Skip to main content

Core-Mantle Coupling

  • Reference work entry
  • First Online:
Encyclopedia of Solid Earth Geophysics

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

  • 366 Accesses

Definition, scope, and aims

The Earth is not a perfect timekeeper, and the spectrum of the variations in the mantle’s angular velocity \( \widehat{{{\bf \Omega }}} \) spans a wide range of frequencies. Of particular interest here are the comparatively large amplitude decadal and semi-decadal variations in which changes in length of day, P, of up to 2 ms occur. These would not be explained even if the global circulations of the atmosphere and oceans could be reversed. This is confirmed by a more detailed argument given in our recent review (Roberts and Aurnou, 2012), which will be referred to here as “RA12.”

The origin of these length of day (LOD) variations must be sought in the Earth’s core, and Figure 1 suggests that the task is not an easy one. Figure 1b shows dP/dt, derived by differentiating smoothed LOD data from the last half century, with atmospheric, oceanic, and tidal signals removed; semi-decadal time variations are clearly seen with a period τ LODof about 6 years (e.g.,...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Abarca del Rio, R., Gambis, R., and Salstein, D. A., 2000. Interannual signals in length of day and atmospheric angular momentum, Annales Geophysicae, 18, 347–364.

    Google Scholar 

  • Alboussière, T., Deguen, R., and Melzani, M., 2010. Melting induced stratification above the Earth’s inner core due to convective translation. Nature, 466, 744–747.

    Google Scholar 

  • Anufriev, A. P., and Braginsky, S. I., 1975. Influence of irregularities of the boundary of the Earth’s core on the velocity of the liquid and on the magnetic field. Geomagnetism and Aeronomy, 15, 754–757.

    Google Scholar 

  • Anufriev, A. P., and Braginsky, S. I., 1977a. Influence of irregularities of the boundary of the Earth’s core on the fluid velocity and the magnetic field, II. Geomagnetism and Aeronomy, 17, 78–82.

    Google Scholar 

  • Anufriev, A. P., and Braginsky, S. I., 1977b. Influence of irregularities of the boundary of the Earth’s core on the fluid velocity and the magnetic field, III. Geomagnetism and Aeronomy, 17, 742–750.

    Google Scholar 

  • Braginsky, S. I., 1970. Torsional magnetohydrodynamic vibrations in the Earth’s core and variations in day length. Geomagnetism and Aeronomy, 10, 1–8.

    Google Scholar 

  • Braginsky, S. I., 1984. Short-period geomagnetic secular variation. Geophysical and Astrophysical Fluid Dynamics, 30, 1–78.

    Google Scholar 

  • Braginsky, S. I., 1999. Dynamics of the stably stratified ocean at the top of the core. Physics of the Earth and Planetary Interiors, 111, 21–34.

    Google Scholar 

  • Braginsky, S. I., and Roberts, P. H., 1995. Equations governing convection in Earth’s core and the Geodynamo. Geophysical and Astrophysical Fluid Dynamics, 79, 1–97.

    Google Scholar 

  • Braginsky, S. I., and Roberts, P. H., 2007. Anelastic and Boussinesq approximations. In Gubbins, D., and Herrero-Bervera, E. (eds.), Encyclopedia of Geomagnetism and Paleomagnetism. Heidelberg: Springer, pp. 11–19.

    Google Scholar 

  • Brito, D., Aurnou, J. M., and Cardin, P., 2004. Turbulent viscosity measurements relevant to planetary core-mantle dynamics. Physics of the Earth and Planetary Interiors, 141, 3–8.

    Google Scholar 

  • Buffett, B. A., 1996. Gravitational oscillations in the length of day. Geophysical Research Letters, 23, 2279–2282.

    Google Scholar 

  • Buffett, B. A., 1997. Geodynamic estimates of the viscosity of the Earth’s inner core. Nature, 388, 571–573.

    Google Scholar 

  • Buffett, B. A., 1998. Free oscillations in the length of day: inferences on physical properties near the core-mantle boundary. Geodynamics, 28, 153–165.

    Google Scholar 

  • Buffett, B. A., 2010. Chemical stratification at the top of Earth’s core: constraints from nutation observations. Earth and Planetary Science Letters, 296, 367–372.

