Skip to main content

Model Systems for Dynamics of π-Conjugated Biomolecules in Excited States

  • Reference work entry
  • First Online:
Handbook of Computational Chemistry

Abstract

Mixed-quantum classical dynamics simulations have recently become an important tool for investigations of time-dependent properties of electronically excited molecules, including non-adiabatic effects occurring during internal conversion processes. The high computational costs involved in such simulations have often led to simulation of model compounds instead of the full biochemical system. This chapter reviews recent dynamics results obtained for models of three classes of biologically relevant systems: protonated Schiff base chains as models for the chromophore of rhodopsin proteins; nucleobases and heteroaromatic rings as models for UV-excited nucleic acids; and formamide as a model for photoexcited peptide bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 749.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abouaf, R., Pommier, J., & Dunet, H. (2003). Electronic and vibrational excitation in gas phase thymine and 5-bromouracil by electron impact. Chemical Physics Letters, 381(3–4), 486–494. doi:10.1016/j.cplett.2003.09.121.

    CAS  Google Scholar 

  • Alexandrova, A. N., Tully, J. C., & Granucci, G. (2010). Photochemistry of DNA fragments via semiclassical nonadiabatic dynamics. The Journal of Physical Chemistry B, 114(37), 12116–12128. doi:10.1021/jp103322c.

    CAS  Google Scholar 

  • Andruniow, T., Ferre, N., & Olivucci, M. (2004). Structure, initial excited-state relaxation, and energy storage of rhodopsin resolved at the multiconfigurational perturbation theory level. Proceedings of the National Academy of Sciences of the United States of America, 101(52), 17908–17913. doi:10.1073/pnas.0407997101.

    CAS  Google Scholar 

  • Antol, I., Eckert-Maksić, M., Barbatti, M., & Lischka, H. (2007). Simulation of the photodeactivation of formamide in the n\({}_{\mathrm{o}}{\pi }^{{\ast}}\) and \(\pi {\pi }^{{\ast}}\) states: An ab initio on-the-fly surface-hopping dynamics study. Journal of Chemical Physics, 127(23), 234303–234308. doi:10.1063/1.2804862.

    Google Scholar 

  • Antol, I., Barbatti, M., Eckert-Maksić, M., & Lischka, H. (2008a). Quantum chemical calculations of electronically excited states: Formamide, its protonated form and alkali cation complexes as case studies. Monatshefte für Chemie/Chemical Monthly, 139(4), 319–328. doi:10.1007/s00706-007-0803-2.

    CAS  Google Scholar 

  • Antol, I., Vazdar, M., Barbatti, M., & Eckert-Maksić, M. (2008b). The effect of protonation on the photodissociation processes in formamide – An ab initio surface hopping dynamics study. Chemical Physics, 349(1–3), 308–318. doi:10.1016/j.chemphys.2008.01.026.

    CAS  Google Scholar 

  • Araujo, M., Lasorne, B., Bearpark, M. J., & Robb, M. A. (2008). The photochemistry of formaldehyde: Internal conversion and molecular dissociation in a single step? The Journal of Physical Chemistry A, 112(33), 7489–7491.

    CAS  Google Scholar 

  • Asturiol, D., Lasorne, B., Robb, M. A., & Blancafort, L. (2009). Photophysics of the \(\pi {\pi }^{{\ast}}\) and n,\({\pi }^{{\ast}}\) states of thymine: MS-CASPT2 minimum energy paths and CASSCF on-the-fly dynamics. The Journal of Physical Chemistry A, 113(38), 10211–10218. doi:10.1021/jp905303g.

    CAS  Google Scholar 

  • Back, R. A., & Boden, J. C. (1971). High-temperature photolysis and pyrolysis of formamide vapour, and thermal decomposition of carbamyl radical. Transactions of the Faraday Society67(577), 88–96.

    Google Scholar 

  • Barbatti, M., & Lischka, H. (2007). Can the nonadiabatic photodynamics of aminopyrimidine be a model for the ultrafast deactivation of adenine? The Journal of Physical Chemistry A, 111(15), 2852–2858. doi:10.1021/jp070089w.

    CAS  Google Scholar 

  • Barbatti, M., & Lischka, H. (2008). Nonadiabatic deactivation of 9H-adenine: A comprehensive picture based on mixed quantum-classical dynamics. Journal of the American Chemical Society, 130(21), 6831–6839. doi: 10.1021/ja800589p.

    CAS  Google Scholar 

  • Barbatti, M., Vazdar, M., Aquino, A. J. A., Eckert-Maksić, M., & Lischka, H. (2006). The nonadiabatic deactivation paths of pyrrole. Journal of Chemical Physics, 125(16), 164323. doi:10.1063/1.2363376.

    Google Scholar 

  • Barbatti, M., Granucci, G., Persico, M., Ruckenbauer, M., Vazdar, M., Eckert-Maksić, M., & Lischka, H. (2007a). The on-the-fly surface-hopping program system Newton-X: Application to ab initio simulation of the nonadiabatic photodynamics of benchmark systems. Journal of Photochemistry and Photobiology A, 190(2–3), 228–240. doi:10.1016/j.jphotochem.2006.12.008.

    CAS  Google Scholar 

  • Barbatti, M., Granucci, G., Ruckenbauer, M., Pittner, J., Persico, M., & Lischka, H. (2007b). NEWTON-X: A package for Newtonian dynamics close to the crossing seam. www.newtonx.org

  • Barbatti, M., Ruckenbauer, M., Szymczak, J. J., Aquino, A. J. A., & Lischka, H. (2008). Nonadiabatic excited-state dynamics of polar p-systems and related model compounds of biological relevance. Physical Chemistry Chemical Physics, 10, 482. doi:10.1039/b709315m.

    CAS  Google Scholar 

  • Barbatti, M., Aquino, A. J. A., Szymczak, J. J., Nachtigallová, D., Hobza, P., & Lischka, H. (2010a). Relaxation mechanisms of UV-photoexcited DNA and RNA nucleobases. Proceedings of the National Academy of Sciences of the United States of America, 107(50), 21453–21458. doi:10.1073/pnas.1014982107.

    CAS  Google Scholar 

  • Barbatti, M., Pittner, J., Pederzoli, M., Werner, U., Mitric, R., Bonacic-Koutecký, V., & Lischka, H. (2010b). Non-adiabatic dynamics of pyrrole: Dependence of deactivation mechanisms on the excitation energy. Chemical Physics, 375(1), 26–34.

    CAS  Google Scholar 

  • Barbatti, M., Aquino, A. J. A., Szymczak, J. J., Nachtigallová, D., & Lischka, H. (2011a).Photodynamics simulations of cytosine: Characterization of the ultra fast bi-exponential UV deactivation. Physical Chemistry Chemical Physics, 13, 6145–6155. doi:10.1039/C1030CP02142C.

