Skip to main content

UAV Localization Using Inertial Sensors and Satellite Positioning Systems

  • Reference work entry
  • First Online:
Handbook of Unmanned Aerial Vehicles

Abstract

This chapter provides an overview of UAV localization with a focus on aided inertial localization, that is, algorithms for fusing data from, for example, satellite positioning systems, barometric sensors, and magnetometers with inertial sensors to provide real-time position and orientation. The presentation is based in the use of the Extended Kalman Filter (EKF) as the core tool for data fusion, which is commonly used for its simplicity, computational efficiency, and optimality (with respect to sensor noise characteristics). This chapter presents an example implementation of aided inertial localization on a UAV as a tutorial in the key concepts in airborne localization and as a basic guide toward more complicated implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,399.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • W. Baker, R. Clem, Terrain Contour Matching [TERCOM] primer. Technical Report ASP-TR-77- 61, Aeronautical Systems Division, Wright-Patterson AFB, 1979

    Google Scholar 

  • I. Bar-Itzhack, D. Serfaty, Y. Vitek, Doppler-aided low-accuracy strapdown inertial navigation system. J. Guid. Control 5(3), 236–242 (1982)

    Article  Google Scholar 

  • Y. Bar-Shalom, T. Fortmann, Tracking and Data Association (Academic, Boston, 1998)

    Google Scholar 

  • D. Benson, A comparison of two approaches to pure-inertial and Doppler-inertial error analysis. IEEE Trans. Aerosp. Electron. Syst. 11(4), 447–455 (1975)

    Article  Google Scholar 

  • H. Carvalho, P.D. Moral, A. Monin, G. Salut, Optimal non-linear filtering in GPS/INS integration. IEEE Trans. Aerosp. Electron. Syst. 33(3), 835–850 (1997)

    Article  Google Scholar 

  • J. Fountain, Digital terrain systems, in Airborne Navigation Systems Workshop, London (The Institute of Electrical Engineers, London, 1997), pp. 1–6

    Google Scholar 

  • D. Gebre-Egziabher, R. Hayward, J. Powell, Low-cost GPS/inertial attitude heading reference system (AHRS) for general aviation applications, in IEEE Position Location and Navigation Symposium, Institue of Electrical Engineers, Piscataway, USA (1998)

    Google Scholar 

  • A. Gelb, Applied Optimal Estimation (MIT, Cambridge, 1974)

    Google Scholar 

  • C. S. Giovanni, Performance of a ring laser strapdown attitude and heading reference for aircraft. J. Guid. Control 2(4), 320–327 (1979)

    Article  Google Scholar 

  • A. Hiliuta, R. Landry, F. Gagnon, Fuzzy correction in a GPS/INS hybrid navigation system. IEEE Trans. Aerosp. Electron. Syst. 40(2), 591–648 (2004)

    Article  Google Scholar 

  • R. Kalman, A new approach to linear filtering and prediction problems. Trans. ASME, J. Basic Eng. 82(D), 35–45 (1960)

    Article  Google Scholar 

  • J. Kim, S. Sukkarieh, Recasting SLAM – towards improving efficiency and platform independency, in International Symposium on Robotics Research, Springer-Verlag, New York (2003)

    Google Scholar 

  • J. Kim, S. Sukkarieh, SLAM aided GPS/INS navigation in GPS denied and unknown environments, in International Symposium on GNSS/GPS (2004). http://www.gmat.unsw.edu.au/gnss2004unsw/toc.html

  • B. King, T. Kutta, Impact: The History of Germany’s V-Weapons in World War II (Sarpedon Publishers, Rockville Center, New York, 1998)

    Google Scholar 

  • D. Knight, Rapid development of tightly-coupled GPS/INS systems, in IEEE Position Location and Navigation Symposium (1996)

    Google Scholar 

  • P. Maybeck, Stochastic Models, Estimation and Control, Volume 1 (Academic, New York, 1979)

    MATH  Google Scholar 

  • J. Meyer-Hilberg, T. Jacob, High accuracy navigation and landing system using GPS/IMU system integration, in IEEE Position, Location and Navigation Symposium, Institue of Electrical Engineers, Piscataway, USA (1994)

    Google Scholar 

  • C. M. Roithmayr, Contributions of spherical harmonics to magnetic and gravitational fields, in NASA Technical Report NASA/TM2004213007 (2004). http://nssdcftp.gsfc.nasa.gov/models/geomagnetic/igrf/old_matlab_igrf/Contributions.pdf

  • M. Shuster, S. Oh, Three-axis attitude determination from vector observations. J. Guid. Control 4(1), 7077 (1981)

    Article  Google Scholar 

  • S. Sukkarieh, Aided inertial navigation systems for autonomous land vehicles. Ph.d, University of Sydney, 1999

    Google Scholar 

  • D. Titterton, J. Weston, Strapdown Inertial Navigation Technology (Peter Peregrinus Ltd., London, 1997)

    Google Scholar 

  • Y. Yang, J. Farrell, M. Barth, High-accuracy, high-frequency differential carrier phase GPS aided low-cost INS, in IEEE Position, Location and Navigation Symposium, Institue of Electrical Engineers, Piscataway, USA (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mitch Bryson or Salah Sukkarieh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Bryson, M., Sukkarieh, S. (2015). UAV Localization Using Inertial Sensors and Satellite Positioning Systems. In: Valavanis, K., Vachtsevanos, G. (eds) Handbook of Unmanned Aerial Vehicles. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9707-1_3

Download citation

Publish with us

Policies and ethics