Encyclopedia of Solid Earth Geophysics

2011 Edition
| Editors: Harsh K. Gupta

Gravity Field of the Earth

Reference work entry
DOI: https://doi.org/10.1007/978-90-481-8702-7_91

Definition and scope

The gravitational field of the Earth is generally understood as the field generated by the masses of the terrestrial body. However, actual measurements made on the surface include tidal components due to the sun and moon (and theoretically other planets) and the atmosphere, as well as the centrifugal acceleration due to Earth’s rotation. Therefore, geodesists distinguish between terrestrial gravitation (mass attraction of the Earth) and gravity (gravitation plus centrifugal acceleration), where tidal and atmospheric effects are treated as corrections. This chapter develops the basic physical concepts of terrestrial gravitation assumed to be generated solely by the subsurface mass density distribution. After an introduction to the Newtonian gravitational potential and its properties, the subsequent sections of the chapter discuss the spatial variation of the field on and above the Earth's surface, the geophysical interpretation of the low-degree harmonics of the...

This is a preview of subscription content, log in to check access.


  1. Chao, B. F., 2005. On inversion for mass distribution from global (time-variable) gravity field. Journal of Geodynamics, 29, 223–230.Google Scholar
  2. Cushing, J. T., 1975. Applied Analytical Mathematics for Physical Scientists. New York: Wiley.Google Scholar
  3. Dziewonski, A. M., 1989. Earth structure, global. In James, D. E. (ed.), The Encyclopedia of Solid Earth Geophysics. New York: Van Nostrand Reinhold, pp. 331–358.Google Scholar
  4. Dziewonski, A. M., and Anderson, D. L., 1981. Preliminary Reference Earth Model (PREM). Physics of the Earth and Planetary Interiors, 25, 297–356.Google Scholar
  5. Freeden, W., Gervens, T., and Schreiner, M., 1998. Constructive Approximation on the Sphere, with Applications in Geomathematics. Oxford: Clarendon.Google Scholar
  6. Groten, E., 2004. Fundamental parameters and current (2004) best estimates of the parameters of common relevance to astronomy, geodesy, and geodynamics. Journal of Geodesy, The Geodesist's Handbook, 77(10–11), 724–731.Google Scholar
  7. Heiskanen, W. A., and Moritz, H., 1967. Physical Geodesy. San Francisco: Freeman.Google Scholar
  8. Heiskanen, W. A., and Veing Meinesz, F. A., 1958. The Earth and its Gravity Field. New York: McGraw-Hill.Google Scholar
  9. Heiland, C. A., 1940. Geophysical Exploration. New York: Prentics-Hall.Google Scholar
  10. Helmert, F. R., 1884. Die Mathematischen und Physikalischen Theorien der Höheren Geodäsie. Leibzig: B.G. Teubner, Vol. 2. reprinted in 1962 by Minerva GMBH, Frankfurt/Main.Google Scholar
  11. Hobson, E. W., 1965. The Theory of Spherical and Ellipsoidal Harmonics. New York: Chelsea.Google Scholar
  12. Hofmann-Wellenhof, B., and Moritz, H., 2005. Physical Geodesy. Berlin: Springer Verlag.Google Scholar
  13. Hotine, M., 1969. Mathematical Geodesy. Washington: U.S Department of Commerce.Google Scholar
  14. Jekeli, C., 1988. The exact transformation between ellipsoidal and spherical harmonic expansions. Manuscripta Geodaetica, 14, 106–113.Google Scholar
  15. Jekeli, C., 2000. Inertial Navigation Systems with Geodetic Applications. Berlin: Walter deGruyter.Google Scholar
  16. Jekeli, C., 2007. Potential theory and static gravity field of the earth. In Schubert, G. (ed.), Treatise on Geophysics. Oxford: Elsevier, Vol. 3, pp. 11–42.Google Scholar
  17. Jekeli, C., 2010. Correlation Modeling of the Geopotential Field in Classical Geodesy. In Freeden, W., et al. (eds.), Handbook of Geomathematics, Berlin: Springer-Verlag, pp. 834–863Google Scholar
  18. Kellogg, O. D., 1953. Foundations of Potential Theory. New York: Dover.Google Scholar
  19. Martin, J. L., 1988. General Relativity: A Guide to its Consequences for Gravity and Cosmology. New York: Wiley.Google Scholar
  20. Mohr, P. J., Taylor, B. N., and Newell, D. B., 2008. CODATA Recommended Values of the Fundamental Physical Constants: 2006. Reviews of Modern Physics, 80, 633–730.Google Scholar
  21. Molodensky, M. S., Eremeev, V. F., and Yurkina, M. I., 1962. Methods for the Study of the External Gravity Field and Figure of the Earth. Jerusalem: Israel Program of Scientific Translations. Russian original, 1960.Google Scholar
  22. Moritz, H., 1980. Advanced Physical Geodesy. Wichmann, Karlsruhe (reprint 2008 by School of Earth Sciences, Ohio State University, Columbus, Ohio).Google Scholar
  23. Moritz, H., 2000. Geodetic Reference System 1980. Journal of Geodesy, 74(1), 128–133.Google Scholar
  24. Morse, P. M., and Feshbach, H., 1953. Methods of Theoretical Physics, Parts I and II. New York: McGraw-Hill.Google Scholar
  25. Müller, C., 1966. Spherical Harmonics. Lecture Notes in Mathematics. Berlin: Springer-Verlag.Google Scholar
  26. Nettleton, L. L., 1976. Gravity and Magnetics in Oil Prospecting. New York: McGraw-Hill.Google Scholar
  27. Pavlis, N. K., Holmes S. A., Kenyon, S. C., Factor, J. K., 2008. An Earth gravitational model to degree 2160: EGM2008. Presented at the General Assembly of the European Geosciences Union, Vienna, Austria, April 13–18, 2008.Google Scholar
  28. Plag, H. P., and Pearlman, M. (eds.), 2009. Global Geodetic Observing System, Meeting the Requirements of a Global Society on a Changing Planet in 2020. Berlin: Springer.Google Scholar
  29. Sansò, F., and Rummel, R. (eds.), 1997. Geodetic Boundary Value Problems in View of the One Centimeter Geoid. Lecture Notes in Earth Sciences 65. Berlin: Springer-Verlag.Google Scholar
  30. Tapley, B. D., Bettadpur, S., Watkins, M., Reigber, C., (2004). The Gravity Recovery and Climate Experiment, mission overview and early results. Geophysical Research Letters, 31(9), doi:10.1029/2004GL019920.Google Scholar
  31. Tapley, B. D., Ries, J., Bettadpur, S., Chambers, D., Cheng, M., Condi, F., Gunter, B., Kang, Z., Nagel, P., Pastor, R., Pekker, T., Poole, S., and Wang, F., 2005. GGM02 – An improved Earth gravity field model from GRACE. Journal of Geodesy, doi:10.1007/s00190-005-0480-z.Google Scholar
  32. Telford, W. M., Geldart, L. P., and Sheriff, R. E., 1990. Applied Geophysics, 2nd edn. Cambridge: Cambridge U. Press.Google Scholar
  33. Torge, W., 1989. Gravimetry. Berlin: Walter deGruyter.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Division of Geodetic ScienceSchool of Earth Sciences, Ohio State UniversityColumbusUSA