    CAS  Google Scholar 

  • Barbatti, M., Szymczak, J. J., Aquino, A. J. A., Nachtigallova, D., & Lischka, H. (2011b). The decay mechanism of photoexcited guanine – A nonadiabatic dynamics study. Journal of Chemical Physics, 134(1), 014304.

    Google Scholar 

  • Ben-Nun, M., Molnar, F., Lu, H., Phillips, J. C., Martinez, T. J., & Schulten, K. (1998). Quantum dynamics of the femtosecond photoisomerization of retinal in bacteriorhodopsin. Faraday Discuss, 110, 447–462.

    CAS  Google Scholar 

  • Ben-Nun, M., Quenneville, J., & Martínez, T. J. (2000). Ab initio multiple spawning: Photochemistry from first principles quantum molecular dynamics. The Journal of Physical Chemistry A, 104(22), 5161–5175.

    CAS  Google Scholar 

  • Birge, R. R. (1981). Photophysics of light transduction in rhodopsin and bacteriorhodopsin. Annual Review of Biophysics & Bioengineering, 10, 315–354.

    CAS  Google Scholar 

  • Birge, R. R. (1990). Nature of the primary photochemical events in rhodopsin and bacteriorhodopsin. Biochimica et Biophysica Acta, 1016(3), 293–327.

    CAS  Google Scholar 

  • Blank, D. A., North, S. W., & Lee, Y. T. (1994). The ultraviolet photodissociation dynamics of pyrrole. Chemical Physics, 187(1–2), 35–47.

    CAS  Google Scholar 

  • Boden, J. C., & Back, R. A. (1970). Photochemistry and free-radical reactions in formamide vapour. Transactions of the Faraday Society66, 175–182.

    Google Scholar 

  • Boeyens, J. C. A. (1978). The conformation of six-membered rings. Journal of Chemical Crystallography, 8, 317–320.

    Google Scholar 

  • Burghardt, I., & Hynes, J. T. (2006). Excited-state charge transfer at a conical intersection: Effects of an environment. The Journal of Physical Chemistry A, 110(40), 11411–11423.

    CAS  Google Scholar 

  • Cadet, J., & Berger, M. (1985). Radiation-induced decomposition of the purine-bases within DNA and related model compounds. International Journal of Radiation Biology, 47(2), 127–143.

    CAS  Google Scholar 

  • Canuel, C., Mons, M., Piuzzi, F., Tardivel, B., Dimicoli, I., & Elhanine, M. (2005). Excited states dynamics of DNA and RNA bases: Characterization of a stepwise deactivation pathway in the gas phase. Journal of Chemical Physics, 122(7), 074316.

    Google Scholar 

  • Chen, X.-B., & Fang, W.-H. (2004). Insights into photodissociation dynamics of benzamide and formanilide from ab initio calculations. Journal of the American Chemical Society, 126(29), 8976–8980.

    CAS  Google Scholar 

  • Chen, X.-B., Fang, W.-H., & Fang, D. C. (2003). An ab initio study toward understanding the mechanistic photochemistry of acetamide. Journal of the American Chemical Society, 125(32), 9689–9698.

    CAS  Google Scholar 

  • Chin, C. H., Mebel, A. M., Kim, G. S., Baek, K. Y., Hayashi, M., Liang, K. K., & Lin, S. H. (2007). Theoretical investigations of spectroscopy and excited state dynamics of adenine. Chemical Physics Letters, 445(4–6), 361–369.

    CAS  Google Scholar 

  • Ciminelli, C., Granucci, G., & Persico, M. (2008). The photoisomerization of a peptidic derivative of azobenzene: A nonadiabatic dynamics simulation of a supramolecular system. Chemical Physics, 349(1–3), 325-333. doi:10.1016/j.chemphys.2008.01.030.

    CAS  Google Scholar 

  • Clark, L. B., & Tinoco, I. (1965). Correlations in ultraviolet spectra of purine and pyrimidine bases. Journal of the American Chemical Society, 87(1), 11.

    CAS  Google Scholar 

  • Clark, L. B., Peschel, G. G., & Tinoco, I. (1965). Vapor spectra and heats of vaporization of some purine and pyrimidine bases. The Journal of Physical Chemistry, 69(10), 3615–3618.

    CAS  Google Scholar 

  • Cremer, D., & Pople, J. A. (1975). General definition of ring puckering coordinates. Journal of the American Chemical Society, 97(6), 1354–1358.

    CAS  Google Scholar 

  • Crespo-Hernández, C. E., Cohen, B., Hare, P. M., & Kohler, B. (2004). Ultrafast excited-state dynamics in nucleic acids. Chemical Reviews, 104(4), 1977–2019.

    Google Scholar 

  • Crespo-Hernandez, C. E., Cohen, B., & Kohler, B. (2005). Base stacking controls excited-state dynamics in A-T DNA. Nature, 436(7054), 1141–1144. doi:10.1038/Nature03933.

    CAS  Google Scholar 

  • Cui, W., Thompson, M. S., & Reilly, J. P. (2005). Pathways of peptide ion fragmentation induced by vacuum ultraviolet light. Journal of The American Society for Mass Spectrometry, 16(8), 1384–1398.

    CAS  Google Scholar 

  • Dallos, M., Lischka, H., Shepard, R., Yarkony, D. R., & Szalay, P. G. (2004). Analytic evaluation of nonadiabatic coupling terms at the MR-CI level. II. Minima on the crossing seam: Formaldehyde and the photodimerization of ethylene. Journal of Chemical Physics, 120(16), 7330–7339.

    Google Scholar 

  • Daura, X., Antes, I., van Gunsteren, W. F., Thiel, W., & Mark, A. E. (1999). The effect of motional averaging on the calculation of NMR-derived structural properties. Proteins-Structure Function and Genetics, 36(4), 542–555.

    CAS  Google Scholar 

  • Devine, A. L., Cronin, B., Nix, M. G. D., & Ashfold, M. N. R. (2006). High resolution photofragment translational spectroscopy studies of the near ultraviolet photolysis of imidazole. Journal of Chemical Physics, 125(18), 184302, doi:Artn184302, 10.1063/1.2364504.

    Google Scholar 

  • Duggan, D. E., Bowman, R. L., Brodie, B. B., & Udenfriend, S. (1957). A spectrophotofluorometric study of compounds of biological interest. Archives of Biochemistry and Biophysics, 68(1), 1–14.

    CAS  Google Scholar 

  • Eckert-Maksić, M., & Antol, I. (2009). Study of the mechanism of the N-CO photodissociation in N,N-Dimethylformamide by direct trajectory surface hopping simulations. The Journal of Physical Chemistry A, 113(45):12582–12590. doi:10.1021/jp9046177.

    Google Scholar 

  • Eckert-Maksić, M., Antol, I., Vazdar, M., Barbatti, M., & Lischka, H. (2010a). Formamide as the model compound for photodissociation studies of the peptide bond. In P. Paneth & A. Dybala-Defratyka (Eds.), Kinetics and dynamics: Challenges and advances in coutational chemistry and physics (pp. 77–106). Netherlands: Springer.

