of the yeast homologue of the human gene associated with Friedreich’s ataxia elicits iron accumulation in mitochondria. FEBS Lett 411:373–377PubMedCrossRefGoogle Scholar
  39. Gabsi S, Gouider-Khouja N, Belal S et al (2001) Effect of vitamin E supplementation in patients with ataxia with vitamin E deficiency. Eur J Neurol 8:477–481PubMedCrossRefGoogle Scholar
  40. Geoffroy G, Barbeau A, Breton G et al (1976) Clinical description and roentgenologic evaluation of patients with Friedreich’s ataxia. Can J Neurol Sci 3:279–286PubMedGoogle Scholar
  41. Gohil K, Azzi A (2008) Reply to Drug Insight: antioxidant therapy in inherited ataxias. Nat Clin Pract Neurol 4:E1, author reply E2PubMedCrossRefGoogle Scholar
  42. Gottesfeld JM (2007) Small molecules affecting transcription in Friedreich ataxia. Pharmacol Ther 116:236–248PubMedCrossRefGoogle Scholar
  43. Grabczyk E, Usdin K (2000) Alleviating transcript insufficiency caused by Friedreich’s ataxia triplet repeats. Nucleic Acids Res 28:4930–4937PubMedCrossRefGoogle Scholar
  44. Grieco GS, Malandrini A, Comanducci G et al (2004) Novel SACS mutations in autosomal recessive spastic ataxia of Charlevoix-Saguenay type. Neurology 62:103–106PubMedCrossRefGoogle Scholar
  45. Gros-Louis F, Dupre N, Dion P et al (2007) Mutations in SYNE1 lead to a newly discovered form of autosomal recessive cerebellar ataxia. Nat Genet 39:80–85PubMedCrossRefGoogle Scholar
  46. Gucuyener K, Ozgul K, Paternotte C et al (2001) Autosomal recessive spastic ataxia of Charlevoix-Saguenay in two unrelated Turkish families. Neuropediatrics 32:142–146PubMedCrossRefGoogle Scholar
  47. Harding AE (1981) Friedreich’s ataxia: a clinical and genetic study of 90 families with an analysis of early diagnostic criteria and intrafamilial clustering of clinical features. Brain 104:589–620PubMedCrossRefGoogle Scholar
  48. Harding AE (1993) Clinical features and classification of inherited ataxias. Adv Neurol 61:1–14PubMedGoogle Scholar
  49. Hart PE, Lodi R, Rajagopalan B et al (2005) Antioxidant treatment of patients with Friedreich ataxia: four-year follow-up. Arch Neurol 62:621–626PubMedCrossRefGoogle Scholar
  50. Hentati A, Deng HX, Hung WY et al (1996) Human alpha-tocopherol transfer protein: gene structure and mutations in familial vitamin E deficiency. Ann Neurol 39:295–300PubMedCrossRefGoogle Scholar
  51. Ikeda Y, Dick KA, Weatherspoon MR et al (2006) Spectrin mutations cause spinocerebellar ataxia type 5. Nat Genet 38:184–190PubMedCrossRefGoogle Scholar
  52. Ishikawa K, Toru S, Tsunemi T et al (2005) An autosomal dominant cerebellar ataxia linked to chromosome 16q22.1 is associated with a single-nucleotide substitution in the 5′ untranslated region of the gene encoding a protein with spectrin repeat and Rho guanine-nucleotide exchange-factor domains. Am J Hum Genet 77:280–296PubMedCrossRefGoogle Scholar
  53. Kara B, Uzumcu A, Uyguner O et al (2008) Ataxia with vitamin E deficiency associated with deafness. Turk J Pediatr 50:471–475PubMedGoogle Scholar
  54. Klockgether T (2007) Parkinsonism & related disorders. Ataxias. Parkinsonism Relat Disord 13(Suppl 3):S391–S394PubMedCrossRefGoogle Scholar
  55. Koenig M, Hoffman EP, Bertelson CJ et al (1987) Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell 50:509–517PubMedCrossRefGoogle Scholar
  56. Laforce R Jr, Buteau JP, Bouchard JP et al (2010) Cognitive Impairment in ARCA-1, a Newly Discovered Pure Cerebellar Ataxia Syndrome. Cerebellum 9:443–453PubMedCrossRefGoogle Scholar
  57. Lagier-Tourenne C, Tazir M, Lopez LC et al (2008) ADCK3, an ancestral kinase, is mutated in a form of recessive ataxia associated with coenzyme Q10 deficiency. Am J Hum Genet 82:661–672PubMedCrossRefGoogle Scholar
