The Position of the Clamped Nuclei Electronic Hamiltonian in Quantum Mechanics

  • Brian Sutcliffe
  • R. Guy Woolley
Reference work entry


Arguments are advanced to support the view that at present it is not possible to derive molecular structure from the full quantum mechanical Coulomb Hamiltonian associated with a given molecular formula that is customarily regarded as representing the molecule in terms of its constituent electrons and nuclei. However molecular structure may be identified provided that some additional chemically motivated assumptions that lead to the clamped nuclei Hamiltonian are added to the quantum mechanical account.


Irreducible Representation Young Diagram Trial Function Identical Particle Slater Determinant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Born, M., & Huang, K. (1955). Dynamical theory of crystal lattices. Oxford: Oxford University Press.Google Scholar
  2. Born, M., & Oppenheimer, J. R. (1927). Zur Quantentheorie der molekeln. Annalen der Physik, 84, 457.CrossRefGoogle Scholar
  3. Boys, S. F. (1950). Electronic wave functions. I. A general method of calculation for the stationary states of any molecular system. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 200, 542.Google Scholar
  4. Cassam-Chenai, P. (2006). On non-adiabatic potential energy surfaces. Chemical Physics Letters, 420, 354.CrossRefGoogle Scholar
  5. Collins, M. A., & Parsons, D. F. (1993). Implications of rotation-inversion-permutation invariance for analytic molecular potential energy surfaces. The Journal of Chemical Physics, 99, 6756.CrossRefGoogle Scholar
  6. Combes, J. M., & Seiler, R. (1980). Spectral properties of atomic and molecular systems. In R. G. Woolley (Ed.), Quantum dynamics of molecules. NATO ASI B57 (p. 435). New York: Plenum.Google Scholar
  7. Czub, J., & Wolniewicz, L. (1978). On the non-adiabatic potentials in diatomic molecules. Molecular Physics, 36, 1301.CrossRefGoogle Scholar
  8. Deshpande, V., & Mahanty, J. (1969). Born–Oppenheimer treatment of the hydrogen atom. American Journal of Physics, 37, 823.CrossRefGoogle Scholar
  9. Fock, V. (1930). Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems. Zeitschrift für Physik, 61, 126.CrossRefGoogle Scholar
  10. Frolov, A. M. (1999). Bound-state calculations of Coulomb three-body systems. Physical Review A, 59, 4270.CrossRefGoogle Scholar
  11. Hagedorn, G., & Joye, A. (2007). Mathematical analysis of Born–Oppenheimer approximations. In F. Gesztesy, P. Deift, C. Galvez, P. Perry, & W. Schlag. (Eds.), Spectral theory and mathematical physics: A festschrift in honor of Barry Simon’s 60th birthday (p. 203). London: Oxford University Press.Google Scholar
  12. Handy, N. C., & Lee, A. M. (1996). The adiabatic approximation. Chemical Physics Letters, 252, 425.CrossRefGoogle Scholar
  13. Hartree, D. R. (1927). The wave mechanics of an atom with a non-Coulomb central field. Part I. Theory and methods. Mathematical Proceedings of the Cambridge Philosophical Society, 24, 89.Google Scholar
  14. Hartree, D. R., & Hartree, W. (1936). Self-consistent field, with exchange, for beryllium. II. The (2s)(2p) \(^{3}\)P and \(^{1}\)P excited states. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 154, 588.Google Scholar
  15. Heitler, W., & London, F. (1927). Wechselwirkung neutraler Atome und homöopolare Bindung nach der Quantenmechanik. Zeitschrift für Physik, 44, 455.CrossRefGoogle Scholar
  16. Herrin, J., & Howland, J. S. (1997). The Born–Oppenheimer approximation: Straight-up and with a twist. Reviews in Mathematical Physics, 9, 467.CrossRefGoogle Scholar
