Skip to main content

Gravity Field of the Earth

  • Reference work entry
  • First Online:
Encyclopedia of Solid Earth Geophysics

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definition and scope

The gravitational field of the Earth is generally understood as the field generated by the masses of the terrestrial body. However, actual measurements made on the surface include tidal components due to the sun and moon (and theoretically other planets) and the atmosphere, as well as the centrifugal acceleration due to Earth’s rotation. Therefore, geodesists distinguish between terrestrial gravitation (mass attraction of the Earth) and gravity (gravitation plus centrifugal acceleration), where tidal and atmospheric effects are treated as corrections. This chapter develops the basic physical concepts of terrestrial gravitation assumed to be generated solely by the subsurface mass density distribution. After an introduction to the Newtonian gravitational potential and its properties, the subsequent sections of the chapter discuss the spatial variation of the field on and above the Earth's surface, the geophysical interpretation of the low-degree harmonics of the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Chao, B. F., 2005. On inversion for mass distribution from global (time-variable) gravity field. Journal of Geodynamics, 29, 223–230.

    Google Scholar 

  • Cushing, J. T., 1975. Applied Analytical Mathematics for Physical Scientists. New York: Wiley.

    Google Scholar 

  • Dziewonski, A. M., 1989. Earth structure, global. In James, D. E. (ed.), The Encyclopedia of Solid Earth Geophysics. New York: Van Nostrand Reinhold, pp. 331–358.

    Google Scholar 

  • Dziewonski, A. M., and Anderson, D. L., 1981. Preliminary Reference Earth Model (PREM). Physics of the Earth and Planetary Interiors, 25, 297–356.

    Google Scholar 

  • Freeden, W., Gervens, T., and Schreiner, M., 1998. Constructive Approximation on the Sphere, with Applications in Geomathematics. Oxford: Clarendon.

    Google Scholar 

  • Groten, E., 2004. Fundamental parameters and current (2004) best estimates of the parameters of common relevance to astronomy, geodesy, and geodynamics. Journal of Geodesy, The Geodesist's Handbook, 77(10–11), 724–731.

    Google Scholar 

  • Heiskanen, W. A., and Moritz, H., 1967. Physical Geodesy. San Francisco: Freeman.

    Google Scholar 

  • Heiskanen, W. A., and Veing Meinesz, F. A., 1958. The Earth and its Gravity Field. New York: McGraw-Hill.

    Google Scholar 

  • Heiland, C. A., 1940. Geophysical Exploration. New York: Prentics-Hall.

    Google Scholar 

  • Helmert, F. R., 1884. Die Mathematischen und Physikalischen Theorien der Höheren Geodäsie. Leibzig: B.G. Teubner, Vol. 2. reprinted in 1962 by Minerva GMBH, Frankfurt/Main.

    Google Scholar 

  • Hobson, E. W., 1965. The Theory of Spherical and Ellipsoidal Harmonics. New York: Chelsea.

    Google Scholar 

  • Hofmann-Wellenhof, B., and Moritz, H., 2005. Physical Geodesy. Berlin: Springer Verlag.

    Google Scholar 

  • Hotine, M., 1969. Mathematical Geodesy. Washington: U.S Department of Commerce.

    Google Scholar 

  • Jekeli, C., 1988. The exact transformation between ellipsoidal and spherical harmonic expansions. Manuscripta Geodaetica, 14, 106–113.

    Google Scholar 

  • Jekeli, C., 2000. Inertial Navigation Systems with Geodetic Applications. Berlin: Walter deGruyter.

    Google Scholar 

  • Jekeli, C., 2007. Potential theory and static gravity field of the earth. In Schubert, G. (ed.), Treatise on Geophysics. Oxford: Elsevier, Vol. 3, pp. 11–42.

    Google Scholar 

  • Jekeli, C., 2010. Correlation Modeling of the Geopotential Field in Classical Geodesy. In Freeden, W., et al. (eds.), Handbook of Geomathematics, Berlin: Springer-Verlag, pp. 834–863

    Google Scholar 

  • Kellogg, O. D., 1953. Foundations of Potential Theory. New York: Dover.

    Google Scholar 

  • Martin, J. L., 1988. General Relativity: A Guide to its Consequences for Gravity and Cosmology. New York: Wiley.

    Google Scholar 

  • Mohr, P. J., Taylor, B. N., and Newell, D. B., 2008. CODATA Recommended Values of the Fundamental Physical Constants: 2006. Reviews of Modern Physics, 80, 633–730.

    Google Scholar 

  • Molodensky, M. S., Eremeev, V. F., and Yurkina, M. I., 1962. Methods for the Study of the External Gravity Field and Figure of the Earth. Jerusalem: Israel Program of Scientific Translations. Russian original, 1960.

    Google Scholar 

  • Moritz, H., 1980. Advanced Physical Geodesy. Wichmann, Karlsruhe (reprint 2008 by School of Earth Sciences, Ohio State University, Columbus, Ohio).

    Google Scholar 

  • Moritz, H., 2000. Geodetic Reference System 1980. Journal of Geodesy, 74(1), 128–133.

    Google Scholar 

  • Morse, P. M., and Feshbach, H., 1953. Methods of Theoretical Physics, Parts I and II. New York: McGraw-Hill.

    Google Scholar 

  • Müller, C., 1966. Spherical Harmonics. Lecture Notes in Mathematics. Berlin: Springer-Verlag.

    Google Scholar 

  • Nettleton, L. L., 1976. Gravity and Magnetics in Oil Prospecting. New York: McGraw-Hill.

    Google Scholar 

  • Pavlis, N. K., Holmes S. A., Kenyon, S. C., Factor, J. K., 2008. An Earth gravitational model to degree 2160: EGM2008. Presented at the General Assembly of the European Geosciences Union, Vienna, Austria, April 13–18, 2008.

    Google Scholar 

  • Plag, H. P., and Pearlman, M. (eds.), 2009. Global Geodetic Observing System, Meeting the Requirements of a Global Society on a Changing Planet in 2020. Berlin: Springer.

    Google Scholar 

  • Sansò, F., and Rummel, R. (eds.), 1997. Geodetic Boundary Value Problems in View of the One Centimeter Geoid. Lecture Notes in Earth Sciences 65. Berlin: Springer-Verlag.

    Google Scholar 

  • Tapley, B. D., Bettadpur, S., Watkins, M., Reigber, C., (2004). The Gravity Recovery and Climate Experiment, mission overview and early results. Geophysical Research Letters, 31(9), doi:10.1029/2004GL019920.

    Google Scholar 

  • Tapley, B. D., Ries, J., Bettadpur, S., Chambers, D., Cheng, M., Condi, F., Gunter, B., Kang, Z., Nagel, P., Pastor, R., Pekker, T., Poole, S., and Wang, F., 2005. GGM02 – An improved Earth gravity field model from GRACE. Journal of Geodesy, doi:10.1007/s00190-005-0480-z.

    Google Scholar 

  • Telford, W. M., Geldart, L. P., and Sheriff, R. E., 1990. Applied Geophysics, 2nd edn. Cambridge: Cambridge U. Press.

    Google Scholar 

  • Torge, W., 1989. Gravimetry. Berlin: Walter deGruyter.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Jekeli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Jekeli, C. (2011). Gravity Field of the Earth. In: Gupta, H.K. (eds) Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8702-7_91

Download citation

Publish with us

Policies and ethics