Advertisement

Quantitative Structure–Activity Relationships of Antimicrobial Compounds

  • F. P. Maguna
  • N. B. Okulik
  • Eduardo A. Castro
Reference work entry

Abstract

A thorough antimicrobial review of an increasing number of reports reveals a broad spectrum of research activity in the development practices that are used to treat a variety of diseases. The quantitative relationship between chemical structure and biological activity has received considerable attention in recent years because it allows one to predict theoretically bioactivity without an inordinate amount of experimental time and effort. In this chapter we collect and discuss critically published results concerning the QSAR research on antimicrobial compounds. Finally, we present an updated perspective about the future trends in this area.

Keywords

Antimicrobial Activity Molecular Descriptor Coumarin Derivative Cinnamic Acid Derivative Oral Malodor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ahluwalia, V. K., Kaila, N., & Bala, S. (1986). Indian Journal of Chemistry Section-B, 25, 663.Google Scholar
  2. Ahmed, S. P., Ahmad, M., Kazmi, S. U., Shahid, M., & Ahmed, S. I. (1995). Studies on the antibacterial and HPFC activity of a phenylpropanoid glycoside. Pakistan Journal of Pharmacology, 12(2), 31.Google Scholar
  3. Al-Haiza, M. A., Mostafa, M. S., & El-Kady, M. Y. (2003). Synthesis and biological evaluation of some new coumarin derivatives. Molecules, 8, 275.CrossRefGoogle Scholar
  4. Althaus, I. W., Dolak, L., & Reusser, F. (1988). Coumarins as inhibitors of bacterial DNA Gyrase. The Journal of Antibiotics, 41, 373.CrossRefGoogle Scholar
  5. Amschler, G., Frahm, A. W., Hatzelmann, A., Kilian, U., Muller-Doblies, D., & Muller-Doblies, U. (1996). Spirocyclic nortriterpenes from the bulbs of Veltheimia viridifolia. Planta Medica, 62, 534.CrossRefGoogle Scholar
  6. Bajorath, J. (2002). Integration of virtual and high-throughput screening. Nature Reviews Drug Discovery, 1, 882.CrossRefGoogle Scholar
  7. Christine, S. V., Rohan, K. G., & Ian, B. R. (1984). The effect of food preservatives on pH homeostasis in Escherichia coli. Journal of General Microbiology, 130, 2845.Google Scholar
  8. Cragg, G. M., & Newman, D. J. (2001). Natural product drug discovery in the next millennium. Pharmaceutical Biology, 39, 8.CrossRefGoogle Scholar
  9. Cragg, G. M., Newman, D. J., & Snader, K. M. (1997). Natural products in drug discovery and development. Journal of Natural Products, 60, 52.CrossRefGoogle Scholar
  10. Cremlyn, R. J., Thandi, K., & Wilson, R. (1984). Indian Journal of Chemistry Section-B, 23, 94.Google Scholar
  11. Cremlyn, R. J., Obioran, O., & Singh, G. (1986). Indian Journal of Chemistry Section-B, 25, 559.Google Scholar
  12. Cruz-Monteagudo, M., González-Díaz, H., Agüero-Chapin, G., Santana, L., Borges, F., Domínguez, R. E., Podda, G., & Uriarte E. (2007). Computational chemistry development of a unified free energy Markov model for the distribution of 1,300 chemicals to 38 different environmental or biological systems. Journal of Computational Chemistry, 28, 1909.CrossRefGoogle Scholar
  13. Cruz-Monteagudo, M., Borges, F., Cordeiro, M. N., Cagide Fajin, J. L., Morell, C., & Ruiz, R. M. (2008a). Desirability-based methods of multiobjective optimization and ranking for global QSAR studies. Filtering safe and potent drug candidates from combinatorial libraries. Journal of Combinatorial Chemistry, 10, 897.CrossRefGoogle Scholar