  58. Lamperti C, Naini A, Hirano M et al (2003) Cerebellar ataxia and coenzyme Q10 deficiency. Neurology 60:1206–1208PubMedCrossRefGoogle Scholar
  59. Lamy CMS, Taussig D et al (1998) Ataxie spastique récessive de type Charlevoix-Saguenay dans une famille marocaine. Rev Neurol 154:463Google Scholar
  60. Le Ber I, Bouslam N, Rivaud-Pechoux S et al (2004) Frequency and phenotypic spectrum of ataxia with oculomotor apraxia 2: a clinical and genetic study in 18 patients. Brain 127:759–767PubMedCrossRefGoogle Scholar
  61. Manor D, Morley S (2007) The alpha-tocopherol transfer protein. Vitam Horm 76:45–65PubMedCrossRefGoogle Scholar
  62. Mariotti C, Solari A, Torta D et al (2003) Idebenone treatment in Friedreich patients: one-year-long randomized placebo-controlled trial. Neurology 60:1676–1679PubMedCrossRefGoogle Scholar
  63. Mariotti C, Gellera C, Rimoldi M et al (2004) Ataxia with isolated vitamin E deficiency: neurological phenotype, clinical follow-up and novel mutations in TTPA gene in Italian families. Neurol Sci 25:130–137PubMedCrossRefGoogle Scholar
  64. Marmolino D, Acquaviva F (2009) Friedreich’s Ataxia: from the (GAA)n repeat mediated silencing to new promising molecules for therapy. Cerebellum 8:245–259PubMedCrossRefGoogle Scholar
  65. Martelli A, Wattenhofer-Donze M et al (2007) Frataxin is essential for extramitochondrial Fe-S cluster proteins in mammalian tissues. Hum Mol Genet 16:2651–2658PubMedCrossRefGoogle Scholar
  66. Marzouki N, Benomar A, Yahyaoui M et al (2005) Vitamin E deficiency ataxia with (744 del A) mutation on alpha-TTP gene: genetic and clinical peculiarities in Moroccan patients. Eur J Med Genet 48:21–28PubMedCrossRefGoogle Scholar
  67. Mercier J, Prevost C, Engert JC et al (2001) Rapid detection of the sacsin mutations causing autosomal recessive spastic ataxia of Charlevoix-Saguenay. Genet Test 5:255–259PubMedCrossRefGoogle Scholar
  68. Meydani SN, Meydani M, Blumberg JB et al (1998) Assessment of the safety of supplementation with different amounts of vitamin E in healthy older adults. Am J Clin Nutr 68:311–318PubMedGoogle Scholar
  69. Montermini L, Andermann E, Labuda M et al (1997a) The Friedreich ataxia GAA triplet repeat: premutation and normal alleles. Hum Mol Genet 6:1261–1266PubMedCrossRefGoogle Scholar
  70. Montermini L, Richter A, Morgan K et al (1997b) Phenotypic variability in Friedreich ataxia: role of the associated GAA triplet repeat expansion. Ann Neurol 41:675–682PubMedCrossRefGoogle Scholar
  71. Moreira MC, Barbot C, Tachi N et al (2001a) Homozygosity mapping of Portuguese and Japanese forms of ataxia-oculomotor apraxia to 9p13, and evidence for genetic heterogeneity. Am J Hum Genet 68:501–508PubMedCrossRefGoogle Scholar
  72. Moreira MC, Barbot C, Tachi N et al (2001b) The gene mutated in ataxia-ocular apraxia 1 encodes the new HIT/Zn-finger protein aprataxin. Nat Genet 29:189–193PubMedCrossRefGoogle Scholar
  73. Moreira MC, Klur S, Watanabe M et al (2004) Senataxin, the ortholog of a yeast RNA helicase, is mutant in ataxia-ocular apraxia 2. Nat Genet 36:225–227PubMedCrossRefGoogle Scholar
  74. Mrissa N, Belal S, Hamida CB et al (2000) Linkage to chromosome 13q11-12 of an autosomal recessive cerebellar ataxia in a Tunisian family. Neurology 54:1408–1414PubMedCrossRefGoogle Scholar
  75. Muhlenhoff U, Gerber J et al (2003) Components involved in assembly and dislocation or iron-sulfur clusters on the scaffold protein Isu1p. EMBO J 22:4815–4825PubMedCrossRefGoogle Scholar
  76. Nahas SA, Duquette A, Roddier K et al (2007) Ataxia-oculomotor apraxia 2 patients show no increased sensitivity to ionizing radiation. Neuromuscul Disord 17:968–969PubMedCrossRefGoogle Scholar
