Skip to main content

Quantum Cluster Theory for the Polarizable Continuum Model (PCM)

  • Reference work entry
  • First Online:
Handbook of Computational Chemistry

Abstract

Recent extensions of the coupled-cluster (CC) theory to molecular solutes described with the Polarizable Continuum Model (PCM) are summarized. The recent advances covered in this review regard: (1) the analytical gradients for the PCM-CC theory at the single and double excitation level and (2) the analytical gradients for the PCM-EOM-CC theory at the single and double excitation level for the descriptions of the excited state properties of molecular solutes. As coupled-cluster is the top level that quantum mechanical (QM) calculations on molecules can presently be performed, and the PCM model gives an effective description of the solute-solvent interaction, these computational advances can be profitably used to study molecular processes in condensed phase, where both the accuracy of the QM descriptions and the influence of the environment play a critical role.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 749.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilar, M. (2001). Separation of the electric polarization into fast and slow components: A comparison of two partition schemes. The Journal of Physical Chemistry A, 105, 10393.

    Article  CAS  Google Scholar 

  • Aguilar, M., del Valle, F. J. O., & Tomasi, J. (1993). Nonequilibrium solvation: An ab initio quantum-mechanical method in the continuum cavity model approximation. Journal of Chemical Physics, 98, 7375.

    Article  CAS  Google Scholar 

  • Bartlett, R. J., & Musial, M. (2007). Coupled-cluster theory in quantum chemistry. Reviews of Modern Physics, 79, 291.

    Article  CAS  Google Scholar 

  • Basilevsky, M. V., & Chudinov, G. E. (1990). Application of generalized transition state theory for calculation of the rate constant of a chemical reaction with charge transfer in a polar solvent. Chemical Physics, 144, 155.

    Article  Google Scholar 

  • Bonaccorsi, R., Ghio, G., & Tomasi, J. (1982). The effect of the solvent on electronic transition and other properties of molecular solutes. In R. Carbó (Ed.), Current aspects of quantum chemistry (p. 407). Amsterdam: Elsevier.

    Google Scholar 

  • Cammi, R. (2009). Quantum cluster theory for the polarizable continuum model. I. The CCSD level with analytical first and second derivatives. Journal of Chemical Physics, 131, 164104.

    Google Scholar 

  • Cammi, R., & Tomasi, J. (1994). Analytical derivatives for molecular solutes. I. Hartree-Fock energy first derivatives with respect to external parameters in the polarizable continuum model. Journal of Chemical Physics, 100, 7495.

    Google Scholar 

  • Cammi, R., & Tomasi, J. (1995a). Remarks in the use of the apparent surface charges (ASC) methods in salvation problems: Iterative versus matrix-inversion procedures and the renormalization of the apparent charges. Journal of Computational Chemistry, 16, 1449.

    Article  CAS  Google Scholar 

  • Cammi, R., & Tomasi, J. (1995b). Nonequilibrium solvation theory for the polarizable continuum model: A new formulation at the SCF level with application to the case of the frequency dependent linear electric response function. International Journal of Quantum Chemistry: Symposium, 29, 465.

    Article  CAS  Google Scholar 

  • Cammi, R., Cossi, M., Mennucci, B., Pomelli, C., & Tomasi, J. (1996). Energy and energy derivatives for molecular solutes. Perspectives of application to hybrid quantum and molecular mechanics methods. International Journal of Quantum Chemistry, 60, 1165.

    Google Scholar 

  • Cammi, R., Mennucci, B., & Tomasi, J. (1999). Second order Møller-Plesset analytical derivatives for the polarizable continuum model using the relaxed density approach. The Journal of Physical Chemistry A, 103, 9100.

    Article  CAS  Google Scholar 

  • Cammi, R., Frediani, L., Mennucci, B., Tomasi, J., Ruud, K., & Mikkelsen, K. V. (2002). A second-order, quadratically convergent multiconfigurational self-consistent field polarizable continuum model for equilibrium and nonequilibrium solvation. Journal of Chemical Physics, 117, 13.

    Article  CAS  Google Scholar 

  • Cammi, R., Corni, S., Mennucci, B., & Tomasi, J. (2005). Electronic excitation energies of molecules in solution: State specific and linear response methods for nonequilibrium continuum solvation models. Journal of Chemical Physics, 122, 104513.

    Article  CAS  Google Scholar 

  • Cammi, R. (2010a). Coupled-cluster theories for the polarizable continuum models. II. Analytical gradients for excited states of molecular solutes by the equation of motion coupled-cluster method. International Journal of Quantum Chemistry, 110, 3040.

    Google Scholar 

  • Cammi, R., Fukuda, R., Ehara, M., & Nakatsuji, H. (2010b). Symmetry-adapted cluster and symmetry-adapted cluster-configuration interaction method in the polarizable continuum model: Theory of the solvent effect on the electronic excitation of molecules in solution. Journal of Chemical Physics, 133, 024104.

    Article  Google Scholar 

  • Cances, E., Mennucci, B., & Tomasi, J. (1997). A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. Journal of Chemical Physics, 107, 3032.

    Article  CAS  Google Scholar 

  • Caricato, M., Mennucci, B., Tomasi, J., Ingrosso, F., Cammi, R., Corni, S., & Scalmani, G. (2006). Formation and relaxation of excited states in solution: A new time-dependent polarizable continuum model based on time-dependent density functional theory. Journal of Chemical Physics, 125, 124520.