  14. Cruz-Monteagudo, M., Borges, F., & Cordeiro, M. N. (2008b). Desirability-based multiobjective optimization for global QSAR studies: application to the design of novel NSAIDs with improved analgesic, antiinflammatory, and ulcerogenic profiles. Journal of Computational Chemistry, 29, 2445.CrossRefGoogle Scholar
  15. Debeljak, Ž., Sÿkrbo, A., Jasprica, I., Mornar, A., Plecko, V., Banjanac, M., & Medic-Šaric, M. (2007). QSAR study of antimicrobial activity of some 3-Nitrocoumarins and related compounds. Journal of Chemical Information and Modeling, 7, 918.CrossRefGoogle Scholar
  16. Dekić, B., Dekić, V., Radulović, N., Vukićević, R., & Palić, R. (2010). Synthesis of new antimicrobial 4-aminosubstituted 3-nitrocoumarins. Chemical Papers, 64(3), 354–359.CrossRefGoogle Scholar
  17. Della Loggia, R., Del Negro, P., Tubaro, A., Barone, G., & Parrilli, M. (1989). Homoisoflava-nones as anti-inflammatory principles. Planta Medica, 55, 587.CrossRefGoogle Scholar
  18. Demain, A. L. (1999). Metabolites, primary and secondary. In M. C. Flickinger & S. C Drew (Eds.), Encyclopedia of bioprocess technology: Fermentation. New York: Wiley.Google Scholar
  19. Du Toit, K., Elgorashi, E. E., Malan, S. F., Mulholland, D. A., Drewes, S. E., & Van Staden, J. (2007). Antibacterial activity and QSAR of homoisoflavanones isolated from six Hyacinthaceae species. South African Journal of Botany, 73, 236.CrossRefGoogle Scholar
  20. Dudek, A. Z., Arodzb, T., & Gálvez, J. (2006). Computational methods in developing quantitative structure-activity relationships (QSAR): a review. Combinatorial Chemistry & High Throughput Screening, 9, 213.CrossRefGoogle Scholar
  21. Estrada, E., & Molina, E. (2001). 3D connectivity indices in QSPR/QSAR studies. Journal of Chemical Information and Computer sciences, 41, 791.Google Scholar
  22. Galm, U., Dessoy, M. A., Schmidt, J., Wessjohann, L. A., & Heide, L. (2004). In vitro and in vivo production of new aminocoumarins by a combined biochemical, genetic and synthetic approach. Chemistry & Biology, 11, 173.CrossRefGoogle Scholar
  23. Giertsen, E. (2004). Effects of mouthrinses with triclosan, zinc ions, copolymer, and sodium lauryl sulphate combined with fluoride on acid formation by dental plaque in vivo. Caries Research, 38, 430.CrossRefGoogle Scholar
  24. González-Díaz, H., & Prado-Prado, F. (2008). Unified QSAR and network-based computational chemistry approach to antimicrobials, part 1: multispecies activity models for antifungals. Journal of Computational Chemistry, 29, 656.CrossRefGoogle Scholar
  25. González-Díaz, H., & Uriarte, E. (2005). Proteins QSAR with Markov average electrostatic potentials. Bioorganic & Medicinal Chemistry Letters, 15, 5088.CrossRefGoogle Scholar
  26. González-Díaz, H., Gia, O., Uriarte, E., Hernández, I., Ramos, R., & Chaviano, M. (2003). Markovian chemicals “in silico” design (MARCH-INSIDE), a promising approach for computer-aided molecular design I: discovery of anticancer compounds. Journal of Molecular Modeling, 9, 395.CrossRefGoogle Scholar
  27. González-Díaz, H., Molina, R., & Uriarte, E. (2004). Markov entropy backbone electrostatic descriptors for predicting proteins biological activity. Bioorganic & Medicinal Chemistry Letters, 14, 4691.CrossRefGoogle Scholar