  77. Nemeth AH, Bochukova E, Dunne E et al (2000) Autosomal recessive cerebellar ataxia with oculomotor apraxia (ataxia-telangiectasia-like syndrome) is linked to chromosome 9q34. Am J Hum Genet 67:1320–1326PubMedGoogle Scholar
  78. Ogawa T, Takiyama Y, Sakoe K et al (2004) Identification of a SACS gene missense mutation in ARSACS. Neurology 62:107–109PubMedCrossRefGoogle Scholar
  79. Ouahchi K, Arita M, Kayden H et al (1995) Ataxia with isolated vitamin E deficiency is caused by mutations in the alpha-tocopherol transfer protein. Nat Genet 9:141–145PubMedCrossRefGoogle Scholar
  80. Ouyang Y, Takiyama Y, Sakoe K et al (2006) Sacsin-related ataxia (ARSACS): expanding the genotype upstream from the gigantic exon. Neurology 66:1103–1104PubMedCrossRefGoogle Scholar
  81. Ouyang Y, Segers K, Bouquiaux O et al (2008) Novel SACS mutation in a Belgian family with sacsin-related ataxia. J Neurol Sci 264:73–76PubMedCrossRefGoogle Scholar
  82. Palau F, De Michele G, Vilchez JJ et al (1995) Early-onset ataxia with cardiomyopathy and retained tendon reflexes maps to the Friedreich’s ataxia locus on chromosome 9q. Ann Neurol 37:359–362PubMedCrossRefGoogle Scholar
  83. Pandolfo M (1998) Molecular genetics and pathogenesis of Friedreich ataxia. Neuromuscul Disord 8:409–415PubMedCrossRefGoogle Scholar
  84. Pandolfo M, Montermini L (1998) Molecular genetics of the hereditary ataxias. Adv Genet 38:31–68PubMedCrossRefGoogle Scholar
  85. Parfitt DA, Michael GJ, Vermeulen EG et al (2009) The ataxia protein sacsin is a functional co-chaperone that protects against polyglutamine-expanded ataxin-1. Hum Mol Genet 18:1556–1565PubMedCrossRefGoogle Scholar
  86. Parkinson NJ, Olsson CL, Hallows JL et al (2001) Mutant beta-spectrin 4 causes auditory and motor neuropathies in quivering mice. Nat Genet 29:61–65PubMedCrossRefGoogle Scholar
  87. Peyronnard JM, Charron L, Barbeau A (1979) The neuropathy of Charlevoix-Saguenay ataxia: an electrophysiological and pathological study. Can J Neurol Sci 6:199–203PubMedGoogle Scholar
  88. Puccio H (2009) Multicellular models of Friedreich ataxia. J Neurol 256(Suppl 1):18–24PubMedCrossRefGoogle Scholar
  89. Puccio H, Simon D et al (2001) Mouse models for Friedreich ataxia exhibit cardiomyopathy, sensory nerve defect and Fe-S enzyme deficiency followed by intramitochondrial iron deposits. Nat Genet 17:215–217Google Scholar
  90. Rass U, Ahel I, West SC (2007) Defective DNA repair and neurodegenerative disease. Cell 130:991–1004PubMedCrossRefGoogle Scholar
  91. Ribai P, Pousset F, Tanguy ML et al (2007) Neurological, cardiological, and oculomotor progression in 104 patients with Friedreich ataxia during long-term follow-up. Arch Neurol 64:558–564PubMedCrossRefGoogle Scholar
  92. Ricciarelli R, Argellati F, Pronzato MA et al (2007) Vitamin E and neurodegenerative diseases. Mol Aspects Med 28:591–606PubMedCrossRefGoogle Scholar
  93. Richter A, Rioux JD, Bouchard JP et al (1999) Location score and haplotype analyses of the locus for autosomal recessive spastic ataxia of Charlevoix-Saguenay, in chromosome region 13q11. Am J Hum Genet 64:768–775PubMedCrossRefGoogle Scholar
  94. Richter AM, Ozgul RK, Poisson VC et al (2004) Private SACS mutations in autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) families from Turkey. Neurogenetics 5:165–170PubMedCrossRefGoogle Scholar
  95. Rotig A, de Lonlay P et al (1997) Aconitase and mitochondrial iron-sulfur protein deficiency in Friedreich ataxia. Nat Genet 17:215–217PubMedCrossRefGoogle Scholar
  96. Rustin P, Rotig A, Munnich A et al (2002) Heart hypertrophy and function are improved by idebenone in Friedreich’s ataxia. Free Radic Res 36:467–469PubMedCrossRefGoogle Scholar