    Google Scholar 

  • Eckert-Maksić, M., Vazdar, M., Ruckenbauer, M., Barbatti, M., Muller, T., & Lischka, H. (2010b). Matrix-controlled photofragmentation of formamide: Dynamics simulation in argon by nonadiabatic QM/MM method. Physical Chemistry Chemical Physics, 12(39), 12719–12726.

    Google Scholar 

  • Fabiano, E., & Thiel, W. (2008). Nonradiative deexcitation dynamics of 9H-adenine: An OM2 surface hopping study. The Journal of Physical Chemistry A, 112(30), 6859–6863. doi:10.1021/Jp8033402.

    CAS  Google Scholar 

  • Fabiano, E., Groenhof, G., & Thiel, W. (2008a). Approximate switching algorithms for trajectory surface hopping. Chemical Physics, 351(1–3), 111–116.

    CAS  Google Scholar 

  • Fabiano, E., Keal, T. W., & Thiel, W. (2008b). Implementation of surface hopping molecular dynamics using semiempirical methods. Chemical Physics, 349(1–3), 334–347. doi:10.1016/j.chemphys.2008.01.044.

    CAS  Google Scholar 

  • Ferretti, A., Granucci, G., Lami, A., Persico, M., & Villani, G. (1996). Quantum mechanical and semiclassical dynamics at a conical intersection. Journal of Chemical Physics, 104(14), 5517–5527.

    CAS  Google Scholar 

  • Frutos, L. M., Andruniow, T., Santoro, F., Ferre, N., & Olivucci, M. (2007). Tracking the excited-state time evolution of the visual pigment with multiconfigurational quantum chemistry. Proceedings of the National Academy of Sciences of the United States of America, 104(19), 7764–7769.

    CAS  Google Scholar 

  • Garavelli, M., Celani, P., Bernardi, F., Robb, M. A., & Olivucci, M. (1997). The C5H6NH2+ protonated Shiff base: An ab initio minimal model for retinal photoisomerization. Journal of the American Chemical Society, 119(29), 6891–6901.

    CAS  Google Scholar 

  • Garavelli, M., Bernardi, F., Robb, M. A., & Olivucci, M. (1999a). The short-chain acroleiniminium and pentadieniminium cations: Towards a model for retinal photoisomerization. A CASSCF/PT2 study. Journal of Molecular Structure: THEOCHEM, 463(1–2), 59–64.

    Google Scholar 

  • Garavelli, M., Negri, F., & Olivucci, M. (1999b). Initial excited-state relaxation of the isolated 11-cis protonated Schiff base of retinal: Evidence for in-plane motion from ab initio quantum chemical simulation of the resonance Raman spectrum. Journal of the American Chemical Society, 121(5), 1023–1029.

    CAS  Google Scholar 

  • Gascon, J. A., & Batista, V. S. (2004). QM/MM study of energy storage and molecular rearrangements due to the primary event in vision. Biophysical Journal, 87(5), 2931–2941. doi:10.1529/biophysj.104.048264.

    CAS  Google Scholar 

  • Gingell, J. M., Mason, N. J., Zhao, H., Walker, I. C., & Siggel, M. R. F. (1997). VUV optical-absorption and electron-energy-loss spectroscopy of formamide. Chemical Physics, 220(1–2), 191–205

    CAS  Google Scholar 

  • González-Luque, R., Garavelli, M., Bernardi, F., Merchán, M., Robb, M. A., & Olivucci, M. (2000). Computational evidence in favor of a two-state, two-mode model of the retinal chromophore photoisomerization. Proceedings of the National Academy of Sciences of the United States of America, 97(17), 9379–9384.

    Google Scholar 

  • González-Vázquez, J., & González, L. (2010). A time-dependent picture of the ultrafast deactivation of keto-cytosine including three-state conical intersections. A European Journal of Chemical Physics and Physical Chemistry, 11(17), 3617–3624.

    Google Scholar 

  • Granucci, G., & Persico, M. (2007). Critical appraisal of the fewest switches algorithm for surface hopping. Journal of Chemical Physics, 126(13), 134114–134111.

    Google Scholar 

  • Granucci, G., Persico, M., & Toniolo, A. (2001). Direct semiclassical simulation of photochemical processes with semiempirical wave functions. Journal of Chemical Physics, 114(24), 10608–10615.

    CAS  Google Scholar 

  • Grégoire, G., Lucas, B., Barat, M., Fayeton, J. A., Dedonder-Lardeux, C. & Jouvet, C. (2009). UV photoinduced dynamics in protonated aromatic amino acid. European Physical Journal D, 51(1), 109–116.

    Google Scholar 

  • Grégoire, G., Dedonder-Lardeux, C., Jouvet, C., Desfrançois, C., & Fayeton, J. A. (2007). Ultrafast excited state dynamics in protonated GWG and GYG tripeptides. Physical Chemistry Chemical Physics, 9(1), 78–82.

    Google Scholar 

  • Grégoire, G., Kang, H., Dedonder-Lardeux, C., Jouvet, C., Desfrançois, C., Onidas, D., Lepere, V., & Fayeton, J. A. (2006). Statistical vs. non-statistical deactivation pathways in the UV photo-fragmentation of protonated tryptophan-leucine dipeptide. Physical Chemistry Chemical Physics, 8(1), 122–128.

    Google Scholar 

  • Greenberg, A., Breneman, C. M., & Liebman, J. F. (2002). The amide linkage: Selected structural aspects in Chemistry, Biochemistry, and Materials Science. The amide linkage: Structural significance in Chemistry, Biochemistry, and Materials Science. New York: Wiley

    Google Scholar 

  • Gustavsson, T., Sarkar, N., Lazzarotto, E., Markovitsi, D., & Improta, R. (2006). Singlet excited state dynamics of uracil and thymine derivatives: A femtosecond fluorescence upconversion study in acetonitrile. Chemical Physics Letters, 429(4–6), 551–557. doi:10.1016/j.cplett.2006.08.058.

    CAS  Google Scholar 

  • Hack, M. D., Wensmann, A. M., Truhlar, D. G., Ben-Nun, M., & Martínez, T. J. (2001). Comparison of full multiple spawning, trajectory surface hopping, and converged quantum mechanics for electronically nonadiabatic dynamics. Journal of Chemical Physics, 115(3), 1172–1186.

    CAS  Google Scholar 

  • Hammes-Schiffer, S., & Tully, J. C. (1994). Proton-transfer in solution–Molecular-dynamics with quantum transitions. Journal of Chemical Physics, 101(6), 4657–4667.

    CAS  Google Scholar 

  • Hayashi, S., Taikhorshid, E., & Schulten, K. (2009). Photochemical reaction dynamics of the primary event of vision studied by means of a hybrid molecular simulation. Biophysical Journal, 96(2), 403–416. doi:10.1016/j.bpj.2008.09.049.