  28. González-Díaz, H., Molina-Ruiz, V., & Hernández, I. (2007). MARCH-INSIDE v3.0 (MARkov CHains INvariants for SImulation & DEsign), Cuba.Google Scholar
  29. González, M. P., Morales, A. H., & González-Díaz, H. (2004). A TOPS-MODE approach to predict permeability coefficients. Polymer, 45, 2073.CrossRefGoogle Scholar
  30. González-Díaz, H., Aguero, G., Cabrera, M. A., Molina, R., Santana, L., Uriarte, E., Delogu, G., & Castañedo, N. (2005). Unified Markov thermodynamics based on stochastic forms to classify drugs considering molecular structure, partition system, and biological species: distribution of the antimicrobial G1 on rat tissues. Bioorganic & Medicinal Chemistry Letters, 15, 551.CrossRefGoogle Scholar
  31. González-Díaz, H., Perez-Bello, A., Uriarte, E., & González-Díaz, Y. (2006). QSAR study for mycobacterial promoters with low sequence homology. Bioorganic & Medicinal Chemistry Letters, 16, 547.CrossRefGoogle Scholar
  32. González-Díaz, H., Prado-Prado, F. J., Santana, L., & Uriarte, E. (2006). Unify QSAR approach to antimicrobials. Part 1: predicting antifungal activity against different species. Bioorganic & Medicinal Chemistry, 14, 5973.CrossRefGoogle Scholar
  33. González-Díaz, H., Sanchez-Gonzalez, A., & González-Díaz, Y. (2006). 3D-QSAR study for DNA cleavage proteins with a potential anti-tumor ATCUN-like motif. Journal of Inorganic Biochemistry, 100, 1290.CrossRefGoogle Scholar
  34. González-Díaz, H., Saiz-Urra, L., Molina, R., Santana, L., & Uriarte, E. (2007). A model for the recognition of protein kinases based on the entropy of 3D van der Waals interactions. Journal of Proteome Research, 6, 904.CrossRefGoogle Scholar
  35. González-Díaz, H., Vilar, S., Santana, L., & Uriarte, E. (2007). Medicinal chemistry and bioinformatics–current trends in drugs discovery with networks topological indices. Current Topics in Medicinal Chemistry, 7, 1015.CrossRefGoogle Scholar
  36. González-Díaz, H., González-Díaz, Y., Santana, L., Ubeira, F. M., & Uriarte, E. (2008a). Proteomics, networks and connectivity indices. Proteomics, 8, 750.CrossRefGoogle Scholar
  37. González-Díaz, H., Prado-Prado, F., Ubeira, F. M. (2008b). Predicting antimicrobial drugs and targets with the MARCH-INSIDE approach. Current Topics in Medicinal Chemistry, 8, 1676.CrossRefGoogle Scholar
  38. González-Díaz, H., Vilar, S., & Pérez-Montoto, L. G. (2011). 6. Predicting parasite-host networks with Markov Entropy measures for secondary structures of RNA phylogenetic biomarkers. In H. González-Díaz, F. J. Prado-Prado, & X. García-Mera, (Eds.), Complex network entropy: from molecules to biology, parasitology, technology, social, legal, and neurosciences. Kerala, India: Transworld Research Network.Google Scholar
  39. Greenberg, M., Urnezis, P., & Tian, M. (2007). Compressed mints and chewing gum containing magnolia bark are effective against bacteria that are response for oral malodor. Journal of Agricultural and Food Chemistry, 55, 9465.CrossRefGoogle Scholar
  40. Greenberg, M., Dodds, M., & Tian, M. (2008). Naturally occurring phenolic antibacterial compounds show effectiveness against oral bacteria by a quantitative structure-activity relationship study. Journal of Agricultural and Food Chemistry, 56, 11151.CrossRefGoogle Scholar
  41. Greenstein, R. B.-N., Goldberg, S., Marku-Cohen, S., Sterer, N., & Rosenberg, M. (1997). Reduction of oral malodor by oxidizing lozenges. Journal of Periodontology, 68, 1176.CrossRefGoogle Scholar
