Skip to main content

Molecular Dynamics and Advanced Sampling Simulations of Nucleic Acids

  • Reference work entry
  • First Online:
Handbook of Computational Chemistry

Abstract

Molecular dynamics (MD) simulations based on a classical force field are increasingly being used to study the structure and dynamics of nucleic acids. Simulation studies are limited by the accuracy of the force field description and by the time scale accessible by current MD approaches. In the case of specific conformational transitions it is often possible to improve the sampling of possible states by adding a biasing or umbrella potential along some coordinate describing the conformational transition. It is also possible to extract the associated free energy change along the reaction coordinate. The development of advanced sampling methods such as the replica-exchange MD (REMD) approach allows significant enhancement of conformational sampling of nucleic acids. Recent applications of umbrella sampling and REMD simulation as well as combinations of both methodologies on nucleic acids will be presented. These approaches have the potential to tackle many open questions in structural biology such as the role of nucleic acid structure during recognition and packing and the function of nucleic acid fine structure and dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 749.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Affentranger, R., Tavernelli, I., & Di Iorio, E. E. (2006). A novel Hamiltonian replica exchange MD protocol to enhance protein conformational space sampling. Journal of Chemical Theory and Computation, 2, 217.

    Article  CAS  Google Scholar 

  • Al-Hashimi, H. M., & Walter, N. G. (2008). RNA dynamics: It is about time. Current Opinion in Structural Biology, 18, 321.

    Article  CAS  Google Scholar 

  • Babin, V., Baucom, J., Darden, T. A., & Sagui, C. (2006). Molecular dynamics simulations of DNA with polarizable force fields: Convergence of an ideal B-DNA structure to the crystallographic structure. The Journal of Physical Chemistry B, 110, 11571.

    Article  CAS  Google Scholar 

  • Barthel, A., & Zacharias, M. (2006). Conformational transitions in RNA single uridine and adenosine bulge structures: A molecular dynamics free energy simulation study. Biophysical Journal, 90, 2450.

    Article  CAS  Google Scholar 

  • Bowman, G. R., Huang, X., Yao, Y., Sun, J., Carlsson, G., et al. (2008). Structural insight into RNA hairpin folding intermediates. Journal ofthe American Chemical Society, 130, 9676

    Article  CAS  Google Scholar 

  • Cheatham, T. E. (2004). Simulation and modeling of nucleic acid structure, dynamics and interactions. Current Opinion in Structural Biology, 14, 360.

    Article  CAS  Google Scholar 

  • Chen, J., Dupradeau, F. Y., Case, D. A., Turner, C. J., & Stubbe, J. (2007). Nuclear magnetic resonance structural studies and molecular modeling of duplex DNA containing normal and 4′-oxidized abasic sites. Biochemistry, 46, 3096.

    Article  CAS  Google Scholar 

  • Cheng, X., & Blumenthal, R. M. (2008). Mammalian DNA methyltransferases: A structural perspective. Structure, 16, 341.

    Article  Google Scholar 

  • Cloutier, T. E., & Widom, J. (2004). Spontaneous sharp bending of double-stranded DNA. Molecular Cell, 14, 355.

    Article  CAS  Google Scholar 

  • Curuksu, J., & Zacharias, M. (2009). Enhanced conformational sampling of nucleic acids by a new Hamiltonian replica exchange molecular dynamics approach. Journal of Chemical Physics, 130, 104110.

    Article  Google Scholar 

  • Curuksu, J., Zakrzewska, K., & Zacharias, M. (2008). Magnitude and direction of DNA bending induced by screw-axis orientation: Influence of sequence, mismatches and abasic sites. Nucleic Acids Research, 36, 2268.

    Article  CAS  Google Scholar 

  • Curuksu, J., Sponer, J., & Zacharias, M. (2009a). Elbow flexibility of the kt38 RNA kink-turn motif investigated by free-energy molecular dynamics simulations. Biophysical Journal, 97, 2004.

    Article  CAS  Google Scholar 

  • Curuksu, J., Zacharias, M., Lavery, R., & Zakrzewska, K. (2009b). Local and global effects of strong DNA bending induced during molecular dynamics simulations. Nucleic Acids Research, 37, 3766.

    Article  CAS  Google Scholar 

  • Dalhus, B., Laerdahl, J. K., Backe, P. H., & Bjoras, M. (2009). DNA base repair-recognition and initiation of catalysis. FEMS Microbiology Reviews, 33, 1044.

    Article  CAS  Google Scholar 

  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N â‹…log(N) method for Ewald sums in large systems. Search Results, Journal of Chemical Physics, 98, 10089.

