Skip to main content

Magnetic Anisotropy

  • Reference work entry
  • First Online:

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definition

The magnetic properties of rocks and minerals are generally anisotropic, that is, they are directionally dependent. Magnetic anisotropy of minerals arises from either fundamental anisotropy in the crystal structure or from the shape of nonspherical ferromagnetic grains. The most common cause of magnetic anisotropy in rocks is the preferential distribution-orientation of the constituting minerals, in other words the rock fabric.

Introduction

Pioneering works on the magnetic anisotropy of rocks were carried out during the 1940s and 1950s (Ising, 1942; Graham, 1954). These authors first realized that magnetic methods may be used to characterize the preferred orientation of minerals within the rock samples. Ising studied varved clays in Sweden and noticed that the magnetic susceptibility was higher on the bedding plane than orthogonally to it. Graham recognized that the anisotropy of magnetic susceptibility (AMS) may be regarded as a petrofabric element; he later extended the...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   549.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  • Banerjee, S. K., and Stacey, F. D., 1967. The high-field torque-meter method of measuring magnetic anisotropy of rocks. In Collinson, D. W., Creer, K. M., and Runcorn, S. K. (eds.), Methods in Paleomagnetism. Amsterdam: Elsevier, pp. 470–476.

    Google Scholar 

  • Bergmüller, F., Barlocher, C., Geyer, B., Grieder, M., Heller, F., and Zweifel, P., 1994. A torque magnetometer for measurements of the high-field anisotropy of rocks and crystals. Measurement Science and Technology, 5, 1466–1470.

    Google Scholar 

  • Berkowitz, A. E., and Takano, K., 1999. Exchange anisotropy – a review. Journal of Magnetism and Magnetic Materials, 200, 552–570.

    Google Scholar 

  • Borradaile, G. J., 1991. Correlation of strain with anisotropy of magnetic susceptibility (AMS). Pure and Applied Geophysics, 135, 15–29.

    Google Scholar 

  • Borradaile, G. J., 1988. Magnetic susceptibility, petrofabrics and strain. Tectonophysics, 156, 1–20.

    Google Scholar 

  • Borradaile, G. J., 2001. Magnetic fabrics and petrofabrics: their orientation distribution and anisotropies. Journal of Structural Geology, 23, 1581–1596.

    Google Scholar 

  • Borradaile, G. J., and Henry, B., 1997. Tectonic applications of magnetic susceptibility and its anisotropy. Earth Science Reviews, 42, 49–93.

    Google Scholar 

  • Borradaile, G. J., and Jackson, M., 2004. Anisotropy of magnetic susceptibility (AMS): magnetic petrofabrics of deformed rocks. In Martín-Hernández, F., Lüneburg, C., Aubourg, C., and Jackson, M. (eds.), Magnetic Fabric Methods and Applications. London: Geological Society. Special Publications 2004, Vol. 238, pp. 299–360.

    Google Scholar 

  • Bouchez, J. L., 1997. Granite is never isotropic: an introduction to AMS studies of granitic rocks. In Bouchez, J. L., Hutton, D. H. W., and Stephens, W. E. (eds.), Granite: from Segregation of Melt to Emplacement Fabrics. Dordrecht: Kluwer, pp. 95–112.

    Google Scholar 

  • Cañón-Tapia, E., 2004. Anisotropy of magnetic susceptibility of lava flows and dykes: an historical account. In Martín-Hernández, F., Lüneburg, C., Aubourg, C., and Jackson, M. (eds.), Magnetic Fabric Methods and Applications. London: Geological Society, Special Publications 2004, Vol. 238, pp. 205–225.

    Google Scholar 

  • Cifelli, F., Mattei, M., Hirt, A. M., and Gunther, A., 2004. The origin of tectonic fabrics in “undeformed” clays: The early stages of deformation in extensional sedimentary basins. Geophysical Research Letters, 31, L09604, doi:10.1029/2004GL019609.

    Google Scholar 

  • Cifelli, F., Mattei, M., Chadima, M., Hirt, A. M., and Hansen, A., 2005. The origin of the tectonic lineation in extensional basins: Combined neutron texture and magnetic analysis on “undeformed” clays. Earth and Planetary Science Letters, 235, 62–78.

    Google Scholar 

  • Collombat, H., Rochette, P., and Kent, D. V., 1993. Detection and correction of inclination shallowing in deep sea sediments using the anisotropy of magnetic remanence. Bulletin. Société Géologique de France, 164, 103–111.

    Google Scholar 

  • Deamer, G. A., and Kodama, K. P., 1990. Compaction-induced inclination shallowing in synthetic and natural clay-rich sediments. Journal of Geophysical Research, 95, 4511–4529.

    Google Scholar 

  • Dunlop, D. J., and Özdemir, Ö., 1997. Rock Magnetism: Fundamentals and Frontiers. Cambridge: Cambridge University Press. 573 pp.

    Google Scholar 

  • Ellwood, B. B., and Ledbetter, M. T., 1979. Paleocurrent indicators in deep-sea sediment. Science, 203, 1335–1337.

