Skip to main content

Geoelectromagnetism

  • Reference work entry
  • First Online:
Encyclopedia of Solid Earth Geophysics

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definitions and scope

Geoelectromagnetism, in the broad sense, includes the application of classical electrodynamics to various interrelated regions of space (Sun, interplanetary field, magnetosphere, ionosphere, atmosphere), on and below the Earth surface (near-surface regions, crust, upper mantle [or lithosphere and asthenosphere using alternative nomenclature], lower mantle, and Earth’s core). Over the Earth surface the dominant phenomena of geoelectromagnetism are electromagnetic waves, in a wide spectrum. The electromagnetic waves do not penetrate deep into the Earth. Instead, the propagation of the electromagnetic field inside the Earth is a diffusion process.

In a narrower sense, geoelectromagnetism means the application of time variations of natural electromagnetic fields to the study of the electric resistivity distribution in the Earth’s interior, which gives indispensable information about the structure, composition, and processes of the subsurface.

The term electromagnetic...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Ádám, A., 1965. Einige Hypothesen über den Aufbau des oberen Erdmantels in Ungarn. Gerlands Beitrage zur Geophysik, 74(1), 20–40.

    Google Scholar 

  • Ádám, A., 1978. Geothermal effects in the formation of electrically conducting zones and temperature distribution in the Earth. Physics of the Earth and Planetary Interiors, l7(2), P2l–P28.

    Google Scholar 

  • Ádám, A., 1987. Are there two types of conductivity anomaly (CA) caused by fluid in the crust? Physics of the Earth and Planetary Interiors, 45, 209–215.

    Google Scholar 

  • Ádám, A., 2001. Relation of the graphite and fluid bearing conducting dikes to the tectonics and seismicity (Review on the Transdanubian crustal conductivity anomaly). Earth Planets and Space, 53, 903–918.

    Google Scholar 

  • Ádám, A., and Wesztergom, V., 2001. An attempt to map the depth of the electrical asthensophere by deep magnetotelluric measurements in the Pannonian Basin (Hungary). Acta Geologica Hungarica, 44, 167–192.

    Google Scholar 

  • Ádám, A., Szarka, L., Prácser, E., and Varga, G., 1996. Mantle plumes or EM distortions in the Pannonian Basin? (Inversion of the deep magnetotelluric (MT) soundings along the Pannonian Geotraverse). Geophysical Transactions, 40, 45–78.

    Google Scholar 

  • Ádám, A., Novák, A., and Szarka, L., 2005. Tectonic weak zones determined by magnetotellurics along the CEL-7 deep seismic profile. Acta Geodaetica et Geophysica Hungarica, 40(3–4), 413–430.

    Google Scholar 

  • Arora, B. R., 1997. Chap 4. Geomagnetic deep sounding. In Arora, B. R., and Sri, Niwas (eds.), Natural Source Electromagnetic Induction in the Earth. New Delhi: New Age International, pp. 80–128.

    Google Scholar 

  • Avdeev, P. B., 2005. Three-dimensional electromagnetic modelling and inversion from theory to application. Surveys in Geophysics, 26, 767–799.

    Google Scholar 

  • Bahr, K., 1991. Geological noise in magnetotelluric data: a classification of distortion types. Physics of the Earth and Planetary Interiors, 66, 24–38.

    Google Scholar 

  • Bailey, R. C., 1973. Global geomagnetic sounding – Methods and results. Physics of the Earth and Planetary Interiors, 7, 234–244.

    Google Scholar 

  • Bedrosian, P. A., 2007. MT+, Integrating magnetotellurics to determine earth structure, physical state and processes. Surveys in Geophysics, 28, 121–167.

    Google Scholar 

  • Berdichevsky, M. N., and Dmitriev, M. N., 2008. Models and Methods of Magnetotellurics. Berlin: Springer, 563 pp.

    Google Scholar 

  • Berdichevsky, M. N., and Zhdanov, M. S. 1984. Advanced Theory of the Deep Geomagnetic Sounding. Amsterdam: Elsevier, 408 pp.

