Skip to main content

Functional Nanostructures and Nanocomposites – Numerical Modeling Approach and Experiment

  • Reference work entry
  • First Online:
Handbook of Computational Chemistry

Abstract

This chapter reports numerical models devoted to predict the optical and vibrational properties of nanoparticles treated as isolated objects or confined in host matrixes. The theoretical data obtained by the numerical simulations were confronted with the experimental investigations carried out by several spectroscopic methods such as Raman, IR, and UV-Vis absorption as well as photoluminescence. As model cluster systems, the physical properties of nanosized silicon carbide (SiC) particles in vacuum were numerically modeled. The computer simulations were also performed for SiC confined in polymeric matrix, namely, poly(methyl methacrylate), poly-N-vinylcarbazole, and polycarbonate. The obtained host–guest nanocomposites exhibit original optical and electro-optical features.The considered systems were built using molecular dynamic simulations method and the full atomistic modeling of the composite materials was performed using CVFF method. The equilibrated geometries of nanocomposites were used to evaluate their key physical features. Particularly, the electronic and vibrational properties of SiC were calculated in the cluster approach model. The suitable cluster size and the nature of terminating bonds used to saturate the outermost nanograin surface were judiciously evaluated with the criterion to achieve consistent agreement with experimental results such as IR absorption, Raman, vibrational density of states and photoluminescence responses. The role of SiC clusters and its interaction with the surrounding polymer were investigated for the hybrid host–guest nanocomposites and their electro-optical functionalities were evaluated. The polarizability and first-order hyperpolarizabilities responsible for second harmonic generation and Pockels effect were calculated using DFT method. Then, taking into account the environmental interaction between host and guest molecules the optical susceptibilities were predicted. The effect of the local electric fields involved at the organic–inorganic interfaces on the NLO parameters was taken into account for each system. Additionally it was found that polymer environment reconstructs the surface of the SiC nanograin, which contributes critically to the NLO properties of hybrid materials. Finally, the chapter shows in exhaustive way that the developed methodologies associating key experimental works and relevant numerical methods allows to tailor the suitable nanostructured materials with the optimal physical responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 749.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akimov, I. A., Denisyuk, I. Yu., & Meshkov, A. M. (1992). Semiconductor nanocrystals in a polymeric matrix: new optical media. Optics and Spectroscopy, 72, 558–562.

    Google Scholar 

  • Alivisatos, A. P. (1996). Perspectives on the physical chemistry of semiconductor nanocrystals. Journal of Physical Chemistry, 100, 13226–13239.

    Article  CAS  Google Scholar 

  • Alivisatos, A. P., Harris, A. L., Levinos, N. J., Steigerwald, M. L., & Brus, L. E. (1988). Electronic states of semiconductor clusters - homogeneous and inhomogeneous broadening of the optical spectrum, Journal of Chemical Physics, 89, 4001–4011.

    Article  CAS  Google Scholar 

  • Beecroft, L. L., & Ober, C. K. (1997). Nanocomposite materials for optical applications. Chemistry of Materials, 9, 1302–1317 and revived there.

    Article  CAS  Google Scholar 

  • Bouclé, J., Kassiba, A., Emery, J., Kityk, I. V., Makowska-Janusik, M., Sanetra, J., Herlin-Boime, N., & Mayne, M. (2002). Local electrooptic effect of the SiC large-sized nanocrystallites incorporated in polymer matrixes. Physics Letters A 302, 196–202.

    Article  Google Scholar 

  • Bouclé, J., Kassiba, A., Makowska-Janusik, M., Herlin-Boime, N., Reynaud, C., Desert, A., Emery, J., Bulou, A., Sanetra, J., Pud, A. A., & Kodjikian, S. (2006). Linear electro-optical behavior of hybrid nanocomposites based on silicon carbide nanocrystals and polymer matrixes. Physical Review B, 74, 205417–205411.

    Article  Google Scholar 

  • Charpentier, S., Kassiba, A., Bulou, A., Monthioux, M., & Cauchetier, M. (1999). Effect of excess carbon and vibrational properties in ultrafine SiC powders. The European Physical Journal Applied Physics, 8, 111–121.