    Google Scholar 

  • Buffett, B. A., and Christensen, U. R., 2007. Magnetic and viscous coupling at the core-mantle boundary; inferences from observations of the Earth’s nutations. Geophysical Journal International, 171, 145–152.

    Google Scholar 

  • Buffett, B. A., and Glatzmaier, G. A., 2000. Gravitational braking of inner-core rotation in geo-dynamo simulations. Geophysical Research Letters, 27, 3125–3128.

    Google Scholar 

  • Buffett, B. A., Mathews, P. M., and Herring, T. A., 2002. Modeling of nutation and precession: effects of electromagnetic coupling. Journal of Geophysical Research, 107, 2070, doi:10.1029/2000JB000056.

    Google Scholar 

  • Buffett, B. A., Mound, J., and Jackson, A., 2009. Inversion of torsional oscillations for the structure and dynamics of Earth’s core. Geophysical Journal International, 177, 878–890.

    Google Scholar 

  • Dai, W., and Song, X., 2008. Detection of motion and heterogeneity in Earth’s liquid outer core. Geophysical Research Letters, 35, L16311.

    Google Scholar 

  • Davidson, P. A., 2001. An Introduction to Magnetohydrodynamics. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Davidson, P. A., 2004. Turbulence. Oxford, UK: Oxford University Press.

    Google Scholar 

  • de Wijs, G. A., Kresse, G., Vočadlo, I., Dobson, D. P., Alfèe, D., Gillan, M. J., and Price, G. D., 1998. The viscosity of liquid iron at the physical conditions of Earth.s core. Nature, 392, 805–807.

    Google Scholar 

  • Defraigne, P., Dehant, V., and Wahr, J., 1996. Internal loading of an inhomogeneous compressible mantle with phase boundaries. Geophysical Journal International, 125, 173–192.

    Google Scholar 

  • Deleplace, B., and Cardin, P., 2006. Viscomagnetic torque at the core-mantle boundary. Geophysical Journal International, 167, 557–566.

    Google Scholar 

  • Dobson, D. P., Crichton, W. A., Vočadlo, I., Jones, A. P., Wang, Y., Uchida, T., Rivers, M., Sutton, S., and Brodhardt, J. P., 2000. In situ measurements of viscosity of liquids in the Fe-FeS system at high pressures and temperatures. American Mineralogist, 85, 1838–1842.

    Google Scholar 

  • Dormy, E., Roberts, P. H., and Soward, A. M., 2007. Core, boundary layers. In Gubbins, D., and Herrero Bervera, E. (eds.), Encylopedia of Geomagnetism and Paleomagnetism. Heidelberg: Springer, pp. 111–116.

    Google Scholar 

  • Dumberry, M., 2007. Taylor’s constraint and torsional oscillations. In Cardin, P., and Cugliandolo, L. F. (eds.), Dynamos. Amsterdam: Elsevier, pp. 383–401.

    Google Scholar 

  • Dumberry, M., 2010. Gravity variations induced by core flows. Geophysical Journal International, 180, 635–650.

    Google Scholar 

  • Dumberry, M., and Mound, J., 2008. Constraints on core-mantle electromagnetic coupling from torsional oscillation normal modes. Journal of Geophysical Research, 113, B03102, doi:10.1029/2007JB005135.

    Google Scholar 

  • Elsasser, W. M., 1946. Induction effects in terrestrial magnetism, II. The secular variation. Physical Review, 70, 202–212.

    Google Scholar 

  • Fearn, D. R., Loper, D. E., and Roberts, P. H., 1981. Structure of the Earth’s inner core. Nature, 292, 232–233.

    Google Scholar 

  • Finlay, C. C., Dumberry, M., Chulliat, A., and Pais, M. A., 2010. Short timescale core dynamics: theory and observations. Space Science Reviews, 155, 177–218, doi:10.1007/s11214-010-9691-6.

    Google Scholar 

  • Forte, A. M., Woodward, R. J., and Dziewonski, A. M., 1994. Joint inversion of seismic and geo-dynamic data for models of three-dimensional mantle heterogeneity. Journal of Geophysical Research, 99, 21857–21877.

    Google Scholar 

  • Gargett, A. E., 1984. Vertical eddy diffusivity in the ocean interior. Journal of Marine Research, 42, 359–393.