    Google Scholar 

  • Bibby, H. M., Caldwell, T. G., and Brown, C., 2005. Determinable and non-determinable parameters of galvanic distortions in magnetotelluric. Geophysical Journal International, 163, 915–930.

    Google Scholar 

  • Brasse, H., Laezaeta, P., Rath, V., Schwalenberg, K., Soyer, V., and Haak, V., 2002. The Bolivian Altiplano conductivity anomaly. Journal of Geophysical Research, 107, doi:10.1029/2001/J.B.000391.

    Google Scholar 

  • Cagniard, L., 1953. Basic theory of the magnetotelluric method of geophysical prospecting. Geophysics, 18, 605–635.

    Google Scholar 

  • Caldwell, T. G., Bibby, H. M., and Brown, C., 2004. The magnetotelluric phase tensor. Geophysical Journal International, 158, 457–469.

    Google Scholar 

  • Embey-Isztin, A., Downes, H., and Dobosi, G., 2001. Geochemical characterization of the Pannonian Basin mantle lithosphere and asthenosphere: an overview. Acta Geologica Hungarica, 44, 259–280.

    Google Scholar 

  • Gamble, T. B., Goubau, W. M., and Clarke, J., 1979. Magnetotellurics with a remote reference. Geophysics, 44, 53–68.

    Google Scholar 

  • Glover, P. W. J., and Ádám, A., 2008. Correlation between crustal high conductivity zones and seismic activity and the role of carbon during shear deformation. Journal of Geophysical Research, 113, B 12210: 1–8. doi:10.1029/2008JB005804.

    Google Scholar 

  • Groom, R. W., and Bailey, R. C., 1989. Decomposition of magnetotelluric impedance tensors in the presence of local three-dimensional galvanic distortion. Journal of Geophysical Research, 94, 1913–1925.

    Google Scholar 

  • Haas, J. (ed.), 2001. Geology of Hungary. Budapest: Eötvös University Press, 317 pp.

    Google Scholar 

  • Horváth, F., and Berckhemer, H., 1982. Mediterranean backarc basin. In Berckhemer, H., and Ksu, H., (eds.), Alpine-Mediterranean Geodynamics. Geodynamics Series Vol. 7. Washington: American Geophysical Union, Boulder: Geological Society of America, pp. 141–173.

    Google Scholar 

  • Horváth, F., Bada, G., Szafián, P., Tari, G., Ádám, A., and Cloetingh, S., 2006. Formation and deformation of the Pannonian Basin constraints from observational data. In Gee, D. G., and Stephenson, R. A. (eds.), European Lithosphere Dynamics. London: Geological Society, Memoires no. 32, pp. 191–206.

    Google Scholar 

  • Hyndman, R. D., and Shearer, P. M., 1989. Water in the lower continental crust modelling magnetotelluric and seismic reflection results. Geophysical Journal International, 98, 343–365.

    Google Scholar 

  • Jankowski, J., Praus, O., and Józwiak, V., 2005. Carpathian anomaly of electrical conductivity: history of its discovery and interpretation. Publications of the Institute of Geophysics Polish Academy of Sciences, C-95(386), 17–27.

    Google Scholar 

  • Jones, A. G., 1992. Electrical conductivity of the continental lower crust. In Fountain, D. M., Arculus, R. J., and Kay, R. W. (eds.), Continental Lower Crust. Amsterdam: Elsevier, pp. 81–143.

    Google Scholar 

  • Kántás, K., 1954. The results and perspectives of the Hungarian telluric research (in Hungarian). Bányászati Lapok, 87, 17.

    Google Scholar 

  • Kelbert, A., Schultz, A., and Egbert, G., 2009. Global electromagnetic constraints on transition-zone water content variation. Nature, 460, 1003–1006.

    Google Scholar 

  • Kiss, J., Szarka, L., and Prácser, E., 2005. Second order magnetic phase transition in the Earth. Geophysical Research Letters, 32, L24310, doi:10.1029/2005GL024199.