    CAS  Google Scholar 

  • He, Y., Wu, C., & Kong, W. (2003). Decay pathways of thymine and methyl-substituted uracil and thymine in the gas phase. The Journal of Physical Chemistry A, 107(26), 5145–5148. doi:10.1021/jp034733s

    CAS  Google Scholar 

  • Hudock, H. R., & Martinez, T. J. (2008). Excited-state dynamics of cytosine reveal multiple intrinsic subpicosecond pathways. A European Journal of Chemical Physics and Physical Chemistry, 9(17), 2486–2490. doi:10.1002/cphc.200800649.

    CAS  Google Scholar 

  • Hudock, H. R., Levine, B. G., Thompson, A. L., Satzger, H., Townsend, D., Gador, N., Ullrich, S., Stolow, A., & Martinez, T. J. (2007). Ab initio molecular dynamics and time-resolved photoelectron spectroscopy of electronically excited uracil and thymine. The Journal of Physical Chemistry A, 111(34), 8500–8508.

    CAS  Google Scholar 

  • Improta, R., Barone, V., Lami, A., & Santoro, F. (2009). Quantum dynamics of the ultrafast \(\pi {\pi }^{{\ast}}/n{\pi }^{{\ast}}\) population transfer in uracil and 5-fluoro-uracil in water and acetonitrile. The Journal of Physical Chemistry B, 113(43), 14491–14503

    CAS  Google Scholar 

  • Ishida, T., Nanbu, S., & Nakamura, H. (2009). Nonadiabatic ab initio dynamics of two models of schiff base retinal. The Journal of Physical Chemistry A, 113(16), 4356–4366. doi:10.1021/Jp8110315.

    CAS  Google Scholar 

  • Jasper, A. W., Stechmann, S. N., & Truhlar, D. G. (2002). Fewest-switches with time uncertainty: A modified trajectory surface-hopping algorithm with better accuracy for classically forbidden electronic transitions. Journal of Chemical Physics, 116(13), 5424–5431.

    CAS  Google Scholar 

  • Jeong, H. M., Young, S. S., Hyun, J. C., & Myung, S. K. (2007). Photodissociation at 193 nm of some singly protonated peptides and proteins with m/z 2000–9000 using a tandem time-of-flight mass spectrometer equipped with a second source for delayed extraction/post-acceleration of product ions. Rapid Communications in Mass Spectrometry, 21(3), 359–368

    Google Scholar 

  • Jeong, H. M., So, H. Y., & Myung, S. K. (2005). Photodissociation of singly protonated peptides at 193 nm investigated with tandem time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry, 19(22), 3248–3252

    Google Scholar 

  • Jones, G. A., Acocella, A., & Zerbetto, F. (2008). On-the-fly, electric-field-driven, coupled electron-nuclear dynamics. The Journal of Physical Chemistry A, 112(40), 9650–9656. doi:10.1021/Jp805360v.

    CAS  Google Scholar 

  • Jorgensen, W. L., & McDonald, N. A. (1998). Development of an all-atom force field for heterocycles. Properties of liquid pyridine and diazenes. Journal of Molecular Structure: Theochem, 424(1–2), 145–155.

    Google Scholar 

  • Kang, T. Y., & Kim, H. L. (2006). Photodissociation of formamide at 205 nm: The H atom channels. Chemical Physics Letters, 431(1–3), 24–27.

    CAS  Google Scholar 

  • Kang, H., Jouvet, C., Dedonder-Lardeux, C., Martrenchard, S., Grégoire, G., Desfrançois, C., Schermann, J. P., Barat, M., & Fayeton, J. A. (2005). Ultrafast deactivation mechanisms of protonated aromatic amino acids following UV excitation. Physical Chemistry Chemical Physics, 7(2), 394–398.

    CAS  Google Scholar 

  • Kang, H., Dedonder-Lardeux, C., Jouvet, C., Martrenchard, S., Grégoire, G., Desfrançois, C., Schermann, J. P., Barat, M., & Fayeton, J. A. (2004). Photo-induced dissociation of protonated tryptophan TrpH+: A direct states dissociation channel in the excited controls the hydrogen atom loss. Physical Chemistry Chemical Physics, 6(10), 2628–2632.

    CAS  Google Scholar 

  • Kang, H., Lee, K. T., Jung, B., Ko, Y. J., & Kim, S. K. (2002). Intrinsic lifetimes of the excited state of DNA and RNA bases. Journal of the American Chemical Society, 124(44), 12958–12959.

    CAS  Google Scholar 

  • Keal, T., Wanko, M., & Thiel, W. (2009). Assessment of semiempirical methods for the photoisomerisation of a protonated Schiff base. Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta), 123(1), 145–156.

    Google Scholar 

  • Kochendoerfer, G. G., & Mathies, R. A. (1996). Spontaneous emission study of the femtosecond isomerization dynamics of rhodopsin. The Journal of Physical Chemistry, 100(34), 14526– 14532.

    CAS  Google Scholar 

  • Köppel, H., Gromov, E. V., & Trofimov, A. B. (2004). Multi-mode-multi-state quantum dynamics of key five-membered heterocycles: Spectroscopy and ultrafast internal conversion. Chemical Physics, 304(1–2), 35–49.

    Google Scholar 

  • Kukura, P., McCamant, D. W., Yoon, S., Wandschneider, D. B., & Mathies, R. A. (2005). Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman. Science, 310(5750), 1006–1009.

    CAS  Google Scholar 

  • Lan, Z., & Domcke, W. (2008). Role of vibrational energy relaxation in the photoinduced nonadiabatic dynamics of pyrrole at the \({}^{1}\pi {\sigma }^{{\ast}}-{\mathrm{S}}_{\mathrm{o}}\) conical intersection. Chemical Physics, 350(1–3), 125–138.

    CAS  Google Scholar 

  • Lan, Z., Fabiano, E., & Thiel, W. (2009). Photoinduced nonadiabatic dynamics of pyrimidine nucleobases: On-the-fly surface-hopping study with semiempirical methods. The Journal of Physical Chemistry B, 113(11), 3548–3555. doi:10.1021/jp809085h.

    CAS  Google Scholar 

  • Langer, H., Doltsinis, N. L., & Marx, D. (2005). Excited-state dynamics and coupled proton–electron transfer of guanine. A European Journal of Chemical Physics and Physical Chemistry, 6(9), 1734–1737.

    CAS  Google Scholar 

  • Lasser, C., & Swart, T. (2008). Single switch surface hopping for a model of pyrazine. Journal of Chemical Physics, 129(3), 034302–034308.

    Google Scholar 

  • Lei, Y., Yuan, S., Dou, Y., Wang, Y., & Wen, Z. (2008). Detailed dynamics of the nonradiative deactivation of adenine: A semiclassical dynamics study. The Journal of Physical Chemistry A, 112(37), 8497–8504. doi:10.1021/jp802483b.