    Google Scholar 

  • Gillet, N., Jault, D., Canet, E., and Fournier, A., 2010. Fast torsional waves and strong magnetic field within the Earth’s core. Nature, 465(7294), 74–77, doi:10.1038/nature09010.

    Google Scholar 

  • Glatzmaier, G. A., and Roberts, P. H., 1995. A three-dimensional convective dynamo solution with rotating and finitely conducting inner core and mantle. Physics of the Earth and Planetary Interiors, 91, 63–75.

    Google Scholar 

  • Goldreich, P. M., and Mitchell, J. L., 2010. Elastic ice shells and synchronous moons: implications for cracks on Europa and non-synchronous rotation on Titan. Icarus, doi:10.1016-/j.icarus.2010.04.013.

    Google Scholar 

  • Gross, R. S., 2001. A combined length-of-day series spanning 1832–1997: LUNAR97. Physics of the Earth and Planetary Interiors, 123, 65–76.

    Google Scholar 

  • Gross, R. S., 2007. Earth rotation variations – long period. In Herring, T. A. (ed.), Physical Geodesy. Oxford: Elsevier. Treatise on Geophysics, Vol. 3, pp. 239–294.

    Google Scholar 

  • Gross, R. S., 2009. Ocean tidal effects on Earth rotation. Journal of Geodynamics, 48, 219–225.

    Google Scholar 

  • Heimpel, M. H., and Aurnou, J. M., 2007. Turbulent convection in rapidly rotating spherical shells: a model for equatorial and high latitude jets on Jupiter and Saturn. Icarus, 187, 540–557.

    Google Scholar 

  • Hide, R., 1969. Interaction between the earth’s liquid core and solid mantle. Nature, 222, 1055–1956.

    Google Scholar 

  • Hide, R., 1998. A note on topographic core-mantle coupling. Physics of the Earth and Planetary Interiors, 109, 91–92.

    Google Scholar 

  • Hide, R., and James, I. N., 1983. Differential rotation produced by potential vorticity mixing in a rapidly rotating fluid. Geophysical Journal of the Royal Astronomical Society, 74, 301–312.

    Google Scholar 

  • Hide, R., Clayton, R. W., Hager, B. H., Speith, M. A., and Voorhies, C. V., 1993. Topographic core-mantle coupling and fluctuations in Earth’s rotation. In Aki, K., and Dmowska, R. (eds.), Relating Geophysical Structures and Processes: The Jeffreys Volume. Washington, DC: AGU. Geophysical Monograph Series, Vol. 76, pp. 107–120.

    Google Scholar 

  • Holme, R., 1998. Electromagnetic core-mantle coupling-I. Explaining decadal changes in the length of day. Geophysical Journal International, 132, 167–180.

    Google Scholar 

  • Holme, R., and de Viron, O., 2005. Geomagnetic jerks and a high-resolution length-of-day profile for core studies. Geophysical Journal International, 160, 435–439.

    Google Scholar 

  • Hulot, G., Eymin, C., Langlais, B., Mandea, M., and Olsen, N., 2002. Small-scale structure of the geodynamo inferred from Oersed and Magsat satellite data. Nature, 416, 620–623.

    Google Scholar 

  • Jackson, A., 1997. Time-dependency of tangentially geostrophic core surface motions. Physics of the Earth and Planetary Interiors, 103, 293–311.

    Google Scholar 

  • Jackson, A., 2003. Intense equatorial flux spots on the surface of Earth’s core. Nature, 424, 760–763.

    Google Scholar 

  • Jacobs, J. A., 1953. The Earth’s inner core. Nature, 172, 297–298.

    Google Scholar 

  • Jault, D., 2003. Electromagnetic and topographic coupling, and LOD variations. In Jones, C. A., Soward, A. M., and Zhang, K. (eds.), Earth’s Core and Lower Mantle. London: Taylor and Francis, pp. 46–76.

    Google Scholar 

  • Jault, D., and Le Mouël, J. L., 1989. The topographic torque associated with a tangentially geostrophic motion at the core surface and inferences on the flow inside the core. Geophysical and Astrophysical Fluid Dynamics, 48, 273–296.