    Google Scholar 

  • Korja, T., 2007. How is the European lithosphere imaged by magnetotellurics. Surveys in Geophysics, 28, 239–272.

    Google Scholar 

  • Korja, T., and BEAR Working Group 2003. Is there an electrical asthenosphere beneath the Fennoscandinavian Shield. In EGU-AGU Joint Meeting, Nice, 2003–2004, Abstract EAE03-A-14804.

    Google Scholar 

  • Lamb, H., 1883. On electrical motions in a spherical conductor. Philosophical Transactions of the Royal Society of London, 174, 519–549.

    Google Scholar 

  • Larsen, J., 1977. Removal of local surface conductivity effects from low frequency mantle response curves. Acta Geodaetica Geophysica et Montanistica Acad. Sci. Hung., 12, 183–186.

    Google Scholar 

  • Lemonnier, C., Marquis, G., Perrier, F., Avouac, J. P., Chitraker, G., Kafle, B., Sapkota, S., Gautam, U., Tiware, D., and Bano, M., 1999. Electrical structure of the Himalaya of Central Nepal: high conductivity around the mid-crustal ramp along MHT. Geophysical Research Letters, 26, 3261–3264.

    Google Scholar 

  • Li, S., Unsworth, M. J., Booker, J. R., Wei, W., Tan, H., and Jones, A. G., 2003. Partial melt or aqueous fluid in the midcrust of Southern Tibet? Constraints from INDEPTH magnetotelluric data. Geophysical Journal International, 153, 289–304.

    Google Scholar 

  • Novák, A., 2009. Electromagnetic imaging in geophysics with tensorial invariants: from the near surface to Transdanubian deep structures. PhD Dissertation (in Hungarian), Sopron (Hungary) 187 pp.

    Google Scholar 

  • Ogawa, Y., 2007. Correlation of resistivity structure, seismicity and deformation from some case studies in Japan. Lecture at the JAS003 Conference of the IUGG General Assembly in Perugia.

    Google Scholar 

  • Parkinson, W. D., 1959. Direction of rapid geomagnetic fluctuation. Geophysical Journal of the Royal Astronomical Society, 2, 1–14.

    Google Scholar 

  • Posgay, K., 1975. Mit Reflexionsmessungen bestimmte Horizonte und Geschwindigkeits Verteilung in der Erdkruste und Erdmantel. Geophysical Transactions, 23, 13–18.

    Google Scholar 

  • Prácser, E., and Szarka, L., 1999. A correction to Bahr’s “phase deviation” method for tensor decomposition. Earth Planets and Space, 51, 1019–1022.

    Google Scholar 

  • Rodi, W., and Mackie, R. I., 2001. Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion. Geophysics, 66, 174.

    Google Scholar 

  • Rokityansky, I. I., 1982. Geoelectromagnetic Investigation of the Earth’s Crust and Mantle. Heidelberg: Springer, 381 pp.

    Google Scholar 

  • Schmucker, U., 1959. Erdmagnetische Tiefensondierung in Deutschland 1957/1959. Magnetogramme und erste Auswertung. Abhandlungen der Akademie der Wissenschaften in Göttingen. Mathematisch-Physikalische Klasse. I, H5, 51.

    Google Scholar 

  • Schmucker, U., 1970. Anomalies of geomagnetic variations in the south-western United States. Bulletin of Scripps Institute Oceanography, 13, 165.

    Google Scholar 

  • Schmucker, U., 2003. Horizontal spatial gradient sounding and geomagnetic depth sounding in the period range of daily variation. In Hördt, A., and Stoll, J. (eds.), Protokoll über das Kolloquium elektromagnetische Tiefenforschung. Potsdam, Germany: Bibliothek des Wiss. Albert Einstein, pp. 228–237.

    Google Scholar 

  • Schultz, A., and Larsen, J. C., 1983. Analysis of zonal field morphology and data quality for a global set of magnetic observatory daily main values. Journal of Geomagnetism and Geoelectricity, 35, 835–846.