    CAS  Google Scholar 

  • Levine, B. G., Ko, C., Quenneville, J., & Martínez, T. J. (2006). Conical intersections and double excitations in time-dependent density functional theory. Molecular Physics, 104(5–7), 1039–1051.

    CAS  Google Scholar 

  • Levine, B. G., Coe, J. D., Virshup, A. M., & Martinez, T. J. (2008). Implementation of ab initio multiple spawning in the MOLPRO quantum chemistry package. Chemical Physics, 347(1–3), 3–16. doi:10.1016/j.chemphys.2008.01.014.

    CAS  Google Scholar 

  • Li, X. S., Tully, J. C., Schlegel, H. B., & Frisch, M. J. (2005). Ab initio Ehrenfest dynamics. Journal of Chemical Physics, 123(8), 084106.

    Google Scholar 

  • Lin, H., & Truhlar, D. G. (2007). QM/MM: What have we learned, where are we, and where do we go from here? Theoretical Chemistry Accounts, 117(2), 185–199.

    CAS  Google Scholar 

  • Lippert, H., Ritze, H. H., Hertel, I. V., & Radloff, W. (2004). Femtosecond time-resolved hydrogen-atom elimination from photoexcited pyrrole molecules. A European Journal of Chemical Physics and Physical Chemistry, 5(9), 1423–1427.

    CAS  Google Scholar 

  • Lischka, H., Shepard, R., Brown, F. B., & Shavitt, I. (1981). New implementation of the graphical unitary-group approach for multi-reference direct configuration-interaction calculations. International Journal of Quantum Chemistry, S.15, 91–100.

    Google Scholar 

  • Lischka, H., Shepard, R., Pitzer, R. M., Shavitt, I., Dallos, M., Müller, T., Szalay, P. G., Seth, M., Kedziora, G. S., Yabushita, S., & Zhang, Z. Y. (2001). High-level multireference methods in the quantum-chemistry program system COLUMBUS: Analytic MR-CISD and MR-AQCC gradients and MR-AQCC-LRT for excited states, GUGA spin-orbit CI and parallel CI density. Physical Chemistry Chemical Physics, 3(5), 664–673.

    CAS  Google Scholar 

  • Lischka, H., Dallos, M., & Shepard, R. (2002). Analytic MRCI gradient for excited states: Formalism and application to the n-\({\pi }^{{\ast}}\) valence- and n-(3s,3p) Rydberg states of formaldehyde. Molecular Physics, 100(11), 1647–1658.

    CAS  Google Scholar 

  • Lischka, H., Dallos, M., Szalay, P. G., Yarkony, D. R., & Shepard, R. (2004). Analytic evaluation of nonadiabatic coupling terms at the MR-CI level. I. Formalism. Journal of Chemical Physics, 120(16), 7322–7329.

    Google Scholar 

  • Lischka, H., Shepard, R., Shavitt, I., Pitzer, R. M., Dallos, M., Mueller, T., Szalay, P. G., Brown, F. B., Ahlrichs, R., Boehm, H. J., Chang, A., Comeau, D. C., Gdanitz, R., Dachsel, H., Ehrhardt, C., Ernzerhof, M., Hoechtl, P., Irle, S., Kedziora, G., Kovar, T., Parasuk, V., Pepper, M. J. M., Scharf, P., Schiffer, H., Schindler, M., Schueler, M., Seth, M., Stahlberg, E. A., Zhao, J.-G., Yabushita, S., Zhang, Z., Barbatti, M., Matsika, S., Schuurmann, M., Yarkony, D. R., Brozell, S. R., Beck, E. V., & Blaudeau, J.-P. (2006). COLUMBUS, an ab initio electronic structure program, release 5.9.1. www.univie.ac.at/columbus

  • Liu, R. S. H., & Asato, A. E. (1985). Photochemistry of polyenes. 22. The primary process of vision and the structure of bathorhodopsin – A mechanism for photoisomerization of polyenes. Proceedings of the National Academy of Sciences of the United States of America, 82(2), 259–263.

    Google Scholar 

  • Liu, R. S. H. (2002). Introduction to the symposium-in-print: Photoisomerization pathways, torsional relaxation and the Hula Twist & para. Photochemistry and Photobiology, 76(6), 580–583.

    CAS  Google Scholar 

  • Liu, D., Fang, W. H., & Fu, X. Y. (2000). Ab initio molecular orbital study of the mechanism of photodissociation of formamide. Chemical Physics Letters, 318(4–5), 291–297.

    CAS  Google Scholar 

  • Logunov, I., & Schulten, K. (1996). Quantum chemistry: Molecular dynamics study of the dark-adaptation process in bacteriorhodopsin. Journal of the American Chemical Society, 118(40), 9727–9735.

    CAS  Google Scholar 

  • Longworth, J. W., Rahn, R. O., & Shulman, R. G. (1966). Luminescence of pyrimidines purines nucleosides and nucleotides at 77 degrees K. Effect of ionization and tautomerization. Journal of Chemical Physics, 45(8), 2930.

    Google Scholar 

  • Lundell, J., Krajewska, M., & Räsänen, M. (1998). Matrix isolation Fourier transform infrared and ab initio studies of the 193-nm-induced photodecomposition of formamide. The Journal of Physical Chemistry A, 102(33), 6643–6650.

    CAS  Google Scholar 

  • Malone, R. J., Miller, A. M., & Kohler, B. (2003). Singlet excited-state lifetimes of cytosine derivatives measured by femtosecond transient absorption. Photochemistry and Photobiology, 77(2), 158–164.

    CAS  Google Scholar 

  • Marian, C. M. (2005). A new pathway for the rapid decay of electronically excited adenine. Journal of Chemical Physics, 122(10), 104314.

    Google Scholar 

  • Matsika, S. (2004). Radiationless decay of excited states of uracil through conical intersections. The Journal of Physical Chemistry A, 108(37), 7584–7590.

    CAS  Google Scholar 

  • Merchan, M., Gonzalez-Luque, R., Climent, T., Serrano-Andres, L., Rodriuguez, E., Reguero, M., & Pelaez, D. (2006). Unified model for the ultrafast decay of pyrimidine nucleobases. The Journal of Physical Chemistry B, 110(51), 26471–26476. doi:10.1021/Jp066874a.

    CAS  Google Scholar 

  • Middleton, C. T., de La Harpe, K., Su, C., Law, Y. K., Crespo-Hernandez, C. E., & Kohler, B. (2009). DNA excited-state dynamics: From single bases to the double helix. Annual Review of Physical Chemistry, 60(1), 217–239. doi:10.1146/annurev.physchem.59.032607.093719.

    CAS  Google Scholar 

  • Migani, A., Robb, M. A., & Olivucci, M. (2003). Relationship between photoisomerization path and intersection space in a retinal chromophore model. Journal of the American Chemical Society, 125(9), 2804–2808.

