Nanoencapsulation is defined as the entrapping of active ingredients in nanometer-sized capsules.
Overview
Nanoencapsulation is defined as the technology of packaging nanoparticles of solid, liquid, or gas, also known as the core or active, within a secondary material, named as the matrix or shell, to form nanocapsules (see Fig. 1) [1]. The core contains the active ingredient (e.g., drugs, perfumes, biocides, vitamins, etc., see Table 1), while the shell isolates and protects the core from the surrounding environment. This protection can be permanent or temporal, in which case the core is generally released by diffusion or in response to a trigger, such as shear, pH, or enzyme action, thus enabling their controlled and timed delivery to a targeted site [2, 3].
Ciobanu, M., Heurtault, B., Schultz, P., Ruhlmann, C., Muller, C.D., Frisch, B.: Layersome: development and optimization of stable liposomes as drug delivery system. Int. J. Pharm. 344, 154–157 (2007)Google Scholar
5.
Imaz, I., Rubio-Martinez, M., Garcia-Fernandez, L., Garcia, F., Ruiz-Molina, D., Hernando, J., Puntes, V., Maspoch, D.: Coordination polymer particles as potential drug delivery systems. Chem. Commun. 46, 4737–4739 (2010)Google Scholar
6.
Jaworek, A.: Electrostatic micro- and nanoencapsulation and electroemulsification: A brief review. J. Microencapsul. 25, 443–468 (2008)Google Scholar
7.
Wooster, T.J., Golding, M., Sanguansri, P.: Impact of oil type on nanoemulsion formation and Ostwald Ripening stability. Langmuir 24, 12758–12765 (2008)Google Scholar
8.
Damge, C., Vranckx, H., Balschmidt, P., Couvreur, P.: Poly(alkyl cyanoacrylate) nanospheres for oral administration of insulin. J. Pharm. Sci. 86, 1403–1409 (1997)Google Scholar
9.
d’Angelo, I., Parajó, Y., Horváth, A., Kéri, G., La Rotonda, M.I., Alonso, M.J.: Improved delivery of angiogenesis inhibitors from PLGA: poloxamer blend micro- and nanoparticles. J. Microencapsul. 27, 57–66 (2010)Google Scholar
10.
Ciriminna, R., Sciortino, M., Alonzo, G., Schrijver, A.D., Pagliaro, M.: From molecules to systems: Sol − Gel microencapsulation in silica-based materials. Chem. Rev. 111, 765–789 (2010)Google Scholar
11.
Gouin, S.: Microencapsulation: industrial appraisal of existing technologies and trends. Trends Food Sci. Technol. 15, 330–347 (2004)Google Scholar
12.
Kongsombut, B., Tsutsumi, A., Suankaew, N., Charinpanitkul, T.: Encapsulation of SiO2 and TiO2 fine powders with poly(DL-lactic-co-glycolic acid) by rapid expansion of supercritical CO2 incorporated with ethanol cosolvent. Ind. Eng. Chem. Res. 48, 11230–11235 (2009)Google Scholar
13.
Peltonen, L., Valo, H., Kolakovic, R., Laaksonen, T., Hirvonen, J.: Electrospraying, spray drying and related techniques for production and formulation of drug nanoparticles. Expert Opin. Drug Deliv. 7, 705–719 (2010)Google Scholar
14.
Javadzadeh, Y., Ahadi, F., Davaran, S., Mohammadi, G., Sabzevari, A., Adibkia, K.: Preparation and physicochemical characterization of naproxen-PLGA nanoparticles. Colloids Surf B Biointerfaces 81, 498–502 (2010)Google Scholar
15.
Mura, P., Maestrelli, F., Cecchi, M., Bragagni, M., Almeida, A.: Development of a new delivery system consisting in ‘drug–in cyclodextrin–in PLGA nanoparticles’. J. Microencapsul. 27, 479–486 (2010)Google Scholar
16.
Jaworek, A., Sobczyk, A.T.: Electrospraying route to nanotechnology: an overview. J. Electrostat. 66, 197–219 (2008)Google Scholar
17.
Bonacucina, G., Cespi, M., Misici-Falzi, M., Palmieri, G.F.: Colloidal soft matter as drug delivery system. J. Pharm. Sci. 98, 1–42 (2009)Google Scholar
18.
Chiu, Y.T., Chiu, C.P., Chien, J.T., Ho, G.H., Yang, J., Chen, B.H.: Encapsulation of lycopene extract from tomato pulp waste with gelatin and poly(γ-glutamic acid) as carrier. J. Agric. Food Chem. 55, 5123–5130 (2007)Google Scholar