    Google Scholar 

  • Fuller, M. D., 1960. Anisotropy of susceptibility and the natural remanent magnetization of some Welsh slates. Nature, 186, 790–792.

    Google Scholar 

  • Fuller, M. D., 1963. Magnetic anisotropy and paleomagnetism. Journal of Geophysical Research, 68, 293–309.

    Google Scholar 

  • Gattacceca, J., and Rochette, P., 2002. Pseudopaleosecular variation due to remanence anisotropy in a pyroclastic flow succession. Geophysical Research Letters, 29, doi:10.10129/2002GL014697.

    Google Scholar 

  • Graham, J. W., 1954. Magnetic susceptibility anisotropy, an unexploited petrofabric element. Bulletin of the Geological Society of America, 65, 1257–1258.

    Google Scholar 

  • Graham, J. W., 1966. Significance of magnetic anisotropy in Appalachian sedimentary rocks. In Steinhart, J. S., and Smith, T. J. (eds.), The Earth Beneath the Continents. Geophysical Monograph Series 10. Washington, DC: American Geophysical Union, pp. 627–648.

    Google Scholar 

  • Gurioli, L., Pareschi, M. T., Zanella, E., Lanza, R., Deluca, E., and Bisson, M., 2005. Interaction of pyroclastic density currents with human settlements: evidence from ancient Pompeii. Geology, 33, 441–444, doi:10.1130/G21294.1.

    Google Scholar 

  • Hamilton, N., and Rees, A. I., 1970. The use of magnetic fabric in palaeocurrent estimation. In Runcorn, S. K. (ed.), Palaeogeophysics. London: Academic, pp. 445–463.

    Google Scholar 

  • Heller, F., 1973. Magnetic anisotropy of granitic rocks of the Bergell massif (Switzerland). Earth and Planetary Science Letters, 20, 180–183.

    Google Scholar 

  • Hirt, A. M., 2007. Magnetic remanence, anisotropy. In Gubbins, D., and Herrero-Bervera, E. (eds.), Encyclopedia of Geomagnetism and Paleomagnetism, New York: Springer, 1054pp, pp. 535–540.

    Google Scholar 

  • Hodych, J. E., Bijaksana, S., and Pätzold, R., 1999. Using magnetic anisotropy to correct for paleomagnetic inclination shallowing in some magnetite-bearing deep-sea turbidites and limestones. Tectonophysics, 307, 191–205.

    Google Scholar 

  • Hrouda, F., 1982. Magnetic anisotropy of rocks and its application in geology and geophysics. Geophysical Surveys, 5, 37–82.

    Google Scholar 

  • Hrouda, F., 1993. Theoretical models of magnetic anisotropy to strain relationship revisited. Physics of the Earth and Planetary Interiors, 77, 237–249.

    Google Scholar 

  • Hrouda, F., 2007. Magnetic susceptibility, anisotropy. In Gubbins, D., and Herrero-Bervera, E. (eds.), Encyclopedia of Geomagnetism and Paleomagnetism, New York: Springer, 1054pp, pp. 546–560.

    Google Scholar 

  • Hrouda, F., Chlupacova, M., and Rejl, L., 1971. The mimetic fabric of magnetite in some foliated granodiorites, as indicated by magnetic anisotropy. Earth Science and Planetary Interiors, 11, 381–384.

    Google Scholar 

  • Hrouda, F., and Lanza, R., 1989. Magnetic anisotropy in the Biella and Traversella stocks (Periadriatic Line): implications for the emplacement mode. Studia Geophysica et Geodaetica, 56, 337–348.

    Google Scholar 

  • Hrouda, F., and Jelínek, V., 1990. Resolution of ferrimagnetic and paramagnetic anisotropies in rocks, using combined low-field and high-field measurements. Geophysical Journal International, 103, 75–84.

    Google Scholar 

  • Incoronato, A. F. T., Addison, D. H., Tarling, G. N., and Pescatore, T., 1983. Magnetic fabric investigation of some pyroclastic deposits from the Phlegrean Fields, southern Italy. Nature, 306, 461–463.

    Google Scholar 

  • Ising, E., 1942. On the magnetic properties of varved clays. Arkiv för Matematik, Astronomi och Fysik, 29A, 1–37.

    Google Scholar 

  • Jackson, M., 1991. Anisotropy of magnetic remanence: a brief review of mineralogical sources, physical origins, and geological applications, and comparison with susceptibility anisotropy. Pure and Applied Geophysics, 136, 1–28.

    Google Scholar 

  • Jackson, M., Gruber, W., Marvin, J., and Banerjee, S. K., 1988. Partial anhysteretic remanence and its anisotropy: applications and grain size-dependence. Geophysical Research Letters, 15, 440–443.

    Google Scholar 

  • Jackson, M. J., Banerjee, S. K., Marvin, J. A., Lu, R., and Gruber, W., 1991. Detrital remanence, inclination errors and anhysteretic remanence anisotropy: quantitative model and experimental results. Geophysical Journal International, 104, 95–103.