    CAS  Google Scholar 

  • Mitric, R., Petersen, J., & Bonacic-Koutecky, V. (2009a). Laser-field-induced surface-hopping method for the simulation and control of ultrafast photodynamics. Physical Review A, 79(5), 053416.

    Google Scholar 

  • Mitric, R., Werner, U., Wohlgemuth, M., Seifert, G., & Bonacic-Koutecky, V. (2009b). Nonadiabatic dynamics within time-dependent density functional tight binding method. The Journal of Physical Chemistry A, 113(45), 12700–12705. doi: 10.1021/Jp905600w.

    CAS  Google Scholar 

  • Mulcahy, M., McInerney, J. G., Nikogosyan, D. N., & Görner, H. (2000). 193 Nm photolysis of aromatic and aliphatic dipeptides in aqueous solution: Dependence of decomposition quantum yield on the amino acid sequence. Biological Chemistry, 381(12), 1259–1262.

    CAS  Google Scholar 

  • Muller, U., & Stock, G. (1997). Surface-hopping modeling of photoinduced relaxation dynamics on coupled potential-energy surfaces. Journal of Chemical Physics, 107(16), 6230–6245.

    CAS  Google Scholar 

  • Nachtigallova, D., Zeleny, T., Ruckenbauer, M., Muller, T., Barbatti, M., Hobza, P., & Lischka, H. (2010). Does stacking restrain the photodynamics of individual nucleobases? Journal of the American Chemical Society, 132(24), 8261–8263. doi:10.1021/ja1029705.

    CAS  Google Scholar 

  • Nieber, H., & Doltsinis, N. L. (2008). Elucidating ultrafast nonradiative decay of photoexcited uracil in aqueous solution by ab initio molecular dynamics. Chemical Physics, 347(1–3), 405–412. doi:10.1016/j.chemphys.2007.09.056.

    CAS  Google Scholar 

  • Nolting, D., Schultz, T., Hertel, I. V., & Weinkauf, R. (2006). Excited state dynamics and fragmentation channels of the protonated dipeptide H2N-Leu-Trp-COOH. Physical Chemistry Chemical Physics, 8(44), 5247–5254. doi:10.1039/B609726.

    CAS  Google Scholar 

  • Palings, I., Pardoen, J. A., Vandenberg, E., Winkel, C., Lugtenburg, J., & Mathies, R. A. (1987). Assignment of fingerprint vibrations in the resonance Raman-spectra of rhodopsin, isorhodopsin, and bathorhodopsin – Implications for chromophore structure and environment. Biochemistry (Mosc), 26(9), 2544–2556.

    CAS  Google Scholar 

  • Pei, K.-M., Ma, Y., & Zheng, X. (2008). Resonance Raman and theoretical investigation of the photodissociation dynamics of benzamide in S\({}_{3}\) state. The Journal of Chemical Physics, 128(22), 224310–224310.

    Google Scholar 

  • Perun, S., Sobolewski, A. L., & Domcke, W. (2005a). Ab initio studies on the radiationless decay mechanisms of the lowest excited singlet states of 9H-adenine. Journal of the American Chemical Society, 127(17), 6257–6265.

    CAS  Google Scholar 

  • Perun, S., Sobolewski, A. L., & Domcke, W. (2005b). Photostability of 9H-adenine: Mechanisms of the radiationless deactivation of the lowest excited singlet states. Chemical Physics, 313(1–3), 107–112.

    CAS  Google Scholar 

  • Peteanu, L. A., Schoenlein, R. W., Wang, Q., Mathies, R. A., & Shank, C. V. (1993). The 1st Step in vision occurs in femtoseconds – Complete blue and red spectral studies. Proceedings of the National Academy of Sciences of the United States of America, 90(24), 11762–11766.

    CAS  Google Scholar 

  • Petersen, C., Dahl, N. H., Jensen, S. K., Poulsen, J. A., Thøgersen, J., & Keiding, S. R. (2008). Femtosecond Photolysis of Aqueous Formamide. The Journal of Physical Chemistry A, 112(15), 3339–3344.

    CAS  Google Scholar 

  • Pittner, J., Lischka, H., & Barbatti, M. (2009). Optimization of mixed quantum-classical dynamics: Time-derivative coupling terms and selected couplings. Chemical Physics, 356(1–3), 147–152. doi:10.1016/j.chemphys.2008.10.013.

    CAS  Google Scholar 

  • Polli, D., Altoe, P., Weingart, O., Spillane, K. M., Manzoni, C., Brida, D., Tomasello, G., Orlandi, G., Kukura, P., Mathies, R. A., Garavelli, M., & Cerullo, G. (2010). Conical intersection dynamics of the primary photoisomerization event in vision. Nature, 467(7314), 440–443. doi:10.1038/nature09346.

    CAS  Google Scholar 

  • Poterya, V., Profant, V., Farnik, M., Slavicek, P., & Buck, U. (2007). Experimental and theoretical study of the pyrrole cluster photochemistry: Closing the \(\pi {\sigma }^{{\ast}}\) dissociation pathway by complexation. Journal of Chemical Physics, 127(6), 064307. doi:10.1063/1.2754687.

    Google Scholar 

  • Powner, M. W., Gerland, B., & Sutherland, J. D. (2009). Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature, 459(7244), 239–242. doi:10.1038/Nature08013.

    CAS  Google Scholar 

  • Rohrig, U. F., Guidoni, L., Laio, A., Frank, I., & Rothlisberger, U. (2004). A molecular spring for vision. Journal of the American Chemical Society, 126(47), 15328–15329. doi:10.1021/ja048265r.

    Google Scholar 

  • Rohrig, U. F., Guidoni, L., & Rothlisberger, U. (2005). Solvent and protein effects on the structure and dynamics of the rhodopsin chromophore. A European Journal of Chemical Physics and Physical Chemistry, 6(9), 1836–1847. doi:10.1002/cphc.200500066.

    CAS  Google Scholar 

  • Ruckenbauer, M., Barbatti, M., Muller, T., & Lischka, H. (2010). Nonadiabatic excited-state dynamics with hybrid ab initio quantum-mechanical/molecular-mechanical methods: Solvation of the pentadieniminium cation in Apolar media. The Journal of Physical Chemistry A, 114(25), 6757–6765. doi:10.1021/jp103101t.

    CAS  Google Scholar 

  • Saam, J., Tajkhorshid, E., Hayashi, S., & Schulten, K. (2002). Molecular dynamics investigation of primary photoinduced events in the activation of rhodopsin. Biophysical Journal, 83(6), 3097–3112.

    CAS  Google Scholar 

  • Santoro, F., Barone, V., & Improta, R. (2007a). Influence of base stacking on excited-state behavior of polyadenine in water, based on time-dependent density functional calculations. Proceedings of the National Academy of Sciences of the United States of America, 104(24), 9931–9936. doi:10.1073/pnas.0703298104.