    Google Scholar 

  • Jault, D., and Le Mouël, J. L., 1999. Comment on ‘On the dynamics of topographic core-mantle coupling’ by Weijia Kuang and Jeremy Bloxham. Physics of the Earth and Planetary Interiors, 114, 211–215.

    Google Scholar 

  • Jault, D., Gire, C., and LeMouel, J.-L., 1988. Westward drift, core motions and exchanges of angular momentum between core and mantle. Nature, 333, 353–356.

    Google Scholar 

  • Kawai, K., and Tsuchiya, T., 2009. Temperature profile in the lowermost mantle from seismological and mineral physics joint modeling. Proceedings of the National Academy of Sciences of the United States of America, doi:10.1073/pnas.0905920106.

    Google Scholar 

  • Kuang, W.-J., and Bloxham, J., 1993. The effect of boundary topography on motions in the Earth’s core. Geophysical and Astrophysical Fluid Dynamics, 72, 161–195.

    Google Scholar 

  • Kuang, W.-J., and Bloxham, J., 1997. On the dynamics of topographic core-mantle coupling. Physics of the Earth and Planetary Interiors, 99, 289–294.

    Google Scholar 

  • Kuang, W.-J., and Chao, B. F., 2001. Topographic core-mantle coupling in geodynamo modeling. Geophysical Research Letters, 28, 1871–1874.

    Google Scholar 

  • Loper, D. E., 2007. Turbulence and small-scale dynamics in the core. In Olson, P. L. (ed.), Core Dynamics. Amsterdam: Elsevier. Treatise on Geophysics, Vol. 8, pp. 187–206.

    Google Scholar 

  • Love, J. J., and Bloxham, J., 1994. Electromagnetic coupling and the toroidal magnetic field at the core-mantle boundary. Geophysical Journal International, 117, 235–256.

    Google Scholar 

  • Margot, J. L., Peale, S. J., Jurgens, R. F., Slade, M. A., and Holin, I. V., 2007. Large longitude libration of Mercury reveals a molten core. Science, 316, 710–714.

    Google Scholar 

  • Mathews, P. M., Herring, T. A., and Buffett, B. A., 2002. Modeling of nutation and precession: new nutation series for nonrigid Earth and insights into the Earth’s interior. Journal of Geophysical Research, 107, 2068, doi:10.1029/2001JB000390.

    Google Scholar 

  • Monnereau, M., Calvet, M., Margerin, L., and Souriau, A., 2010. Lopsided growth of Earth’s inner core. Science, 328, 1014–1017.

    Google Scholar 

  • Morse, S. A., 1986. Adcumulus growth of the inner core. Geophysical Research Letters, 13, 1466–1469.

    Google Scholar 

  • Mound, J. E., and Buffett, B. A., 2003. Interannual oscillations in length of day: implications for the structure of the mantle and core. Journal of Geophysical Research, 108, 2334, doi:10.1029/2002JB002054.

    Google Scholar 

  • Mound, J. E., and Buffett, B. A., 2005. Mechanisms of core-mantle angular momentum exchange and the observed spectral properties of torsional oscillations. Journal of Geophysical Research, 110, B08103, doi:10.1029/2004JB003555.

    Google Scholar 

  • Mound, J., and Buffett, B., 2006. Detection of a gravitational oscillation in length-of-day. Earth and Planetary Science Letters, 243, 383–389.

    Google Scholar 

  • Müller, U., and Bühler, L., 2001. Magnetofluiddynamics in Channels and Containers. Heidelberg: Springer.

    Google Scholar 

  • Noir, J., Hemmerlin, F., Wicht, J., Baca, S. M., and Aurnou, J. M., 2009. An experimental and numerical study of librationally driven flow in planetary cores and subsurface oceans. Physics of the Earth and Planetary Interiors, 173, 141–152.

    Google Scholar 

  • Ohta, K., Onada, S., Hirose, K., Sinmyo, R., Shimizu, K., Saya, N., Ohishi, Y., and Yasuhara, A., 2008. The electrical conductivity of post-perovskite in Earth’s D″ layer. Science, 320, 89–91.

    Google Scholar 

  • Olsen, N., and Mandea, M., 2008. Rapidly changing flows in the Earth’s core. Nature Geoscience, 1, 390–394.