    Article  CAS  Google Scholar 

  • DeJong, E. S., Luy, B., & Marino, J. P. (2002). RNA and RNA-protein complexes as targets for therapeutic intervention. Current Topics in Medicinal Chemistry, 2, 289.

    Article  CAS  Google Scholar 

  • Demple, B., & Harrison, L. (1994). Repair of oxidative damage to DNA: Enzymology and biology. Annual Review of Biochemistry, 63, 915.

    Article  CAS  Google Scholar 

  • Djuranovic, D., & Hartmann, B. (2004). DNA fine structure and dynamics in crystals and in solution: The impact of BI/BII backbone conformations. Biopolymers, 73, 356.

    Article  CAS  Google Scholar 

  • Foloppe, N., & MacKerell, A. D., Jr. (2000). All-atom empirical force field for nucleic acids: I. parameter optimization based on small molecule and condensed phase macromolecular target data. Journal of Computational Chemistry, 21, 86.

    Google Scholar 

  • Fujimoto,H.,Pinak,M.,Nemoto,T.,O’Neill,P.,Kume,E.,Saito,K.,&Maekawa, H. (2005). Molecular dynamics simulation of clustered DNA damage sites containing8-oxoguanineandabasicsite.JournalofComputationalChemistry, 26, 788.

    Google Scholar 

  • Fukunishi, H., Watanabe, O., & Takada, S. (2002). On the Hamiltonian replica exchange method for efficient sampling of biomolecular systems: Application to protein structure prediction. Journal of Chemical Physics, 116, 9058.

    Article  CAS  Google Scholar 

  • Furtig, B., Richter, C., Wöhnert, J., & Schwalbe, H. (2003). NMR spectroscopy of RNA. European Journal of Chemical Biology, 4, 936.

    Google Scholar 

  • Garcia, H. G., Grayson, P., Han, L., Inamdar, M., Kondev, J., Nelson, P. C., Phillips, R., Widom, J., & Wiggins, P. A. (2007). Biological consequences of tightly bent DNA: The other life of a macromolecular celebrity. Biopolymers, 85, 115.

    Article  CAS  Google Scholar 

  • Garcia, A. E., & Paschek, D. (2008). Simulation of the pressure and temperature folding/unfolding equilibrium of a small RNA hairpin. Journal of the American Chemical Society, 130, 815.

    Article  CAS  Google Scholar 

  • Giudice, E., & Lavery, R. (2003). Nucleic acid base pair dynamics: The impact of sequence and structure using free-energy calculations. Journal of the American Chemical Society, 125, 4998.

    Article  CAS  Google Scholar 

  • Giudice, E., Várnai, P., & Lavery, R. (2003). Base pair opening within B-DNA: Free energy pathways for GC and AT pairs from umbrella sampling simulations. Nucleic Acids Research, 31, 1434.

    Article  CAS  Google Scholar 

  • Gnanakaran, S., Nymeyer, H., Portman, J., Sanbonmatsu, K. Y., & Garcia, A. E. (2003). Peptide folding simulations. Current Opinion in Structural Biology, 15, 168.

    Article  Google Scholar 

  • Hall, K. B. (2008). RNA in motion. Current Opinion in Chemical Biology, 12, 612.

    Article  CAS  Google Scholar 

  • Hart, K., Nyström, B., Öhman, M., & Nilsson, L. (2005). Molecular dynamics simulations and free energy calculation of base flipping in dsRNA. RNA, 11, 609.

    Article  CAS  Google Scholar 

  • Hashem, Y., & Auffinger, P. (2007). Nucleic solvation: From outside to insight. Current Opinion in Structural Biology, 17, 325.

    Article  Google Scholar 

  • Huang, N., Banavali, N. K., & MacKerell, A. D., Jr. (2003). Protein facilitated base flipping in DNA by cytosine-5-methyltranferase. Proceedings ofthe National Academy of Sciences of the United States of America, 100, 68.

    Article  CAS  Google Scholar 

  • Jang, S., Shin, S., & Pak, Y. (2003). Replica-exchange method using the generalized effective potential. Physical Review Letters, 91, 58305.

    Article  Google Scholar 

  • Kaihsu T. (2004). Conformational sampling for the impatient. Biophysical Chemistry, 107, 213.

    Article  Google Scholar 

  • Kannan, S., Kohlhoff, K., & Zacharias, M. (2006). B-DNA under stress: Over and un-twisting ofDNA during molecular dynamics simulations. Biophysical Journal, 91, 2956.

    Article  CAS  Google Scholar 

  • Kannan, S., & Zacharias, M. (2007a). Folding of a DNA Hairpin loop structure in explicit solvent using replica-exchange molecular dynamics simulations. Biophysical Journal, 93, 3218.