    Article  CAS  Google Scholar 

  • Cramer, C. J. (2002). Essentials of computational chemistry. West Sussex: Wiley.

    Google Scholar 

  • Czerwinski, M., Bieleninik, J., Napieralski, J., Kityk, I. V., Kasperczyk, J., & Merwinskii, R. I. (1997). Role of heteropolar bonds in ocm-2 oligocarbonatemethacrylate. European Polymer Journal, 33, 1441–1447.

    Article  CAS  Google Scholar 

  • Dabbousi, B. O., Rodriguez-Viejo, J., Mikulec, F. V., Heine, J. R., Mattoussi, H., Ober, R., Jensen, K. F., & Bawendi, M. G. (1997). (CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. Journal of Physical Chemistry B, 101, 9463–9475.

    Article  CAS  Google Scholar 

  • Di Bella, S., Ratner, M. A., & Marks, T. J. (1992). Design of chromophoric molecular assemblies with large second-order optical nonlinearities. A theoretical analysis of the role of intermolecular interactions. Journal of American Chemical Society, 114, 5842–5849.

    Article  CAS  Google Scholar 

  • Essman, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A Smooth particle Mesh Ewald method. Journal of Chemical Physics, 103, 8577–9593.

    Article  Google Scholar 

  • Fischer, G. L., Boyd, R. W., Gehr, R. J., Jenekhe, S. A., Osaheni, J. A., Sipe, J. E., & Weller-Brophy, L. A. (1995). Enhanced nonlinear optical response of composite materials. Physical Review Letters, 74, 1871–1874.

    Article  CAS  Google Scholar 

  • Henglein, A. (1993). Physicochemical properties of small metal particles in solution: “Microelectrode” reactions, chemisorption, composite metal particles, and the atom-to-metal transition. Journal of Physical Chemistry, 97, 5457–5471.

    Article  CAS  Google Scholar 

  • Hockney, R. W., Goel, S. P., & Eastwood, J. W. (1974). Quiet high-resolution computer models of a plasma. Journal of Computational Physics, 14, 148–158.

    Article  Google Scholar 

  • Hohenberg, P., & Kohn, W. (1964). Inhomogeneous electron gas. Physical Review B, 136, 864–871.

    Article  Google Scholar 

  • Hoover, W. G. (1985). Canonical dynamics: equilibrium phase-space distributions. Physical Review A, 31, 1695–1697.

    Article  Google Scholar 

  • Kagan, C. R., Murray, C. B., & Bawendi, M. G. (1996). Long-range resonance transfer of electronic excitations in close-packed CdSe quantum-dot solids. Physical Review B, 54, 8633–8643.

    Article  CAS  Google Scholar 

  • Kassiba, A., Makowska-Janusik, M., Boucle, J., Bardeau, J.-F., Bulou, A., Herlin, N., Mayne, M., & Armand, X. (2002a). Stoichiometry and interface effects on the electronic and optical properties of SiC nanoparticles. Diamond and Related Materials, 11, 1243–1247.

    Article  CAS  Google Scholar 

  • Kassiba, A., Makowska-Janusik, M., Boucle, J., Bardeau, J.-F., Bulou, A., & Herlin-Boime, N. (2002b). Photoluminescence features on the Raman spectra of quasistoichiometric SiC nanoparticles: experimental and numerical simulations. Physical Review B, 66, 155317-1–155317-7.

    Article  Google Scholar 

  • Kassiba, A., Bouclé, J., Makowska-Janusik, M., Errien, N. (2007). Some fundamental and applicative properties of [polymer/nano-SiC] hybrid nanocomposites. Journal of Physics: Conference Series, 79, 012002-1–012002-10.

    Google Scholar 

  • Kitson, D. H., & Hagler, A. T. (1988). Theoretical studies of the structure and molecular dynamics of a peptide crystal. Biochemistry, 27, 5246–5257.

    Article  CAS  Google Scholar 

  • Kityk, I. V., Makowska-Janusik, M., Kassiba, A., & Plucinski, K. J. (2000). SiC nanocrystals embedded in oligoetheracrylate photopolymer matrixes; new promising nonlinear optical materials, Optical Materials, 13, 449–453.