  97. Sakamoto N, Chastain PD, Parniewski P et al (1999) Sticky DNA: self-association properties of long GAA.TTC repeats in R.R.Y triplex structures from Friedreich’s ataxia. Mol Cell 3:465–475PubMedCrossRefGoogle Scholar
  98. Schmucker S, Puccio H (2010) Understanding the molecular mechanisms of Friedreich’s ataxia to develop therapeutic approaches. Hum Mol Genet 19:R103–R110PubMedCrossRefGoogle Scholar
  99. Schulz JB, Boesch S, Burk K et al (2009) Diagnosis and treatment of Friedreich ataxia: a European perspective. Nat Rev Neurol 5:222–234PubMedCrossRefGoogle Scholar
  100. Seznec H, Simon D, Monassier L et al (2004) Idebenone delays the onset of cardiac functional alteration without correction of Fe-S enzymes deficit in a mouse model for Friedreich ataxia. Hum Mol Genet 13:1017–1024PubMedCrossRefGoogle Scholar
  101. Shimazaki H, Takiyama Y, Sakoe K et al (2002) Early-onset ataxia with ocular motor apraxia and hypoalbuminemia: the aprataxin gene mutations. Neurology 59:590–595PubMedCrossRefGoogle Scholar
  102. Stevanin G, Herman A, Brice A et al (1999) Clinical and MRI findings in spinocerebellar ataxia type 5. Neurology 53:1355–1357PubMedCrossRefGoogle Scholar
  103. Sturm B, Stupphann D, Kaun C et al (2005) Recombinant human erythropoietin: effects on frataxin expression in vitro. Eur J Clin Invest 35:711–717PubMedCrossRefGoogle Scholar
  104. Suraweera A, Becherel OJ, Chen P et al (2007) Senataxin, defective in ataxia oculomotor apraxia type 2, is involved in the defense against oxidative DNA damage. J Cell Biol 177:969–979PubMedCrossRefGoogle Scholar
  105. Suraweera A, Lim Y, Woods R et al (2009) Functional role for senataxin, defective in ataxia oculomotor apraxia type 2, in transcriptional regulation. Hum Mol Genet 18:3384–3396PubMedCrossRefGoogle Scholar
  106. Tsou AY, Friedman LS, Wilson RB et al (2009) Pharmacotherapy for Friedreich ataxia. CNS Drugs 23:213–223PubMedCrossRefGoogle Scholar
  107. Vermeer S, Meijer RP, Pijl BJ et al (2008) ARSACS in the Dutch population: a frequent cause of early-onset cerebellar ataxia. Neurogenetics 9:207–214PubMedCrossRefGoogle Scholar
  108. Watanabe M, Sugai Y, Concannon P et al (1998) Familial spinocerebellar ataxia with cerebellar atrophy, peripheral neuropathy, and elevated level of serum creatine kinase, gamma-globulin, and alpha-fetoprotein. Ann Neurol 44:265–269PubMedCrossRefGoogle Scholar
  109. Wong A, Yang J, Cavadini P et al (1999) The Friedreich’s ataxia mutation confers cellular sensitivity to oxidant stress which is rescued by chelators of iron and calcium and inhibitors of apoptosis. Hum Mol Genet 8:425–430PubMedCrossRefGoogle Scholar
  110. Yokota T, Shiojiri T, Gotoda T et al (1997) Friedreich-like ataxia with retinitis pigmentosa caused by the His101Gln mutation of the alpha-tocopherol transfer protein gene. Ann Neurol 41:826–832PubMedCrossRefGoogle Scholar
  111. Zingg JM (2007) Vitamin E: an overview of major research directions. Mol Aspects Med 28:400–422PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Anne Noreau
    • 1
  • Nicolas Dupré
    • 2
  • Jean-Pierre Bouchard
    • 2
  • Patrick A. Dion
    • 1
    • 3
  • Guy A. Rouleau
    • 1
    • 4
    • 5
  1. 1.Centre of Excellence in Neuroscience of Université de Montréal (CENUM)Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM)MontréalCanada
  2. 2.Department of Neurological SciencesLaval University CHAUQ (Enfant-Jésus)QuébecCanada
  3. 3.Department of Pathology and cellular biologyUniversité de MontréalMontréalCanada
  4. 4.Research Center CHU Ste–Justine, and Department of Pediatrics and BiochemistryUniversity of MontrealMontréalCanada
  5. 5.Research Center CHU Ste–Justine, and Department of Pediatrics and BiochemistryCHUM Research CentreMontréalCanada

Personalised recommendations