The Wetland Book pp 1167-1173 | Cite as

Climate Regulation and Wetlands: Overview

Reference work entry

Abstract

One of the most important ecosystem services which links wetlands to human well-being is the regulation of climate. Through the storage and sequestration of carbon, wetlands play a significant role in global carbon cycles. However, wetlands can also act as a source and a sink for greenhouse gases and they can influence local and regional temperature, precipitation and other weather patterns. Increasingly, as a result of their important role in climate regulation, wetland management and restoration activities are being integrated into local, national and international programmes which aim to both mitigate and adapt to climate change.

Keywords

Adaptation Climate regulation Carbon cycles Temperature control Climate change mitigation 

References

  1. Bridgham SD, Megonigal JP, Keller JK, Bliss NB, Trettin C. The carbon balance of North American wetlands. Wetlands. 2006;26(4):889–916.CrossRefGoogle Scholar
  2. Connor RF, Chmuraa GA, Beecher CB. Carbon accumulation in Bay of Fundy salt marshes: implications for restoration of reclaimed marshes. Glob Biogeochem Cycles. 2001;15(4):943–54.CrossRefGoogle Scholar
  3. Crooks S, Herr D, Tamelander J, Laffoley D, Vanderver J. Mitigation of climate change through restoration and management of coastal wetlands and near-shore marine ecosystems: challenges and opportunities. World Bank Env. Dept Paper 121. 2011.Google Scholar
  4. Donato DC, Kauffman JB, Murdiyarso D, Kurnianto S, Stidham M, Kanninen M. Mangroves among the most carbon-rich forests in the tropics. Nat Geosci. 2011;4:293–7.CrossRefGoogle Scholar
  5. Duarte CM, Middelburg JJ, Caraco N. Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences. 2005;2:1–8.CrossRefGoogle Scholar
  6. Erwin KL. Wetlands and global climate change: the role of wetland restoration in a changing world. Wetl Ecol Manag. 2009;17(1):71–84.CrossRefGoogle Scholar
  7. Euliss Jr NH, Gleason RA, Olness A, McDougal RL, Murkin HR, Robarts RD, Bourbonniere RA, Warner BG. North American prairie wetlands are important nonforested land-based carbon storage sites. Sci Total Environ. 2006;361(1):179–88.CrossRefGoogle Scholar
  8. Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Van Dorland R. Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL, editors. Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge, UK/New York: Cambridge University Press; 2007.Google Scholar
  9. Fourqurean JW, Duarte CM, Kennedy H, Marbà N, Holmer M, Mateo MA, Apostolaki ET, Kendrick GA, Krause-Jensen D, McGlathery KJ, Serrano O. Seagrass ecosystems as a globally significant carbon stock. Nat Geosci. 2012;5(7):505–9.CrossRefGoogle Scholar
  10. Gorham E. Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol Appl. 1991;1:182–95.CrossRefGoogle Scholar
  11. Jaenicke J, Rieley JO, Mott C, Kimman P, Siegert F. Determination of the amount of carbon stored in Indonesian peatlands. Geoderma. 2008;147(3):151–8.CrossRefGoogle Scholar
  12. Joosten H. The global peatland CO2 picture: peatland status and drainage related emissions in all countries of the world. Netherlands: Wetlands International; 2009.Google Scholar
  13. Kayranli B, Scholz M, Mustafa A, Hedmark Å. Carbon storage and fluxes within freshwater wetlands: a critical review. Wetlands. 2010;30(1):111–24.CrossRefGoogle Scholar
  14. Mcleod E, Chmura GL, Bouillon S, Salm R, Björk M, Duarte CM, Lovelock CE, Schlesinger WH, Silliman BR. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitat in sequestering CO2. Front Ecol Environ. 2011;9:552–60.CrossRefGoogle Scholar
  15. Millennium Ecosystem Assessment. Ecosystems and human well-being: wetland and water synthesis. 2005. http://www.millenniumassessment.org/proxy/Document. 358.
  16. Mitsch WJ, Bernal B, Nahlik AM, Mander Ü, Zhang L, Anderson CJ, Jørgensen SE, Brix H. Wetlands, carbon, and climate change. Landsc Ecol. 2013;28(4):583–97.CrossRefGoogle Scholar
  17. Page SE, Rieley JO, Banks CJ. Global and regional importance of the tropical peatland carbon pool. Globa Chang Biol. 2011;17(2):798–818.CrossRefGoogle Scholar
  18. Pendleton L, Donato DC, Murray BC, Crooks S, Jenkins WA, Sifleet S, Craft C, Fourqurean JW, Kauffman JB, Marba N, Megonigal P, Pidgeon E, Herr D, Gordon D, Balder A. Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PLoS One. 2012;7:e43542. doi:43510.41371/journal/pone.004342.Google Scholar
  19. Pokorný J, Květ J, Rejšková A, Brom J. Wetlands as energy-dissipating systems. J Ind Microbiol Biotechnol. 2010;37(12):1299–305.CrossRefGoogle Scholar
  20. Sun R, Chen A, Chen L, Lü Y. Cooling effects of wetlands in an urban region: the case of Beijing. Ecol Indic. 2012;20:57–64.CrossRefGoogle Scholar
  21. Taha H. Urban climates and heat islands: albedo, evapotranspiration and anthropogenic heat. Energy Build. 1997;25:99–103.CrossRefGoogle Scholar
  22. Trettin CC, Laiho R, Minkkinnen K, Laine J. Influence of climate change factors on carbon dynamics in northern forested peatlands. Can J Soil Sci. 2006;86:269–80.CrossRefGoogle Scholar
  23. Worrall F, Chapman P, Holden J, Evans C, Artz R, Smith P, Grayson R. Peatlands and climate change. Report to IUCN UK Peatland Programme, Edinburgh. 2010. www.iucn-uk-peatlandprogramme.org/scientificreviews.
  24. Zheng YM, Niu ZG, Gong P, Dai YJ, Shangguan W. Preliminary estimation of the organic carbon pool in China’s wetlands. Chin Sci Bull. 2013;58(6):662–70. doi:10.1007/s11434-012-5529-9.CrossRefGoogle Scholar
  25. Zak D, Reuter H, Augustin J, Shatwell T, Barth M, Gelbrecht J, McInnes RJ. Changes of the CO2 and CH4 production potential of rewetted fens in the perspective of temporal vegetation shifts. Biogeosciences. 2014;11:14453–88.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.RM Wetlands and Environment LtdLittleworthUK

Personalised recommendations