    Article  CAS  Google Scholar 

  • Kannan, S., & Zacharias, M. (2007b). Enhanced sampling of peptide and protein conformations using replica exchange simulations with a peptide backbone biasing-potential. Proteins, 66, 697.

    Article  CAS  Google Scholar 

  • Kannan, S., & Zacharias, M. (2009). Simulation of DNA double-strand dissociation and formation during replica-exchange molecular dynamics simulations. Physical Chemistry Chemical Physics, 11, 10589.

    Article  CAS  Google Scholar 

  • Kim, J. L., & Burley, S. K. (1994). 1.9 Å resolution refined structure of TBP recognizing the minor groove of TATAAAAG. Nature Structural & Molecular Biology, 1, 638.

    Google Scholar 

  • Kumar, S. D., Bouzida, R., Swendsen, H., Kollman, P. A., & Rosenberg, J. M. (1992). The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. Journal of Computational Chemistry, 13, 1011.

    Google Scholar 

  • Lankas, F., Lavery, R., & Maddocks, J. H. (2006). Kinking occurs during molecular dynamics simulations of small DNA minicircles. Structure, 14, 1527.

    Article  CAS  Google Scholar 

  • Lavery, R., et al. (2009). Molecular dynamics simulations of the 136 unique tetranucleotide sequences of DNA oligonucleotides. I. Research design and results on d(CpG) steps. Biophysical Journal, 87, 3799.

    Google Scholar 

  • Leontis, N. B., & Westhof, E. (2003). Analysis of RNA motifs. Current Opinion in Structural Biology, 13, 300.

    Article  CAS  Google Scholar 

  • Liu, P., Kim, B., Friesner, R. A., & Berne, B. A. (2005). Replica exchange with solute tempering: A method for sampling biological systems in explicit water. Proceedings of the National Academy of Sciences, 102, 13749.

    Article  CAS  Google Scholar 

  • MacKerell, A. D., Jr., & Banavali, N. (2000). All-atom empirical force field for nucleic acids: II. Application to molecular dynamics simulations of DNA and RNA in solution. Journal of Computational Chemistry, 21, 105.

    Google Scholar 

  • Mackerell, A. D., Jr., & Nilsson, L. (2008). Molecular dynamics simulations of nucleic acid-protein complexes. Current Opinion in Structural Biology, 18, 194.

    Article  CAS  Google Scholar 

  • McDowell, S. E, Spacková, N., Sponer, J., & Walter, N. G. (2007). Molecular dynamics simulations of RNA: An in silico single molecule approach. Biopolymers, 85, 169.

    Article  CAS  Google Scholar 

  • Moody, E. M., & Bevilacqua, P. C. (2003). Folding of a stable DNA motif involves a highly cooperative network of interactions. Journal of the American Chemical Society, 125, 16285.

    Article  CAS  Google Scholar 

  • Nikolov, D. B., Chen, H., Halay, E. D., Hoffman, A., Roeder, R. G., & Burley, S. K. (1996). Crystal structure of a Human TATA box-binding protein/TATA element complex. Proceedings of the National Academy of Sciences of the United States of America, 93, 4862.

    Article  CAS  Google Scholar 

  • Norberg, J., & Nilsson, L. (1995). Potential of mean force calculations of the stacking-unstacking process in single-stranded deoxyribodinucleoside monophosphates. Biophysical Journal, 69, 2277.

    Article  CAS  Google Scholar 

  • Ong, M. S., Richmond, T. J., & Davey, C. A. (2007). DNA stretching and extreme kinking in the nucleosome core. Journal of Molecular Biology, 368, 1067.

    Article  CAS  Google Scholar 

  • Orozco, M., Noy, A., & Pérez, A. (2008). Recent advances in the study of nucleic acid flexibility by molecular dynamics. Current Opinion in Structural Biology, 18, 185.

    Article  CAS  Google Scholar 

  • Perez, A., Marchan, I., Svozil, D., Sponer, J., Cheatham, T. E., III, Laughton, C. A., & Orozco. M. (2007a). Refinement of the AMBER force field for nucleic acids: Improving the description of/conformers. Biophysical Journal, 92, 3817.

    Article  CAS  Google Scholar 

  • Perez, A., Luque, F. J., & Orozco, M. (2007b). Dynamics of B-DNA on the microsecond time scale. Journal of the American Chemical Society, 129, 14739–14745

    Article  CAS  Google Scholar 

  • Portella, G., & Orozco, M. (2010). Multiple routes to characterize the folding of a small DNA Hairpin. Angewandte Chemie International Edition England, 49, 7673–7676.