    CAS  Google Scholar 

  • Santoro, F., Lami, A., & Olivucci, M. (2007b). Complex excited dynamics around a plateau on a retinal-like potential surface: Chaos, multi-exponential decays and quantum/classical differences. Theoretical Chemistry Accounts, 117(5–6), 1061–1072. doi:10.1007/s00214-006-0220-3.

    CAS  Google Scholar 

  • Schapiro, I., Weingart, O., & Buss, V. (2009). Bicycle-pedal isomerization in a rhodopsin chromophore model. Journal of the American Chemical Society, 131(1), 16. doi:10.1021/Ja805586z.

    CAS  Google Scholar 

  • Schoenlein, R. W., Peteanu, L. A., Mathies, R. A., & Shank, C. V. (1991). The 1st step in vision – Femtosecond isomerization of rhodopsin. Science, 254(5030), 412–415.

    CAS  Google Scholar 

  • Schultz, T., Samoylova, E., Radloff, W., Hertel, I. V., Sobolewski, A. L., & Domcke, W. (2004). Efficient deactivation of a model base pair via excited-state hydrogen transfer. Science, 306(5702), 1765–1768.

    CAS  Google Scholar 

  • Sellner, B., Barbatti, M., & Lischka, H. (2009). Dynamics starting at a conical intersection: Application to the photochemistry of pyrrole. Journal of Chemical Physics, 131(2), 024312. doi:10.1063/1.3175799.

    Google Scholar 

  • Send, R., & Sundholm, D. (2007). Stairway to the conical intersection: A computational study of the retinal isomerization. The Journal of Physical Chemistry A, 111(36), 8766–8773.

    CAS  Google Scholar 

  • Serrano-Andres, L., & Merchan, M. (2009). Are the five natural DNA/RNA base monomers a good choice from natural selection? A photochemical perspective. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 10(1), 21–32. doi:10.1016/j.jphotochemrev.2008.12.001.

    CAS  Google Scholar 

  • Shepard, R. (1995). The analytic gradient method for configuration interaction wave functions. In D. R. Yarkony (Ed.), Modern electronic structure theory. Advanced series in physical chemistry (Vol. 1, p. 345). Singapore: World Scientific.

    Google Scholar 

  • Shepard, R., Lischka, H., Szalay, P. G., Kovar, T., & Ernzerhof, M. (1992). A general multireference configuration-interaction gradient program. Journal of Chemical Physics, 96(3), 2085–2098.

    CAS  Google Scholar 

  • Shin, E. J. (2004). Photochemistry of anthrylethene derivatives containing heteroaromatic ring: Pyrrole and indole derivatives. Bulletin of the Korean Chemical Society, 25(6), 907–909.

    CAS  Google Scholar 

  • Sobolewski, A. L., & Domcke, W. (2000). Conical intersections induced by repulsive \({}^{1}\pi {\sigma }^{{\ast}}\) states in planar organic molecules: Malonaldehyde, pyrrole and chlorobenzene as photochemical model systems. Chemical Physics, 259(2–3), 181–191.

    CAS  Google Scholar 

  • Sobolewski, A. L., Domcke, W., & Hättig, C. (2005). Tautomeric selectivity of the excited-state lifetime of guanine/cytosine base pairs: The role of electron-driven proton-transfer processes. Proceedings of the National Academy of Sciences of teh United States of America, 102(50), 17903–17906.

    CAS  Google Scholar 

  • Szymczak, J. J., Barbatti, M., & Lischka, H. (2008). Mechanism of ultrafast photodecay in restricted motions in protonated Schiff bases: The pentadieniminium cation. Journal of Chemical Theory and Computation, 4(8), 1189–1199. doi:10.1021/Ct800148n.

    CAS  Google Scholar 

  • Szymczak, J. J., Barbatti, M., & Lischka, H. (2009). Is the photoinduced isomerization in retinal protonated schiff bases a single- or double-torsional process? The Journal of Physical Chemistry A, 113(43), 11907–11918. doi:10.1021/jp903329j.

    CAS  Google Scholar 

  • Szymczak, J. J., Barbatti, M., & Lischka, H. (2011). Influence of the active space on CASSCF nonadiabatic dynamics simulations. International Journal of Quantum Chemistry, 111(13), 3307–3315. doi:10.1002/qua.22978.

    CAS  Google Scholar 

  • Tapavicza, E., Tavernelli, I., & Rothlisberger, U. (2007). Trajectory surface hopping within linear response time-dependent density-functional theory. Physical Review Letters, 98(2), 023001.

    Google Scholar 

  • Thompson, M. S., Cui, W., & Reilly, J. P. (2007). Factors that impact the vacuum ultraviolet photofragmentation of peptide ions. Journal of The American Society for Mass Spectrometry, 18(8), 1439–1452.

    CAS  Google Scholar 

  • Thompson, M. S., Cui, W., & Reilly, J. P. (2004). Fragmentation of singly charged peptide ions by photodissociation at î= 157 nm. Angewandte Chemie-International Edition,43(36), 4791–4794

    Google Scholar 

  • Torikai, A., & Shibata, H. (1999) Effect of ultraviolet radiation on photodegradation of collagen. Journal of Applied Polymer Science, 73(7), 1259–1265.

    CAS  Google Scholar 

  • Tully, J. C. (1990). Molecular-dynamics with electronic-transitions. Journal of Chemical Physics, 93(2), 1061–1071.

    CAS  Google Scholar 

  • Tully, J. C. (1998). Mixed quantum-classical dynamics. Faraday Discussions, 110, 407–419.

    CAS  Google Scholar 

  • Ullrich, S., Schultz, T., Zgierski, M. Z., & Stolow, A. (2004). Electronic relaxation dynamics in DNA and RNA bases studied by time-resolved photoelectron spectroscopy. Physical Chemistry Chemical Physics, 6(10), 2796–2801.

    CAS  Google Scholar 

  • Vallet, V., Lan, Z. G., Mahapatra, S., Sobolewski, A. L.,& Domcke, W. (2004). Time-dependent quantum wave-packet description ofthe \({}^{1}\pi {\sigma }^{{\ast}}\) photochemistry of pyrrole. Faraday Discussions, 127, 283–293.

    CAS  Google Scholar 

  • Vallet, V., Lan, Z. G., Mahapatra, S., Sobolewski, A. L.,& Domcke, W. (2005). Photochemistry of pyrrole: Time-dependent quantum wave-packet description of the dynamics at the \({}^{1}{\mathrm{GREEK(ps)}}^{{\ast}}-{\mathrm{S}}_{\mathrm{o}}\) conical intersections. Journal of Chemical Physics, 123(14), 144307.

    Google Scholar 

  • van den Brom, A. J., Kapelios, M., Kitsopoulos, T. N., Nahler, N. H., Cronin, B., & Ashfold, M. N. R. (2005). Photodissociation and photoionization of pyrrole following the multiphoton excitation at 243 and 364.7 nm. Physical Chemistry Chemical Physics, 7(5), 892–899.

