Skip to main content

Chemical Vapor Deposition (CVD)

  • Reference work entry
  • 859 Accesses

Synonyms

Aerosol-assisted chemical vapor deposition (AACVD); Atmospheric pressure chemical vapor deposition (APCVD); Atomic layer chemical vapor deposition (ALCVD); Atomic layer deposition (ALD); Atomic layer epitaxial (ALE); Boron nitride nanotubes (BNNTs); Carbon nanotubes (CNTs); Carbon nanowalls; Catalyst; Catalytic chemical vapor deposition (CCVD); Cold-wall thermal chemical vapor deposition; Dissociated adsorption; Double-walled carbon nanotubes (DWCNTs); High-pressure carbon monoxide (HiPCO); Hot filament chemical vapor deposition (HFCVD); Hot-wall thermal chemical vapor deposition; Inductively coupled-plasma chemical vapor deposition (ICP-CVD); Low-pressure chemical vapor deposition (LPCVD); Metalorganic chemical vapor deposition (MOCVD); Multiwalled carbon nanotubes (MWCNTs); Nanobelts; Nanocombs; Nanoparticles; Nanotubes; Nanowires; Plasma-enhanced chemical vapor deposition (PECVD); Single-walled carbon nanotubes (SWCNTs); Thermal chemical vapor deposition; Ultrahigh vacuum...

This is a preview of subscription content, access via your institution.

Buying options

Chapter
EUR   29.95
Price includes VAT (Finland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR   1,284.00
Price includes VAT (Finland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions
Chemical Vapor Deposition (CVD), Fig. 1
Chemical Vapor Deposition (CVD), Fig. 2

References

  1. Tsu, D.V., Lucovsky, G., Dvidson, B.N.: Effects of the nearest neighbors and the alloy matrix on SiH stretching vibrations in the amorphous SiOr:H (0<r<2) alloy system. Phys. Rev. B 40, 1795–1805 (1989)

    CAS  Google Scholar 

  2. Menda, J., et al.: Structural control of vertically aligned multiwalled carbon nanotubes by radio-frequency plasmas. Appl. Phys. Lett. 87(173106), 3 (2005)

    Google Scholar 

  3. Hirao, T., et al.: Formation of vertically aligned carbon nanotubes by dual-RF-plasma chemical vapor deposition. Jpn. J. Appl. Phys. 40, L631–L634 (2001)

    CAS  Google Scholar 

  4. van Laake, L., Hart, A.J., Slocum, A.H.: Suspended heated silicon platform for rapid thermal control of surface reactions with application to carbon nanotube synthesis. Rev. Sci. Instrum. 78(083901), 9 (2007)

    Google Scholar 

  5. Leskelä, M., Ritala, M.: Atomic layer deposition chemistry: Recent developments and future challenges. Angew. Chem. Int. Ed. 42, 5548–5554 (2003)

    Google Scholar 

  6. Kayastha, V.K., et al.: Controlling dissociative adsorption for effective growth of carbon nanotubes. Appl. Phys. Lett. 85, 3265–3267 (2004)

    CAS  Google Scholar 

  7. Kayastha, V.K., et al.: High-density vertically aligned multiwalled carbon nanotubes with tubular structures. Appl. Phys. Lett. 86(253105), 3 (2005)

    Google Scholar 

  8. Kayastha, V.K., et al.: Synthesis of vertically aligned single- and double- walled carbon nanotubes without etching agents. J. Phys. Chem. C 111, 10158–10161 (2007)

    CAS  Google Scholar 

  9. Hata, K., et al.: Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 306, 1362–1364 (2004)

    CAS  Google Scholar 

  10. Yamada, T., et al.: Size-selective growth of double-walled carbon nanotube forests from engineered iron catalysts. Nat. Nanotechnol. 1, 131–136 (2006)

    CAS  Google Scholar 

  11. Dai, H., et al.: Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide. Chem. Phys. Lett. 260, 471–475 (1996)

    CAS  Google Scholar 

  12. Kong, J., Cassell, A.M., Dai, H.: Chemical vapor deposition of methane for single-walled carbon nanotubes. Chem. Phys. Lett. 292, 567–574 (1998)

    CAS  Google Scholar 

  13. Nikolaev, P., et al.: Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem. Phys. Lett. 313, 91–97 (1999)

    CAS  Google Scholar 

  14. Maruyama, S., et al.: Low-temperature synthesis of high-purity single-walled1 carbon nanotubes from alcohol. Chem. Phys. Lett. 360, 229–234 (2002)

    CAS  Google Scholar 

  15. Mensah, S.L., et al.: Formation of single crystalline ZnO nanotubes without catalysts and templates. Appl. Phys. Lett. 90, 113108 (2007)

    Google Scholar 

  16. Mensah, S.L., et al.: Selective growth of pure and long ZnO nanowires by controlled vapor concentration gradients. J. Phys. Chem. C 111, 16092–16095 (2007)

    CAS  Google Scholar 

  17. Mensah, S.L., et al.: ZnO nnosquids: banching nnowires from nnotubes and nnorods. J. Nanosci. Nanotechnol. 8, 233–236 (2008)

    CAS  Google Scholar 

  18. Lee, C.H., et al.: Effective growth of boron nitride nanotubes by thermal chemical vapor deposition. Nanotechnology 19(455605), 5 (2008)

    Google Scholar 

  19. Lee, C.H., et al.: Patterned growth of boron nitride nanotubes by catalytic chemical vapor deposition. Chem. Mater. 22, 1782–1787 (2010)

    CAS  Google Scholar 

  20. Wang, J., Lee, C.H., Yap, Y.K.: Recent advancements in boron nitride nanotubes. Nanoscale. 2, 2028–2034 (2010)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoke Khin Yap .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this entry

Cite this entry

Yap, Y.K. (2012). Chemical Vapor Deposition (CVD). In: Bhushan, B. (eds) Encyclopedia of Nanotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9751-4_345

Download citation