    Article  CAS  Google Scholar 

  • Kohn, W., & Sham, L. (1965). Self-consistent equations including exchange and correlation effects. Physical Review A, 140, 1133–1138.

    Article  Google Scholar 

  • Kohn, W., Becke, A. D., & Parr, R. G. (1996). Density functional theory of electronic structure. Journal of Physical Chemistry, 100, 12974–12980.

    Article  CAS  Google Scholar 

  • Koch, W., & Holthausen, M. C. (2001). A chemist’s guide to density functional theory (2nd edn.). Wiley-VCH, Verlag GmbH. ISBN: 3-527-30372-3

    Book  Google Scholar 

  • Lau, K. F., Alper, H. E., Thacher, T. S. & Stouch, T. R. (1994). Effects of switching functions on the behavior of liquid water in molecular dynamics simulations. Journal of Physical Chemistry, 98, 8785.

    Article  CAS  Google Scholar 

  • Lin, S. Y., & Chang, S. T. (1998). Variations of vibrational local modes and electronic states of hydrogenated amorphous silicon carbide under thermal annealing. Journal of Physics and Chemistry of Solids, 59, 1399–1405.

    Article  CAS  Google Scholar 

  • Ma, B., Lii, J. H., Chen, K., & Allinger, N. L. (1997). A molecular mechanics study of the cholesteryl acetate crystal: evaluation of interconversion among r g , r z , and r α bond lengths. Journal of the American Chemical Society, 119, 2570–2573.

    Article  CAS  Google Scholar 

  • Makowska-Janusik, M., Reis, H., Papadopoulos, M. G., Economou, I. G., & Zacharopoulos, N. (2004). Molecular dynamics simulations of electric field poled nonlinear optical chromophores incorporated in a polymer matrix. The Journal of Physical Chemistry B, 108, 588–596.

    Article  CAS  Google Scholar 

  • Makowska-Janusik, M., Kassiba, A., Bouclé, J., Bardeau, J-F., Kodjikian, S., & Désert, A. (2005). Vibrational density of states in silicon carbide nanoparticles: experiments and numerical simulations. Journal of Physics: Condensed Matter, 17, 5101–5110.

    CAS  Google Scholar 

  • Makowska-Janusik, M., Kassiba, A., Failleau, G., & Bouclé, J. (2006). Interface effects on the NLO properties of guest-host materials. Materials Science, 24, 891–900.

    CAS  Google Scholar 

  • Manna, L., Scher, E. C., & Alivisatos, A. P. (2000). Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. Journal of the American Chemical Society, 122, 12700–12706.

    Article  CAS  Google Scholar 

  • Mirgorodsky, A. P., Smirnov, M. B., Abdelmounim, E., Merle, T., & Quintard, P. E. (1995). Molecular approach to the modeling of elasticity and piezoelectricity of SiC polytypes. Physical Review B, 52, 3993.

    Article  CAS  Google Scholar 

  • Norris, D. J., & Bawendi, M. G. (1995). Structure in the lowest absorption feature of CdSe quantum dots. Journal of Chemical Physics, 103, 5260–5268.

    Article  CAS  Google Scholar 

  • Nose, S. (1984). A molecular dynamics method for simulations in the canonical ensemble. Molecular Physics, 52, 255–268.

    Article  CAS  Google Scholar 

  • Oudar, J. L., & Chemla, D. S. (1977). Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment. Journal of Chemical Physics, 66, 2664–2668.

    Article  CAS  Google Scholar 

  • Payne, M. C., Teter, M. P., Allan, D. C., Arias, T. A., & Joannopoulos, J. D. (1992). Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Reviews of Modern Physics, 64, 1045–1097.

    Article  CAS  Google Scholar 

  • Reboredo, F. A., Pizzagalli, L., & Galli, G. (2004). Computational engineering of the stability and optical gaps of SiC quantum dots. Nano Letters, 4, 801–804.

    Article  CAS  Google Scholar 

  • Reis, H., Papadopoulos, M.G., & Munn, R. W. (1998). Calculation of macroscopic first-, second-, and third-order optical susceptibilities for the urea crystal. Journal of Chemical Physics, 109, 6828–6838.