    Google Scholar 

  • Roberts, P. H., and Aurnou, J. M., 2012. On the theory of core-mantle coupling. Geophysical and Astrophysical Fluid Dynamics (to appear).

    Google Scholar 

  • Roberts, P. H., and Soward, A. M., 1972. Magnetohydrodynamics of the Earth’s core. Annual Review of Fluid Mechanics, 4, 117–154.

    Google Scholar 

  • Roberts, P. H., Yu, Z. J., and Russell, C. T., 2007. On the 60-year signal from the core. Geophysical and Astrophysical Fluid Dynamics, 43, 321–330.

    Google Scholar 

  • Rogers, T. M., and Glatzmaier, G. A., 2006. Angular momentum transport by gravity waves in the solar interior. Geophysical and Astrophysical Fluid Dynamics, 653, 756–764.

    Google Scholar 

  • Schubert, G., Turcotte, D. L., and Olson, P., 2001. Mantle Convection in the Earth and Planets. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Sprague, M., Julien, K., Knobloch, E., and Werne, J., 2006. Numerical simulation of an asymptotically reduced system for rotationally constrained convection. Journal of Fluid Mechanics, 551, 141–174.

    Google Scholar 

  • Stellmach, S., and Hansen, U., 2004. Cartesian convection driven dynamos at low Ekman number. Physical Review E, 70, 056312.

    Google Scholar 

  • Stix, M., and Roberts, P. H., 1984. Time-dependent electromagnetic core-mantle coupling. Physics of the Earth and Planetary Interiors, 36, 49–60.

    Google Scholar 

  • Tanaka, S., 2010. Constraints on the core-mantle boundary topography from P4KP-PcP differential travel times. Journal of Geophysical Research, 115, B04310, doi:10.1029/2009JB006563.

    Google Scholar 

  • Taylor, J. B., 1963. The magnetohydrodynamics of a rotating fluid and the Earth’s dynamo problem. Proceedings. Royal Society of London, A274, 274–283.

    Google Scholar 

  • Tyler, R. H., 2008. Strong ocean tidal flow and heating on moons of the outer planets. Nature, 456, 770–773.

    Google Scholar 

  • Uno, H., Johnson, C. L., Anderson, B. J., Korth, H., and Solomon, S. C., 2009. Modeling Mercury’s internal magnetic field with smooth inversions. Earth and Planetary Science Letters, 285, 328–339.

    Google Scholar 

  • Velicogna, I., and Wahr, J., 2006. Acceleration of Greenland ice mass loss in spring 2004. Nature, 443, 329–331.

    Google Scholar 

  • Vočadlo, I., Alfè, D., Price, G. D., and Gillan, M. J., 2000. First principles calculation of the diffusivity of FeS at experimentally accessible conditions. Physics of the Earth and Planetary Interiors, 120, 145–152.

    Google Scholar 

  • Wahr, J., and deVries, D., 1989. The possibility of lateral structure inside the core and its implications for nutation and Earth tide observations. Geophysical Journal International, 99, 511–519.

    Google Scholar 

  • Wahr, J., Swenson, S., and Velicogna, I., 2006. Accuracy of GRACE mass estimates. Geophysical Research Letters, 33, L06401, doi:10.1029/2005GL025305.

    Google Scholar 

  • Wicht, J., and Christensen, U. R., 2010. Torsional oscillations in dynamo simulations. Geophysical Journal International, 181, 1367–1380.

    Google Scholar 

  • Yoshida, S., Sumita, I., and Kumazawa, M., 1996. Growth model of the inner core coupled with outer core dynamics and the resulting elastic anisotropy. Journal of Geophysical Research, 101, 28085–28103.

    Google Scholar 

  • Yoshino, T., 2010. Laboratory electrical conductivity measurement of mantle minerals. Surveys in Geophysics, 31, 163–206, doi:10.1007/s10712-009-9084-0.

    Google Scholar 

Download references

Acknowledgments

We thank Richard Gross, Richard Holme, and Andrew Jackson for sharing their insights and their data. We are also grateful to Bruce Buffett and the referee (Mathieu Dumberry) for giving helpful advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul H. Roberts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Roberts, P.H., Aurnou, J.M. (2011). Core-Mantle Coupling. In: Gupta, H.K. (eds) Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8702-7_39

Download citation

Publish with us

Policies and ethics