Skip to main content

Physical Vapor Deposition

  • Reference work entry
  • 1139 Accesses

Synonyms

Anodic arc deposition; Arc discharge; Boron nitride nanotubes (BNNTs); Carbon nanotubes (CNTs); Catalyst; Cathodic arc deposition; Chemical beam epitaxial (CBE); Electron beam evaporation; Electron beam physical vapor deposition (EBPVD); Gallium arsenide (GaAs); Gas-phase molecular beam epitaxy (gas-phase MBE); Graphene; Ion beam; Magnetron sputtering; Metal-organic molecular beam epitaxy (MOMBE); Molecular beam epitaxy (MBE); Nanorods; Nanotubes; Nanowires; Plasma; Pulsed-laser deposition (PLD); Si nanotubes; Sputtering; Thermal evaporation

Definition

Physical vapor deposition (PVD) is referred to deposition processes of thin films and nanostructures through the evaporation of solid precursors into their vapor phase by physical approaches followed by the condensation of the vapor phase on substrates. The whole process consists of three stages: (1) evaporation of the solid source, (2) vapor phase transport from the source to the substrates, and (3) vapor condensation on the...

This is a preview of subscription content, access via your institution.

Buying options

Chapter
EUR   29.95
Price includes VAT (Finland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR   1,284.00
Price includes VAT (Finland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions
Physical Vapor Deposition, Fig. 1
Physical Vapor Deposition, Fig. 2

References

  1. Mattox, D.M.: Handbook of Physical Vapor Deposition (PVD) Processing: Film Formation, Adhesion, Surface Preparation and Contamination Control (Hardcover). Noyes, New Jersey (1998)

    Google Scholar 

  2. Mahan, J.E.: Physical Vapor Deposition of Thin Films. Wiley-Interscience, New York (2000)

    Google Scholar 

  3. Park, J., et al.: Epitaxial graphene growth by carbon molecular beam epitaxial (CMBE). Adv. Mater. 22, 4140–4145 (2010)

    CrossRef  CAS  Google Scholar 

  4. Hackley, J., et al.: Graphitic carbon growth on Si (111) using solid source molecular beam epitaxy. Appl. Phys. Lett. 95, 133114 (2009)

    CrossRef  CAS  Google Scholar 

  5. Tsang, W.T., et al.: Chemical beam epitaxy of InP and GaAs. Appl. Phys. Lett. 45, 1234–1236 (1984)

    CrossRef  CAS  Google Scholar 

  6. Schiller, S., Jäsch, G.: Deposition by electron beam evaporation with rates of up to 50 μm s−1. Thin Solid Films 54, 9–21 (1978)

    CrossRef  CAS  Google Scholar 

  7. Chrisey, D.B., Hubler, G.H. (eds.): Pulsed Laser Deposition of Thin Films. Wiley-Interscience, New York (1994)

    Google Scholar 

  8. Wang, J., Yap, Y.K.: Growth of adhesive cubic phase boron nitride films without argon ion bombardment. Diam. Relat. Mater. 15, 444–447 (2006)

    CrossRef  CAS  Google Scholar 

  9. Yap, Y.K., Kida, S., Aoyama, T., Mori, Y., Sasaki, T.: Influence of negative dc bias voltage on structural transformation of carbon nitride at 600°C. Appl. Phys. Lett. 73, 915 (1998)

    CrossRef  CAS  Google Scholar 

  10. Yap, Y.K., Aoyama, T., Kida, S., Mori, Y., Sasaki, T.: Synthesis of adhesive c-BN films in pure nitrogen radio-frequency plasma. Diam. Relat. Mater. 8, 382–385 (1999)

    CrossRef  CAS  Google Scholar 

  11. Yamamoto, K., Koga, Y., Fujiwara, S., Kokai, F., Heimann, B.: Dependence of the sp 3 bond fraction on the laser wavelength in thin carbon films prepared by pulsed laser deposition. Appl. Phys A 66, 115–117 (1998)

    CrossRef  CAS  Google Scholar 

  12. Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    CrossRef  CAS  Google Scholar 

  13. Iijima, S., Ichihashi, T.: Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603–605 (1993)

    CrossRef  CAS  Google Scholar 

  14. Wang, J., et al.: Low temperature growth of boron nitride nanotubes on substrates. Nano Lett. 5, 2528–2532 (2005)

    CrossRef  CAS  Google Scholar 

  15. Yap, Y.K., Yoshimura, M., Mori, Y., Sasaki, T., Hanada, T.: Formation of aligned-carbon nanotubes by RF-plasma-assisted pulsed-laser deposition. Special issue for Tsukuba symposium on carbon nanotubes in commemoration of the 10th anniversary of its discovery; S. Ijima et al. eds., Physica B 323, 341–343 (2002)

    Google Scholar 

  16. Lee, K.-F., et al.: Synthesis of aligned bamboo-like carbon nanotubes using radio frequency magnetron sputtering. J. Vac. Sci. Technol. B 21, 1437–1441 (2003)

    CrossRef  CAS  Google Scholar 

  17. Xie, M., Wang, J., Yap, Y.K.: Mechanism for low temperature growth of boron nitride nanotubes. J. Phys. Chem. C 114, 16236–16241 (2010)

    CrossRef  CAS  Google Scholar 

  18. Heo, Y.W., Kaufman, M., Pruessner, K., Norton, D.P., Ren, F., Chisholm, M.F., Fleming, P.H.: Optical properties of Zn1−x Mg x O nanorods using catalysis-driven molecular beam epitaxy. Solid-State Electron. 47, 2269–2273 (2003); Heo, Y.W., Varadarajan, V., Kaufman, M., Kim, K., Norton, D.P., Ren, F., Fleming, P.H.: Site-specific growth of Zno nanorods using catalysis-driven molecularbeam epitaxy. Appl. Phys. Lett. 81, 3046–3048 (2002)

    Google Scholar 

  19. Rahm, A., et al.: Pulsed-laser deposition and characterization of ZnO nanowires with regular lateral arrangement. Appl. Phys. A 88, 31–34 (2007)

    CrossRef  CAS  Google Scholar 

  20. Nagashima, K., Yanagida, T., Tanaka, H., Kawai, T.: Epitaxial growth of MgO nanowires by pulsed laser deposition. J. Appl. Phys. 101, 124304 (2007)

    CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoke Khin Yap .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this entry

Cite this entry

Yap, Y.K. (2012). Physical Vapor Deposition. In: Bhushan, B. (eds) Encyclopedia of Nanotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9751-4_362

Download citation