    Article  CAS  Google Scholar 

  • Sanbonmatsu, K. Y., & Tung, C. S. (2007). High performance computing in biology: Multimillion atom simulations of nanoscale systems. Journal of Structural Biology, 157, 470.

    Article  CAS  Google Scholar 

  • Shroff, H., Reinhard, B. M., Siu, M., Agarwal, H., Spakowitz, A., & Liphardt, J. (2005). Biocompatible force sensor with optical readout and dimensions of 6nm. Nano Letters, 5, 1509.

    Article  CAS  Google Scholar 

  • Steitz, T. A. (2008). A structural understanding of the dynamic ribosome machine. Nature Reviews Molecular Cell Biology, 9, 242.

    Article  CAS  Google Scholar 

  • Sugita, Y., & Okamoto, Y. (1999). Replica-exchange molecular dynamics method for protein folding. Chemical Physics Letters, 314, 141.

    Article  CAS  Google Scholar 

  • Sugita Y., Kitao, A., & Okamoto, Y. (2000). Multidimensional replica-exchange method for free energy calculations. Journal of Chemical Physics, 113, 6042.

    Article  CAS  Google Scholar 

  • Swendsen, R. H., & Wang, J. S. (1986). Replica Monte Carlo simulations of spin glasses. Physical Review Letters, 57, 2607.

    Article  Google Scholar 

  • Travers, A., & Muskhelishvili, G. (2005). Bacterial chromatin. Current Opinion in Genetics & Development, 15, 507

    Article  CAS  Google Scholar 

  • Varnai, P., Djuranovic, D., Lavery, R., & Hartmann, B. (2002). alpha/gamma Transitions in the B-DNA backbone. Nucleic Acids Research, 30, 5398.

    Article  CAS  Google Scholar 

  • Villa, A., Widjajakusuma, E., & Stock, G. (2008). Molecular dynamics simulation of the structure, dynamics, and thermostability of the RNA Hairpins uCACGg and cUUCGg. The Journal ofPhysical Chemistry B, 112, 134.

    Article  CAS  Google Scholar 

  • Wiggins, P. A., Van Der Heijden, T., Moreno-Herrero, F., Spakowitz, A., Phillips, R., Widom, J., Ceekers, C., & Nelson, P. C. (2006). High flexibility of DNA on short length scales probed by atomic force microscopy. Nature Nanotechnology, 1, 137.

    Article  CAS  Google Scholar 

  • Wong, H. M., Payet, L., & Huppert, J. L. (2009). Function and targeting of G-quadruplexes. Current Opinion in Molecular Therapeutics, 11, 146.

    CAS  Google Scholar 

  • Yoshizawa, S., Kawai, G., Watanabe, K., Miura, K., & Hirao, I. (1997). GNA trinucleotide loop sequences producing extraordinarily stable DNA minihairpins. Biochemistry, 36, 4761.

    Article  CAS  Google Scholar 

  • Yuan, C., Chen, H., Lou, X. W., & Archer, L. A. (2008). DNA bending stiffness on small length scales. Physical Review Letters, 100, 018102.

    Article  Google Scholar 

  • Zacharias, M. (2000). Simulation of the structure and dynamics of nonhelical RNA motifs. Current Opinion in Structural Biology, 10, 307.

    Article  Google Scholar 

  • Zacharias, M. (2003). Perspectives of drug design that targets RNA. Current Medicinal Chemistry, 2, 161.

    CAS  Google Scholar 

  • Zacharias, M. (2006). Minor groove deformability of DNA: A molecular dynamics free energy simulation study. Biophysical Journal, 91, 882.

    Article  CAS  Google Scholar 

  • Zacharias, M. (2008). Combining elastic network analysis and molecular dynamics simulations by Hamiltonian replica exchange. Journal of Chemical Theory and Computation, 4, 477.

    Article  CAS  Google Scholar 

  • Zakrzewska, K. (2003). DNA deformation energetics and protein binding. Biopolymers, 70, 414.

    Article  CAS  Google Scholar 

  • Zhuang, Z., Jaeger, L., & Shea, J. E. (2007). Probing the structural hierarchy and energy landscape of an RNA T-loop Hairpin. Nucleic Acids Research, 35, 6995.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant (I/80485) from the Volkswagen Foundation to M.Z.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this entry

Cite this entry

Curuksu, J., Kannan, S., Zacharias, M. (2012). Molecular Dynamics and Advanced Sampling Simulations of Nucleic Acids. In: Leszczynski, J. (eds) Handbook of Computational Chemistry. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0711-5_32

Download citation

Publish with us

Policies and ethics