  42. Hall, B. G. (2004). Predicting the evolution of antibiotic resistance genes. Nature Reviews Microbiology, 2, 430.CrossRefGoogle Scholar
  43. Hansch, C., & Fujita, T. (1964). ρ-σ-π analysis. A method for the correlation of biological activity and chemical structure. Journal of the American Chemical Society, 86, 1616.CrossRefGoogle Scholar
  44. Hayashi, Y., Ohara, N., Ganno, T., Yamaguchi, K., Ishizaki, T., Nakamura, T., & Sato, M. (2007). Chewing chitosan-containing gum effectively inhibits the growth of cariogenic bacteria. Archives of Oral Biology, 52, 290.CrossRefGoogle Scholar
  45. Heinrich, M., Barnes, J., Gibbons, S., & Williamson, E. M. (2004). Fundamentals of pharmacognosy and phytotherapy. Edinburgh: Churchill Livingstone.Google Scholar
  46. Heller, W., & Tamm, C. (1981). Homoisoflavanones and biogenetically related compounds. Fortschritte der Chemie Organischer Naturstoffe, 40, 106.Google Scholar
  47. Hodgson, J. (2001). ADMET-turning chemicals into drugs. Nature Biotechnology, 19, 722.CrossRefGoogle Scholar
  48. Hofnung, M., Quillardet, V. M., & Touati, E. (2002). Genotoxicity of 2-nitro-7-methoxy-naphtho[2,1-b]furan (R7000): a case study with some considerations on nitrofurantoin and nifuroxazide. Research in Microbiology, 153, 427.CrossRefGoogle Scholar
  49. Hoult, J. R. S., & Paya, M. (1996). Pharmacological and biochemical actions of simple coumarins: natural products with therapeutic potential. General Pharmacology, 27, 713.CrossRefGoogle Scholar
  50. Itaru, S., Seizo, M., & Takashi, K. (1973). Japan Patent, 73, 37, p. 819.Google Scholar
  51. Khan, M. W., Alam, M. J., Rashid, M. A., & Chowdhury, R. (2005). A new structural alternative in benzo[b]furans for antimicrobial activity. Bioorganic & Medicinal Chemistry, 13, 4796, and references therein.CrossRefGoogle Scholar
  52. Kubinyi, H. J. (1990). Quantitative structure-activity relationships (QSAR) and molecular modeling in cancer research. Journal of Cancer Research and Clinical Oncology, 116, 529.CrossRefGoogle Scholar
  53. Kulkarni, M. V., & Patil, V. D. (1981). Studies on coumarins I. Archives of Pharmacology, 314, 708.CrossRefGoogle Scholar
  54. Kulkarni, M. V., & Patil, V. D. (1983). Studies on coumarins II. Archives of Pharmacology, 316, 15.CrossRefGoogle Scholar
  55. Kumar, A., Narasimhanb, B., & Kumar, D. (2007). Synthesis, antimicrobial, and QSAR studies of substituted benzamides. Bioorganic & Medicinal Chemistry, 15, 4113.CrossRefGoogle Scholar
  56. Kupchan, S. M., Eakin, M. A., & Thomas, A. M. (1971). Tumor inhibitors. 69. Structure-cytotoxicity relationships among the sesquiterpene lactones. The Journal of Medicinal Chemistry, 111, 1147.CrossRefGoogle Scholar
  57. Lambert, R. J. W., & Pearson, J. (2000). Susceptibility testing: accurate and reproducible minimum inhibitory concentration (MIC) and non-inhibitory concentration (NIC) values. Journal of Applied Microbiology, 88, 784.CrossRefGoogle Scholar
  58. Laurin, P., Ferroud, D., Klich, M., Dupuis-Hamelin, C., Mauvais, P., Lassaigne, P., Bonnefoy, A., & Musicki, B. (1999). Synthesis and In Vitro evaluation of novel highly potent coumarin inhibitors of Gyrase B. Bioorganic & Medicinal Chemistry Letters, 9, 2079.CrossRefGoogle Scholar