    Article  Google Scholar 

  • Caricato, M., Scalmani, G., Trucks, G. W., & Frisch, M. J. (2010). Coupled cluster calculations in solution with the polarizable continuum model of solvation. The Journal of Physical Chemistry Letters, 1, 2369.

    Article  CAS  Google Scholar 

  • Christiansen, O., & Mikkelsen, K. V. (1999a). A coupled-cluster solvent reaction field method. Journal of Chemical Physics, 110, 1365.

    Article  CAS  Google Scholar 

  • Corni, S., Cammi, R., Mennucci, B., & Tomasi, J. (2005). Electronic excitation energies of mole- cules in solution within continuum solvation models: Investigating thediscrepancybetweenstate-specificandlinear-responsemethods.Journalof ChemicalPhysics,123,134512.

    Google Scholar 

  • Cramer, C. J., & Truhlar, D. G. (2008). A universal approach to solvation modeling. Accounts of Chemical Research, 41, 760.

    Article  CAS  Google Scholar 

  • Curutchet, C., Orozco, M., Luque, F., Mennucci, B., & Tomasi, J. (2006). Dispersion and repulsion contributions to the solvation free energy: Comparison of quantum mechanical and classical approach in the Polarizable Continuum Model. Journal of Computational Chemistry, 27, 1769.

    Article  CAS  Google Scholar 

  • del Valle, F. J. O., & Tomasi, J. (1991). Electron correlation and solvation effects. I. Basic formulation and preliminary attempt to include the electron correlation in the quantum mechanical polarizable continuum model so as to study solvation phenomena. Chemical Physics, 150, 139.

    Google Scholar 

  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J., & Fox, D. J. (2009). Gaussian 09 Revision A.1. Wallingford: Gaussian Inc.

    Google Scholar 

  • Gauss, J. (1999). Coupled-cluster theory. In P. v. R. Schleyer (Ed.), Encyclopedia of computational chemistry (Vol. I, pp. 617–636). New York: Wiley.

    Google Scholar 

  • Hirao, K., & Nakatsuji, H. (1982). A generalization of the Davidson’s method to large nonsymmetric eigenvalue problems. Journal of Computational Physics, 45, 246.

    Article  Google Scholar 

  • Improta, R., Barone, V., Scalmani, G., & Frisch, M. J. (2006). A state-specific polarizable continuum model time dependent density functional theory method for excited state calculations in solution. Journal of Chemical Physics, 126, 054103.

    Article  Google Scholar 

  • Kim, H. J., & Hynes, J. T. (1990). Equilibrium and nonequilibrium solvation and solute electronic structure. I. Formulation. Journal of Chemical Physics, 93, 5194.

    Google Scholar 

  • Klamt, A., Mennucci, B., Tomasi, J., Barone, V., Curutchet, C., Orozco, M., & Luque, F. J. (2009). On the performance of continuum solvation methods. A comment on “Universal Approaches to Solvation Modeling.” Accounts of Chemical Research, 42, 489.

    Google Scholar 

  • Koch, H., & Jørgensen, P. (1990). Coupled cluster response functions. Journal of Chemical Physics, 93, 3333.

    Article  CAS  Google Scholar 

  • Kongsted, J., Mikkelsen, K. V., & Christiansen, O. (2002). The QM/MM approach for wavefunctions, energies and response functions within self-consistent field and coupled cluster theories. Molecular Physics, 100, 1813.

    Article  CAS  Google Scholar 

  • Marcus, R. A. (1992). Schrödinger equation for strongly interacting electron-transfer systems. The Journal of Physical Chemistry, 96, 1753.

    Article  CAS  Google Scholar 

  • Miertuš, S., Scrocco, E., & Tomasi, J. (1981). Electrostatic interaction of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects. Chemical Physics, 55, 117.

    Google Scholar 

  • Nakatsuji, H., & Hirao, K. (1978). Cluster expansion of the wavefunction. Pseudo-orbital theory based on the SAC expansion and its application to the spin density of open-shell systems. Journal of Chemical Physics, 68, 4279.

    Google Scholar 

  • Stanton, J. F. (1993). Many-body methods for excited state potential energy surfaces. I. General theory of energy gradients for the equation-of-motion coupled-cluster method. Journal of Chemical Physics, 99, 8840.

    Google Scholar 

  • Stanton, J. F., & Bartlett, R. J. (1993). The equation of motion coupled-cluster method. A systematic biorthogonal approach to molecular excitation energies, transition probabilities, and excited state properties. Journal of Chemical Physics, 98, 7029.

    Google Scholar 

  • Tomasi, J., & Persico, M. (1994). Molecular interactions in solution: An overview of methods based on continuous distributions of the solvent. Chemical Review, 94, 2027.

    Article  CAS  Google Scholar 

  • Tomasi, J., Mennucci, B., & Cammi, R. (2003). Molecules in solution. In S. Wilson (Ed.), Handbook of molecular physics and quantum chemistry (Vol. 3, pp. 299–328). New York: Wiley.

    Google Scholar 

  • Tomasi, J., Mennucci, B., & Cammi, R. (2005). Quantum mechanical continuum solvation models. Chemical Review, 105, 2999.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this entry

Cite this entry

Cammi, R., Tomasi, J. (2012). Quantum Cluster Theory for the Polarizable Continuum Model (PCM). In: Leszczynski, J. (eds) Handbook of Computational Chemistry. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0711-5_28

Download citation

Publish with us

Policies and ethics