The Wetland Book pp 1185-1196 | Cite as

Climate Regulation: Salt Marshes and Blue Carbon

  • Beverly J. Johnson
  • Catherine E. Lovelock
  • Dorothée Herr
Reference work entry

Abstract

Carbon sequestered and stored in, or released from, salt marshes, mangroves, and seagrass ecosystems is often referred to as coastal “blue carbon.” The term was first used in 2009 as a means of highlighting the significance of carbon sequestration and storage in these highly productive coastal ecosystems, largely to the policy and carbon finance communities.

Keywords

Carbon sequestration Carbon storage Saltmarshes 

References

  1. Adam P. Salt marshes in a time of change. Environ Conserv. 2002;29:39–61.CrossRefGoogle Scholar
  2. Adams CA, Andrews JE, Jickells T. Nitrous oxide and methane fluxes vs. carbon, nitrogen and phosphorous burial in new intertidal and saltmarsh sediments. Sci Total Environ. 2012;434:240–51.CrossRefGoogle Scholar
  3. Bartlett KB, Harriss RC, Sebacher DI. Methane flux from coastal salt marshes. J Geophys Res-Atmos. 1985;90:5710–20.CrossRefGoogle Scholar
  4. Bauer JE, Cai W-J, Raymond PA, Bianchi TS, Hopkinson CS, Regnier PAG. The changing carbon cycle of the coastal ocean. Nature. 2013;504:61–70.CrossRefGoogle Scholar
  5. Bromberg Gedan K, Silliman BR, Bertness MD. Centuries of human-driven change in salt marsh ecosystems. Marin Sci. 2009;1:117–41.Google Scholar
  6. Chmura GL, Aharon P. Stable carbon isotope signatures of sedimentary carbon in coastal wetlands as indicators of salinity regime. J Coast Res. 1995;11:124–35.Google Scholar
  7. Chmura GL, Anisfield SC, Cahoon DR, Lynch JC. Global sequestration in tidal, saline wetland soils. Glob Biogeochem Cycles. 2003;17:22–34.CrossRefGoogle Scholar
  8. Connor RF, Chmura GL, Beecher CB. Carbon accumulation in the Bay of Fundy salt marshes: implications for restoration of reclaimed marshes. Glob Biogeochem Cycles. 2001;15:943–54.CrossRefGoogle Scholar
  9. Crooks S, Herr D, Tamelander J, Laffoley D, Vandever J. Mitigating climate change through restoration and management of coastal wetlands and near-shore marine ecosystems: challenges and opportunities. Environment Department Paper 121. Washington, DC: The World Bank; 2011.Google Scholar
  10. Duarte CM, Middleburg J, Caraco N. Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences. 2005;2:1–8.CrossRefGoogle Scholar
  11. Duarte CM, Dennison WC, Orth RJW, Orth RJ, Carruthers TJB. The charisma of coastal ecosystems: addressing the imbalance. Estuar Coasts. 2008;31:233–8.CrossRefGoogle Scholar
  12. Elsey-Quirk T, Seliskar DM, Commerfield CK, Gallagher JL. Salt marsh carbon pool distribution in a mid-Atlantic lagoon, USA: sea level rise implications. Wetlands. 2011;31:87–99.CrossRefGoogle Scholar
  13. Emery HE, Fulweiler RW. Spartina alterniflora and invasive Phragmites australis stands have similar greenhouse gas emissions in a New England marsh. Aquat Bot. 2014;116:83–92.CrossRefGoogle Scholar
  14. Emmer I, von Unger M. Making blue carbon real: five recommendations for project developers. Nat Wetl Newsl. 2014;36(1):10–1.Google Scholar
  15. Emmett-Mattox S, Crooks S. Coastal implementing coastal blue carbon projects: lessons learned and next steps. National Wetlands Newsletter. 2014;36(1):5–8.Google Scholar
  16. Gunn C. Methane emissions along a salinity gradient in a restored salt marsh in Casco Bay, Maine. Bates College: Honors Thesis; 2016. 56 pp.Google Scholar
  17. Herr D, Pidgeon E, Laffoley D, editors. Blue carbon policy framework: International Blue Carbon Policy Working Group. Gland: IUCN/CI; 2012.Google Scholar
  18. Herr D, Agardy T, Benzaken D, Hicks F, Howard J, Landis E, Soles A, Vegh T. Coastal “blue” carbon. A revised guide to supporting coastal wetland programs and projects using climate finance and other financial mechanisms. Gland: IUCN; 2015.Google Scholar
  19. Howard J, Hoyt S, Isensee K, Telszewski M, Pidgeon E. Coastal blue carbon: methods for assessing carbon stocks and emissions factors in mangroves, tidal salt marshes, and seagrasses. Arlington: Conservation International, Intergovernmental Oceanographic Commission of UNESCO, International Union for Conservation of Nature; 2014. Available online at: http://thebluecarboninitiative.org/new-manual-for-measuring-assessing-and-analyzing-coastal-blue-carbon/Google Scholar
  20. IPCC. Coastal Wetlands. In: 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (eds. Alongi D, Karim A, Kennedy H, Chen G, Chmura G, Crooks S, et al.). Geneva: Intergovernmental Panel on Climate Change; 2013.Google Scholar