  59. Lee, H. S., & Ahn, Y. J. (1998). Growth-inhibiting effects of Cinnamomum cassia bark-derived materials on human intestinal bacteria. Journal of Agricultural and Food Chemistry, 46, 8.CrossRefGoogle Scholar
  60. Lerner, S. A. (1998). Clinical impact of antibiotic resistance. In B. P. Rosen & S. Mobashery (Eds.), Resolving the antibiotic paradox. Progress in understanding drug resistance and development of new antibiotics. New York: Plenum Publishers.Google Scholar
  61. Lewis, R. A. (2005). A general method for exploiting QSAR models in lead optimization. Journal of Medicinal Chemistry, 48, 1638.CrossRefGoogle Scholar
  62. Loesche, W. (1979). Clinical and microbiological aspects of chemotherapeutic agents used according to specific plaque hypothesis. Journal of Dental Research, 58, 2404.CrossRefGoogle Scholar
  63. Mahiwal, K., Kumar, P., & Narasimhan, B. (2010). Synthesis, antimicrobial evaluation, ot-QSAR and mt-QSAR studies of 2-amino benzoic acid derivatives. Medicinal Chemistry Research, 1 https://springerlink3.metapress.com/content/v8rr537t3g832716/resource-secured/?target=fulltext.pdf&sid=hgvns0moaos2mq3vea5ali2b&sh=www.springerlink.com
  64. Mares, D. (1987). Antimicrobial activity of protoanemonin, a lactone from Ranunculaceous Plants. Mycopathologia, 98, 133.CrossRefGoogle Scholar
  65. Marrero-Ponce, Y., Díaz, H. G., Zaldívar, F., Torrens, V. R., & Castro, E. A. (2004). 3D-Chiral quadratic indices of the ‘molecular pseudograph’s atom adjacency matrix’ and their application to central chirality codification: classification of ACE inhibitors and prediction of σ-receptor antagonist activities. Bioorganic & Medicinal Chemistry, 12, 5331.CrossRefGoogle Scholar
  66. Marrero-Ponce, Y., Marrero, R. M., Torrens, F., Martínez, Y., Bernal, M. G., & Zaldívar, V. R. (2005). Non-stochastic and stochastic linear indices of the molecular pseudograph’s atom-adjacency matrix: a novel approach for computational in silico screening and “rational” selection of new lead antibacterial agents. Journal of Molecular Modeling (Online), 1. 12(3), 255–271.CrossRefGoogle Scholar
  67. Mcdermott, P. F., Walker, R. D., & White, D. G. (2003). Antimicrobials: modes of action and mechanisms of resistance. International Journal of Toxicology, 22(2), 135.CrossRefGoogle Scholar
  68. Molina, E., González-Díaz, H., González, M. P., Rodríguez, E., & Uriarte, E. (2004). Designing antibacterial compounds through a topological substructural approach. Journal of Chemical Information and Computer Science, 44, 515.CrossRefGoogle Scholar
  69. Mrozik, H., Jones, H., Frieddman, J., Schwartzkopf, G., Schardt, R. A., Patchett, A. A., Hoff, D. R., Yaktis, J. J., Riek, R. F., Ostlind, D. A., Plishker, G. A., Butler, R. W., Cuckler, A. C., & Campbell, W. C. (1969). A new agent for the treatment of liver fluke infection (fascioliasis). Experentia, 25, 883.CrossRefGoogle Scholar
  70. Narasimhan, B., Belsare, D., Pharande, D., Mourya, V., & Dhake, A. (2004). Esters, amides and substituted derivatives of cinnamic acid: synthesis, antimicrobial activity and QSAR investigations. European Journal of Medicinal Chemistry, 39, 827.CrossRefGoogle Scholar
  71. Narasimhan, B., Kothawade, U. R., Pharande, D. S., Mourya, V. K., & Dhake, A. S. (2003). Syntheses and QSAR studies of sorbic, cinnamic and ricinoleic acid derivatives as potential antibacterial agents. Indian Journal of Chemistry, 42(B), 2828.Google Scholar