    Article  CAS  Google Scholar 

  • Reis, H., Makowska-Janusik, M., & Papadopoulos, M. G. (2004). Nonlinear optical susceptibilities of poled guest-host systems: a computational approach. Journal of Physical Chemistry B, 108, 8931–8940.

    Article  CAS  Google Scholar 

  • Ricciardi, G., Rosa, A., van Gisbergen, S. J. A., & Baerends, E. J. (2000). A density functional study of the optical spectra and nonlinear optical properties of heteroleptic tetrapyrrole sandwich complexes: the porphyrinato-porphyrazinato-zirconium(IV) complex as a case study. Journal of Physical Chemistry A, 104, 635–643.

    Article  CAS  Google Scholar 

  • Runge, E., & Gross, E. K. U. (1984). Density-functional theory for time-dependent systems. Physical Review Letters, 52, 997–1000.

    Article  CAS  Google Scholar 

  • Sanetra, J., Bogdal, D., Niziol, S., Armatys, P., & Pielichowski, J. (2001). Electroluminescence of poly(N-vinylcarbazole) (PVK) and its blends with 3-(-2-methacrylate-ethaoxy)carbonyl dimethylocoumarine. Synthesis Materials, 121, 1731–1732.

    Article  CAS  Google Scholar 

  • Sapra, S., Nanda, J., Anand, A., Bhat, S. V., & Sarma, D. D. (2003). Optical and magnetic properties of manganese doped zinc sulfide nanoclusters.Journal for Nanoscience and Nanotechnology, 3, 392–400.

    Article  CAS  Google Scholar 

  • Schmitt-Rink, S., Miller, D. A. B., & Chemla, D. S. (1987). Theory of the linear and nonlinear optical properties of semiconductor microcrystallites. Physical Review B, 35, 8113–8125.

    Article  CAS  Google Scholar 

  • Stewart, J. J. P. (1991). Optimization of parameters for semiempirical methods. III Extension of PM3 to Be, Mg, Zn, Ga, Ge, As, Se, Cd, In, Sn, Sb, Te, Hg, Tl, Pb, and Bi. Journal of Computational Chemistry, 12, 320–341 and revived there.

    Article  CAS  Google Scholar 

  • Timp, G. (1999). Nanotechnology. New York: Springer.

    Book  Google Scholar 

  • van Gisbergen, S. J. A., Snijders, J. G., & Baerends, E. J. (1995). A density functional theory study of frequency-dependent polarizabilities and Van der Waals dispersion coefficients for polyatomic molecules. Journal of Chemical Physics, 103, 9347–9354.

    Article  Google Scholar 

  • Vonsovici, A., Reed, G. T., & Evans, A. G. R. (2000). β-SiC-on insulator waveguide structures for modulators and sensor systems. Materials Science in Semiconductor Processing, 3, 367–374.

    Article  CAS  Google Scholar 

  • Vosko, S. H., Wilk, L., & Nusair, M. (1980). Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Canadian Journal of Physics, 58, 1200–1211.

    Article  CAS  Google Scholar 

  • Wang, Y., Suna, A., Mahler, W., & Kasowski R. (1987). PbS in polymers. From molecules to bulk solids. Journal of Chemical Physics, 87, 7315–7322.

    Article  CAS  Google Scholar 

  • Weiner, S. J., Kollman, P. A., Nguyen, D. T., & Case, D. A. (1986). An all atom force field for simulations of proteins and nucleic acids. Journal of Computational Chemistry, 7, 230–252.

    Article  CAS  Google Scholar 

  • Zhang, H., & Xu, Z. (2002). Microstructure of nanocrystalline SiC films deposited by modified plasma-enhanced chemical vapor deposition. Optical Materials, 20, 177–181.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this entry

Cite this entry

Makowska-Janusik, M., Kassiba, AH. (2012). Functional Nanostructures and Nanocomposites – Numerical Modeling Approach and Experiment. In: Leszczynski, J. (eds) Handbook of Computational Chemistry. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0711-5_18

Download citation

Publish with us

Policies and ethics