    Google Scholar 

  • Simpson, F., and Bahr, K., 2005. Practical Magnetotellurics. Cambridge: Cambridge University Press, 270 pp.

    Google Scholar 

  • Siripunvaraporn, W., and Egbert, G. D., 2000. An efficient data subspace inversion for two-dimensional magnetotelluric data. Geophysics, 65, 791–803.

    Google Scholar 

  • Szarka, L., and Menvielle, M., 1997. Analysis of rotational invariants of the magnetotelluric impedance tensor. Geophysical Journal International, 129, 133–142.

    Google Scholar 

  • Szarka, L., Ádám, A., and Menvielle, M., 2005. Field test of a quick-look imaging method based on rotational invariants of the 3D magnetotelluric tensor. Geophysical Prospecting, 53, 325–334.

    Google Scholar 

  • Tikhonov, A. N., 1950. On investigation of electrical characteristics of deep strata of Earth’s crust (in Russian). Doklad Akademia Nauk SSSR, 73, 295–297.

    Google Scholar 

  • Vozar, J., and Semenov, V. Y., 2010. Compatibility of induction methods for mantle soundings. Journal of Geophysical Research, 115, B 03101, 9 pp, doi:10.1029/2009JB006390.

    Google Scholar 

  • Wait, J. R., 1962. Geoelectromagnetism. New York: Academic Press, 268 pp.

    Google Scholar 

  • Wallner, Á., 1977. The main features of the induction arrows in the area of the Transdanubian conductivity anomaly. Acta Geodaetica Geophysica et Montanistica, 12, 145–150.

    Google Scholar 

  • Weaver, J. T., 1994. Mathematical Methods for Geoelectromagnetic Induction. Taunton: Wiley, p. 316.

    Google Scholar 

  • Weaver, J. T., Agarwal, A. K., and Lilly, F. E., 2000. Characterization of the magnetotellurid tensor in terms of its invariants. Geophysical Journal International, 141, 321–336.

    Google Scholar 

  • Weaver, J. T., Agarwal, A. K., and Lilly, F. E., 2006. The relationship between the magnetotelluric tensor invariants and the phase tensor of Caldwell, Bibby and Brown. Exploration Geophysics, 37, 261–267.

    Google Scholar 

  • Wiese, H., 1965. Geomagnetische Tiefentellurik. Berlin: Akad. Verlag, 146 pp.

    Google Scholar 

  • Yu Semenov, V., Ádám, A., Hvozdara, M., and Wesztergom, V., 1997. Geoelectrical structure of the Earth’s mantle in the Pannonian Basin. Acta Geodaetica et Geophysica Hungarica, 32(1–2), 151–168.

    Google Scholar 

  • Yu Semenov, V., Pek, J., Ádám, A., Józviak, W., Ladanyvskyy, B., Logvinov, I. M., Pushkarev, P., and Vozar, I., 2008. Electrical structure of the upper mantle beneath Central Europe: Results of the CEMES Project. Acta Geophysica, 56, 957–981.

    Google Scholar 

  • Zhdanov, M. S., 2009. Geophysical Electromagnetic Theory and Methods. Amsterdam: Elsevier, 848 pp.

    Google Scholar 

  • Zhdanov, M. S., Golubev, N. G., Iv Varentsov, M., Abramova, L. M., Schneer, M. N., Berdischevsky, M. N., Zhdanova, O. N., Gordienko, V. V., Kulik, S. N., and Bilinsky, A. I., 1986. 2D model fitting of a geomagnetic anomaly in the Soviet Carpathians. Annales Geophysicae, B4(3), 335–342.

    Google Scholar 

  • Zsíros, T., 1985. An estimation of seismic hazard in Hungary. Gerlands Beiträge zur Geophysik Leipzig, 94, 111–122.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antal Ádám .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Ádám, A., Szarka, L. (2011). Geoelectromagnetism. In: Gupta, H.K. (eds) Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8702-7_129

Download citation

Publish with us

Policies and ethics