  72. Ovale, J. M., Landman, D., Zaman, M. M., Burney, S., & Sathe, S. S. (1996). In vitro activity of Cinnamomum zeylanicum. American Journal of Chinese Medicine, 24, 103.CrossRefGoogle Scholar
  73. Pohl, T. S., Crouch, N. R., & Mulholland, D. A. (2000). Southern African Hyacinthaceae: chemistry, bioactivity and ethnobotany. Current Organic Chemistry, 4, 1287.CrossRefGoogle Scholar
  74. Prado-Prado, F. J., González-Díaz, H., Santana, L., & Uriarte E. (2007). Unified QSAR approach to antimicrobials. Part 2: predicting activity against more than 90 different species in order to halt antibacterial resistance. Bioorganic & Medicinal Chemistry, 15, 897.CrossRefGoogle Scholar
  75. Prado-Prado, F. J., González-Díaz, H., de la Vega, O. M., Ubeira, F. M., & Chou, K. C. (2008). Unified QSAR approach to antimicrobials. Part 3: first multi-tasking QSAR model for input-coded prediction, structural back-projection, and complex networks clustering of antiprotozoal compounds. Bioorganic & Medicinal Chemistry, 16, 5871.CrossRefGoogle Scholar
  76. Prado-Prado, F. J., Borges, F., Perez-Montoto, L. G., & González-Díaz, H. (2009). Multi-target spectral moment: QSAR for antifungal drugs vs. different fungi species. European Journal of Medicinal Chemistry, 44, 4051.CrossRefGoogle Scholar
  77. Prado-Prado, F. J., de la Vega, O. M., Uriarte, E., Ubeira, F. M., Chou, K.C., & González-Díaz, H. (2009). Unified QSAR approach to antimicrobials. 4. Multi-target QSAR modeling and comparative multi-distance study of the giant components of antiviral drug-drug complex networks. Bioorganic & Medicinal Chemistry, 17, 569.CrossRefGoogle Scholar
  78. Ramanan, P. N., & Rao, M. N. (1987). Antimicrobial activity of cinnamic acid derivatives. Indian Journal of Experimental Biology, 25, 42.Google Scholar
  79. Ramos de Armas, R., González-Díaz, H., Molina, R., Pérez González, M., Uriarte, E. (2004). Stochastic-based descriptors studying peptides biological properties: modeling the bitter tasting threshold of dipeptides. Bioorganic & Medicinal Chemistry, 12, 4815.CrossRefGoogle Scholar
  80. Reusser, F., & Dolak, L. A. (1986). Novenamine is the active moiety in novobiocine. The Journal of Antibiotics, 39, 272.Google Scholar
  81. Rodighiero, G., & Antonello, C. (1958). Sintesi di Alcuni Derivati 3-Ammino Cumarinici e Prime Notizie Sulle Loro Proprieta’ Antibatteriche. Bollettino Chimico Farmaceutico, 97, 592.Google Scholar
  82. Rule, K. L., Ebbett, V. R., & Vikes, P. J. (2005). Formation of chloroform and chlorinated organics by free-chlorine-mediated oxidation of triclosan. Environmental Science and Technology, 39, 3176.CrossRefGoogle Scholar
  83. Saiz-Urra, L., González-Díaz, H., & Uriarte, E. (2005). Proteins Markovian 3D-QSAR with spherically-truncated average electrostatic potentials. Bioorganic & Medicinal Chemistry, 13, 3641.CrossRefGoogle Scholar
  84. Schmutz, E., Mühlenweg, A., Li, S., & Heide, L. (2003). Resistence genes of aminocoumarin producers: two type II topoisomerase genes confer resistence against coumermycin A1 and clorobiocin. Antimicrobial Agents and Chemotherapy, 47, 869.CrossRefGoogle Scholar
  85. Sener, E. A., Bingol, K. K., Oren, I., Arpaci, O. T., Yalcin, I., & Altanlar, N. (2000). Synthesis and microbiological activity of some N-(o-hydroxyphenyl)benzamides and phenylacetamides as the possible metabolites of antimicrobial active benzoxazoles: part II. Il Farmaco, 55, 469.CrossRefGoogle Scholar