    Google Scholar 

  • Vazdar, M., Eckert-Maksić, M., Barbatti, M., & Lischka, H. (2009). Excited-state non-adiabatic dynamics simulations of pyrrole. Molecular Physics, 107(8), 845–854. doi:10.1080/00268970802665639.

    CAS  Google Scholar 

  • Venkatesan, T. S., Mahapatra, S., Meyer, H. D., Koppel, H., & Cederbaum, L. S. (2007). Multimode Jahn-Teller and pseudo-Jahn-Teller interactions in the cyclopropane radical cation: Complex vibronic spectra and nonradiative decay dynamics. The Journal of Physical Chemistry A, 111(10), 1746–1761.

    CAS  Google Scholar 

  • Virshup, A. M., Punwong, C., Pogorelov, T. V., Lindquist, B. A., Ko, C., & Martinez, T. J. (2009). Photodynamics in complex environments: Ab initio multiple spawning quantum mechanical/molecular mechanical dynamics. The Journal of Physical Chemistry B, 113(11), 3280–3291. doi:10.1021/Jp8073464

    CAS  Google Scholar 

  • Vreven, T., Bernardi, F., Garavelli, M., Olivucci, M., Robb, M. A., & Schlegel, H. B. (1997). Ab initio photoisomerization dynamics of a simple retinal chromophore model. Journal of the American Chemical Society, 119(51), 12687–12688.

    CAS  Google Scholar 

  • Wald, G. (1968). Molecular basis of visual excitation. Science, 162(3850), 230.

    CAS  Google Scholar 

  • Wang, Q., Schoenlein, R. W., Peteanu, L. A., Mathies, R. A., & Shank, C. V. (1994). Vibrationally coherent photochemistry in the femtosecond primary event of vision. Science, 266(5184), 422–424.

    CAS  Google Scholar 

  • Wanko, M., Hoffmann, M., Strodet, P., Koslowski, A., Thiel, W., Neese, F., Frauenheim, T., & Elstner, M. (2005). Calculating absorption shifts for retinal proteins: Computational challenges. The Journal of Physical Chemistry B, 109(8), 3606–3615.

    CAS  Google Scholar 

  • Warshel, A. (1976). Bicycle-pedal model for 1st step in vision process. Nature, 260(5553), 679–683.

    CAS  Google Scholar 

  • Warshel, A., & Barboy, N. (1982). Energy-storage and reaction pathways in the 1st step of the vision process. Journal of the American Chemical Society, 104(6), 1469–1476.

    CAS  Google Scholar 

  • Warshel, A., & Chu, Z. T. (2001). Nature of the surface crossing process in bacteriorhodopsin: Computer simulations of the quantum dynamics of the primary photochemical event. The Journal of Physical Chemistry B, 105(40), 9857–9871.

    CAS  Google Scholar 

  • Wei, J., Riedel, J., Kuczmann, A., Renth, F., & Temps, F. (2004). Photodissociation dynamics of pyrrole: Evidence for mode specific dynamics from conical intersections. Faraday Discussions, 127, 267–282.

    CAS  Google Scholar 

  • Weingart, O., Buss, V., & Robb, M.A. (2005). Excited state molecular dynamics of retinal model chromophores. Phase Transitions78(1–3), 17–24.

    Google Scholar 

  • Weingart, O., Migani, A., Olivucci, M., Robb, M. A., Buss, V., & Hunt, P. (2004). Probing the photochemical funnel of a retinal chromophore model via zero-point energy sampling semiclassical dynamics. The Journal of Physical Chemistry A,108(21), 4685–4693.

    Google Scholar 

  • Weingart, O., Schapiro, I., & Buss, V. (2006). Bond torsion affects the product distribution in the photoreaction of retinal model chromophores. Journal of Molecular Modeling, 12(5), 713–721.

    CAS  Google Scholar 

  • Weingart, O., Schapiro, I., & Buss, V. (2007). Photochemistry of visual pigment chromophore models by ab initio molecular dynamics. The Journal of Physical Chemistry B, 111(14), 3782–3788.

    CAS  Google Scholar 

  • Werner, U., Mitric, R., Suzuki, T., & Bonacic-Koutecký, V. (2008). Nonadiabatic dynamics within the time dependent density functional theory: Ultrafast photodynamics in pyrazine. Chemical Physics, 349(1–3), 319–324.

    CAS  Google Scholar 

  • Worth, G. A., & Cederbaum, L. S. (2004). Beyond Born-Oppenheimer: Molecular dynamics through a conical intersection. Annual Review of Physical Chemistry, 55, 127–158.

    CAS  Google Scholar 

  • Worth, G. A., Hunt, P., & Robb, M. A. (2003). Nonadiabatic dynamics: A comparison of surface hopping direct dynamics with quantum wavepacket calculations. The Journal of Physical Chemistry A, 107(5), 621–631.

    CAS  Google Scholar 

  • Yagi, K., & Takatsuka, K. (2005). Nonadiabatic chemical dynamics in an intense laser field: Electronic wave packet coupled with classical nuclear motions. Journal of Chemical Physics, 123(22), 224103. doi:Artn224103. doi:10.1063/1.2130335.

    Google Scholar 

  • Zechmann, G., & Barbatti, M. (2008). Photophysics and deactivation pathways of thymine. The Journal of Physical Chemistry A, 112(36), 8273–8279. doi:10.1021/jp804309x.

    CAS  Google Scholar 

  • Zewail, A. H. (2000). Femtochemistry: Atomic-scale dynamics of the chemical bond. The Journal of Physical Chemistry A, 104(24), 5660–5694. doi:10.1021/Jp001460h.

    CAS  Google Scholar 

  • Zhu, C. Y., Nangia, S., Jasper, A. W., & Truhlar, D. G. (2004). Coherent switching with decay of mixing: An improved treatment of electronic coherence for non-Born-Oppenheimer trajectories. Journal of Chemical Physics, 121(16), 7658–7670.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge computer time at the Vienna Scientific Cluster (project nos. 70019 and 70151). This work was supported by the Austrian Science Fund within the framework of the Special Research Program F41 Vienna Computational Materials Laboratory (ViCoM). The work in Zagreb (M.E.-M., I.A., and M.V.) is supported by the Ministry of Science, Education and Sport of Croatia through the project. No. 098-0982933-2920. The support by the COST D37 action, WG0001-06 and the WTZ treaty between Austria and Croatia (Project No. HR17/2008) is also acknowledged. This work was also performed as part of research supported by the National Science Foundation Partnership in International Research and Education (PIRE) Grant No. OISE-0730114; support was also provided by the Robert A. Welch Foundation under Grant No. D-0005.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this entry

Cite this entry

Barbatti, M. et al. (2012). Model Systems for Dynamics of π-Conjugated Biomolecules in Excited States. In: Leszczynski, J. (eds) Handbook of Computational Chemistry. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0711-5_33

Download citation

Publish with us

Policies and ethics