  21. Johnson BJ, Moore KA, Lehmann C, Bohlen C, Brown TA. Middle to late holocene fluctuations of C3 and C4 vegetation in a Northern New England salt marsh, Sprague Marsh, Phippsburg. Maine Organic Geochemistry. 2007;38:394–403.CrossRefGoogle Scholar
  22. Kirwan ML, Megonigal P. Tidal wetland stability in the face of human impacts and sea-level rise. Nature. 2013;504:53–60.CrossRefGoogle Scholar
  23. Kroeger KD, Crooks S, Moseman-Valtierra S, Tang J. Restoring tides to reduce methane emissions in impounded wetlands: A new and potent Blue Carbon climate change intervention: Scientific Reports. 2017;7(1).  https://doi.org/10.1038/s41598-017-12138-4
  24. Laffoley D’A, Grimsditch G. The management of natural coastal carbon sinks. Gland: IUCN; 2009. 53 pp.Google Scholar
  25. Lovelock CE, Ruess RW, Feller IC. CO2 efflux from cleared mangrove peat. PLoS ONE. 2011;6(6):e21279. doi:10.1371/journal.pone.0021279.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Macreadie PI, Hughes AR, Kimbro DL. Loss of ‘Blue Carbon’ from Coastal Salt Marshes Following Habitat Disturbance: PLoS ONE. 2013;8(7).  https://doi.org/10.1371/journal.pone.0069244CrossRefGoogle Scholar
  27. Martin R M, Moseman-Valtierra S. Different short-term responses of greenhouse gas fluxes from salt marsh mesocosms to simulated global change drivers: Hydrobiologia. 2017;802(1):71–83.CrossRefGoogle Scholar
  28. McLeod E, Chmura GL, Bouillon S, Salm R, Bjork M, Duarte CM, Lovelock CE, Schlesinger WH, Silliman BR. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front Ecol Environ. 2011;9:552–60.CrossRefGoogle Scholar
  29. Mitsch WJ, Gosselink JG. Wetlands. Hoboken: Wiley; 2000.Google Scholar
  30. Moseman-Valtierra S. Reconsidering climatic roles of marshes: are they sinks or sources of greenhouse gases? In: Abreau DC, De Borbón SL, editors. Marshes: ecology, management and conservation. Nova Science Publications; 2013. 1–48.Google Scholar
  31. Moseman-Valtierra S, Levin LA, Martin RM. Anthropogenic impacts on nitrogen fixation rates between restored and natural Mediterranean salt marshes: Marine Ecology. 2016;37(2):370–9.CrossRefGoogle Scholar
  32. Murray BC, Pendelton LJ, Silfleet WA, Silfleet S. Green payments for blue carbon: economic incentives for protecting threatened coastal habitats. Durham: Duke University, Nicholas Institute for Environmental Policy Solutions; 2011. Available online at: https://nicholasinstitute.duke.edu/environment/publications/naturalresources/blue-carbon-report).
  33. Nellemann C, Corcoran E, Duarte CM, Valdés L, De Young C, Fonseca L, Grimsditch G. Blue carbon. A rapid response assessment. United Nations Environment Programme, GRID-Arendal: Arendal; 2009.Google Scholar
  34. Ouyang X, Lee SY. Updated estimates of carbon accumulation rates in coastal marsh sediments. Biogeosciences. 2014;11:5057–71.CrossRefGoogle Scholar
  35. Pendleton L, Donato DC, Murray BC, Crooks S, Jenkins WA, Sifleet S, Craft C, Fourqurean JW, Kauffman JB, Marbà N, Megonigal P, Pidgeon E, Herr D, Gordon D, Baldera A. Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PLoS ONE. 2012;7(9):1–7.CrossRefGoogle Scholar
  36. Pickoff M. Estimating blue carbon stocks in Maine salt marshes. Bates College: Senior Thesis; 2013. 92 pp.Google Scholar
  37. Pidgeon E. Carbon sequestration by coastal marine habitats: important missing sinks. In: Laffoley Dd’A, Grimsditch G, editors. The management of natural coastal carbon sinks. Gland: IUCN; 2009. p. 47–51.Google Scholar
  38. Poffenbarger H, Needelman B, Megonigal J. Salinity influence on methane emissions from tidal marshes. Wetlands. 2011;31:831–42.CrossRefGoogle Scholar
  39. Sutton-Grier AE, Moore A. Leveraging carbon services of coastal ecosystems for habitat protection and restoration. Coast Manag. 2016;44:259–77.CrossRefGoogle Scholar
  40. Vincent RE, Burdick DM, Dionne M. Ditching and Ditch-Plugging in New England Salt Marshes: Effects on Hydrology, Elevation, and Soil Characteristics: Estuaries and Coasts. 2013;36(3);610–25.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Beverly J. Johnson
    • 2
  • Catherine E. Lovelock
    • 3
  • Dorothée Herr
    • 1
  1. 1.IUCNOceans and Climate ChangeGlandSwitzerland
  2. 2.Department of GeologyBates CollegeLewistonUSA
  3. 3.The School of Biological SciencesThe University of QueenslandSt LuciaAustralia

Personalised recommendations