  86. Shevchenko, N. E. (1999). Synthesis of 3-substituted furylethylamines. Chemistry of Heterocyclic Compounds, 35, 164.CrossRefGoogle Scholar
  87. Shu, Y. Z. (1998). Recent natural products based drug development: a pharmaceutical industry perspective. Journal of Natural Products, 61, 1053.CrossRefGoogle Scholar
  88. Simonyan, A. V. (1993). Activity of cinnamic acid derivatives and new methods for their synthesis (review). Pharmaceutical Chemistry Journal, 27(2), 92.CrossRefGoogle Scholar
  89. Soltani, S., Dianat, S., & Sardari, S. (2009). Forward modeling of the coumarin antifungals; SPR/SAR based perspective avicenna. Journal of Medical Biotechnology, 1(2), 95.Google Scholar
  90. Srivastava, A., Shukla, Y. N., & Kumar, S. (1999). Phytotoxic and antimicrobial constituents of Argyreia speciosa and Oenothera biennis. Journal of Ethnopharmacology, 67, 241.CrossRefGoogle Scholar
  91. Tangallapally, R. P., Lee, R. E. B., Lenaerts, A. J. M., & Lee, R. E. (2006). Synthesis of new and potent analogues of anti-tuberculosis agent 5-nitro-furan-2-carboxylic acid 4-(4-benzyl-piperazin-1-yl)-benzylamide with improved bioavailability. Bioorganic & Medicinal Chemistry Letters, 16, 2584.CrossRefGoogle Scholar
  92. Tawata, S., Taira, S., Kobamoto, N., Zhu, J., Ishihara, M., & Toyama, S. (1996). Synthesis and antifungal activity of cinnamic and esters. Bioscience Biotechnology & Biochemistry, 60, 909.CrossRefGoogle Scholar
  93. Tisi, R., Coccetti, P., Banfi, S., & Martegani, E. (2001). 3-Nitrocoumarin is an efficient inhibitor of budding yeast phospholipase-C. Cell Biochemistry and Function, 19, 229.CrossRefGoogle Scholar
  94. Todeschini, R., & Consonni, V. (2002). Handbook of molecular descriptors. Bicocca: Wiley-VCH.Google Scholar
  95. Tomlin, C. (1994). The pesticide manual (10th ed.). UK: British Crop Protection Council and Royal Society of Chemistry.Google Scholar
  96. van de Waterbeemd, H., & Gifford, E. (2003). ADMET in silico modelling: towards prediction paradise? Nature Reviews Drug Discovery, 2, 192.CrossRefGoogle Scholar
  97. Vieira, P. C., Mafezoli, J., Pupo, M. T., Fernandes, J. B., da Silva, M. F. G. F., de Albuquerque, S., & Pavao, F. (2001). Strategies for the isolation and identification of trypanocidal compounds from the Rutales. Pure and Applied Chemistry, 73, 617.CrossRefGoogle Scholar
  98. Zanatta, N., Faoro, D., Silva, S. C., Bonacorso, H. G., & Martins, M. A. P. (2004). Convenient synthesis of furan-3-carboxylic acid and derivatives. Tetrahedron Letters, 45, 5689.CrossRefGoogle Scholar
  99. Zanatta, N., Alves, S. H., Coelho, H. S., Borchhardt, D. M., Machado, P., Flores, K. M., da Silva, F. M., Spader, T. B., Santurio, J. M., Bonacorso, H. G., & Martins, M. A. P. (2007). Synthesis, antimicrobial activity, and QSAR studies of furan-3-carboxamides. Bioorganic & Medicinal Chemistry, 15, 1947.CrossRefGoogle Scholar
  100. Zhang, L., Cui, Z., Yin, B., Yang, G., Ling, Y., & Yang, X. (2010). QSAR and 3D-QSAR studies of the diacyl-hydrazine derivatives containing furan rings based on the density functional theory. Science China. Chemistry, 53(6), 1322.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • F. P. Maguna
    • 1
  • N. B. Okulik
    • 1
  • Eduardo A. Castro
    • 1
  1. 1.Facultad de AgroindustriasUniversidad Nacional del NordesteChacoArgentina

Personalised recommendations