  17. Hinze, J., Alijah, A., & Wolniewicz, L. (1998). Understanding the adiabatic approximation; The accurate data of H\(_{2}\) transferred to H\(_{3}^{+}\). Polish Journal of Chemistry, 72, 1293.Google Scholar
  18. Hohenberg, P., & Kohn, W. (1964). Inhomogeneous electron gas. Physical Review, 136, 864.CrossRefGoogle Scholar
  19. Hunter, G. (1975). Conditional probability amplitudes in wave mechanics. International Journal of Quantum Chemistry, 9, 237.CrossRefGoogle Scholar
  20. Hunter, G. (1981). Nodeless wave functions and spiky potentials. International Journal of Quantum Chemistry, 19, 755.CrossRefGoogle Scholar
  21. Kato, T. (1951). On the existence of solutions of the helium wave equation. Transactions of the American Mathematical Society, 70, 212.CrossRefGoogle Scholar
  22. Klein, M., Martinez, A., Seiler, R., & Wang, X. P. (1992). On the Born-Oppenheimer expansion for polyatomic molecules. Communications in Mathematical Physics, 143, 607.CrossRefGoogle Scholar
  23. Kołos, W., & Wolniewicz, L. (1963). Nonadiabatic theory for diatomic molecules and its application to the hydrogen molecule. Reviews of Modern Physics, 35, 473.CrossRefGoogle Scholar
  24. Kutzelnigg, W. (2007). Which masses are vibrating or rotating in a molecule? Molecular Physics, 105, 2627.CrossRefGoogle Scholar
  25. Longuet-Higgins, H. C. (1963). The symmetry groups of non-rigid molecules. Molecular Physics, 6, 445.CrossRefGoogle Scholar
  26. McWeeny, R. (1950). Gaussian approximations to wave functions. Nature, 166, 21.CrossRefGoogle Scholar
  27. Mohallem, J. R., & Tostes, J. G. (2002). The adiabatic approximation to exotic leptonic molecules: Further analysis and a nonlinear equation for conditional amplitudes. Journal of Molecular Structure: Theochem, 580, 27.CrossRefGoogle Scholar
  28. Mulliken, R. S. (1931). Bonding power of electrons and theory of valence. Chemical Reviews, 9, 347.CrossRefGoogle Scholar
  29. Nakai, H., Hoshino, M., Miyamato, K., & Hyodo, S. (2005). Elimination of translational and rotational motions in nuclear orbital plus molecular orbital theory. The Journal of Chemical Physics, 122, 164101.CrossRefGoogle Scholar
  30. Pauling, L. (1939). The nature of the chemical bond. Ithaca: Cornell University Press.Google Scholar
  31. Roothaan, C. C. J. (1951). New developments in molecular orbital theory. Reviews of Modern Physics, 23, 69.CrossRefGoogle Scholar
  32. Slater, J. C. (1930). Note on Hartree’s method. Physical Review, 35, 210.CrossRefGoogle Scholar
  33. Sutcliffe, B. T. (2000). The decoupling of electronic and nuclear motions in the isolated molecule Schrödinger Hamiltonian. Advances in Chemical Physics, 114, 97.Google Scholar
  34. Sutcliffe, B. T. (2005). Comment on “Elimination of translational and rotational motions in nuclear orbital plus molecular orbital theory”. The Journal of Chemical Physics, 123, 237101.CrossRefGoogle Scholar
  35. Sutcliffe, B. T. (2007). The separation of electronic and nuclear motion in the diatomic molecule. Theoretical Chemistry Accounts, 118, 563.CrossRefGoogle Scholar
  36. Thirring, W. (1981). Quantum mechanics of atoms and molecules. A course in mathematical physics (Vol. 3, E. M. Harrell, Trans.). Berlin: Springer.Google Scholar
  37. Wilson, E. B. (1979). On the definition of molecular structure in quantum mechanics. International Journal of Quantum Chemistry, 13, 5.Google Scholar
  38. Woolley, R. G., & Sutcliffe, B. T. (1977). Molecular structure and the Born–Oppenheimer approximation. Chemical Physics Letters, 45, 393.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Brian Sutcliffe
    • 1
  • R. Guy Woolley
    • 1
  1. 1.Service de Chimie Quantique et PhotophysiqueUniversité Libre de BruxellesBruxellesBelgium

Personalised recommendations