    Google Scholar 

  • Jackson, M. J., and Tauxe, L., 1991. Anisotropy of magnetic susceptibility and remanence: developments in the characterization of tectonic, sedimentary, and igneous fabric. Reviews of Geophysics, 29, 371–376.

    Google Scholar 

  • Jelínek, V., 1981. Characterization to the magnetic fabric of rocks. Tectonophysics, 79, 63–67.

    Google Scholar 

  • Jelínek, V., 1996. Theory and measurement of the anisotropy of isothermal remanent magnetization of rocks. Travaux Géophysique, 37, 124–134.

    Google Scholar 

  • Jover, O., Rochette, P., Lorand, J. P., Maeder, M., and Bouchez, J. L., 1989. Magnetic mineralogy of some granites from the French Massif Central: origin of their low-field susceptibility. Physics of the Earth and Planetary Interiors, 55, 79–92.

    Google Scholar 

  • Khan, M. A., 1962. The anisotropy of magnetic susceptibility of some igneous and metamorphic rocks. Journal of Geophysical Research, 67, 2873–2885.

    Google Scholar 

  • Kodama, K. P., and Sun, W.-W., 1992. Magnetic anisotropy as a correction for compaction-caused paleomagnetic inclination shallowing. Geophysical Journal International, 111, 465–469.

    Google Scholar 

  • Knight, M. D., Walker, G. P. L., Ellwood, B. B., and Diehl, J. F., 1986. Stratigraphy, paleomagnetic, and magnetic fabric of the Toba Tuffs: constraints on the source and eruptive styles. Journal of Geophysical Research, 91, 10,355–10,382.

    Google Scholar 

  • Lanza, R., and Meloni, A., 2006. The Earth’s Magnetism. An Introduction for Geologists. Berlin: Springer. 278 pp.

    Google Scholar 

  • Lee, T. Q., Kissel, C., Laj, C., Horng, C. S., and Lue, Y. T., 1990. Magnetic fabric analysis of the Plio-Pleistocene sedimentary formations of the Coastal Range of Taiwan. Earth and Planetary Science Letters, 98, 23–32.

    Google Scholar 

  • Liu, B., Saito, Y., Yamazaki, T., Abdeldayem, A., Oda, H., Hori, K., and Zhao, Q., 2001. Paleocurrent analysis for the late Pleistocene-Holocene incised-valley fill of the Yangtze delta, China by using anisotropy of magnetic susceptibility data. Marine Geology, 176, 175–189.

    Google Scholar 

  • MacDonald, W. D., and Palmer, H. C., 1990. Flow directions in ash-tuffs: A comparison of geological and magnetic susceptibility measurements, Tshirege member (upper Bandelier Tuff), Valles caldera, New Mexico, USA. Bullettin of Volcanology, 53, 45–59.

    Google Scholar 

  • Martín-Hernández, F., and Hirt, A. M., 2001. Separation of ferrimagnetic and paramagnetic anisotropies using a high-field torsion magnetometer. Tectonophysics, 337, 209–222.

    Google Scholar 

  • Mattei, M., Sagnotti, L., Faccenna, C., and Funiciello, R., 1997. Magnetic fabric of weakly deformed clay-rich sediments in the Italian peninsula: relationship with compressional and extensional tectonics. Tectonophysics, 271, 107–122.

    Google Scholar 

  • Meiklejohn, W. H., 1962. Exchange anisotropy – a review. Journal of Applied Physics, 33, 1328–1335.

    Google Scholar 

  • Moskowitz, B. M., 1993. High-temperature magnetostriction of magnetite and titanomagnetites. Journal of Geophysical Research, 98, 359–371.

    Google Scholar 

  • Nagata, T., and Uyeda, S., 1959. Exchange interaction as a cause of reverse thermoremanent magnetism. Nature, 184, 890.

    Google Scholar 

  • O'Reilly, W., 1984. Rock and Mineral Magnetism. Glasgow: Blackie. 230 pp.

    Google Scholar 

  • Parés, J.M., 2004. How deformed are weakly deformed mudrocks ? Insights from magnetic anisotropy. In Martín-Hernández, F., Lüneburg, C., Aubourg, C., and Jackson, M., (eds.), Magnetic Fabric Methods and Applications. London: Geological Society, Special Publications, Vol. 238, pp. 191–203.

    Google Scholar 

  • Parés, J. M., van der Pluijm, B. A., and Dinares-Turell, J., 1999. Evolution of magnetic fabrics during incipient deformation of mudrock (Pyrenees, northern Spain). Tectonophysics, 307, 1–14.

    Google Scholar 

  • Parés, J. M., Hassold, N. J. C., Rea, D. K., and van der Pluijm, B. A., 2007. Paleocurrent directions from paleomagnetic reorientation of magnetic fabrics in deep-sea sediments at the Antarctic Peninsula Pacific margin (ODP Sites 1095, 1101). Marine Geology, 242, 261–269.

    Google Scholar 

  • Potter, D. K., 2004. A comparison of anisotropy of magnetic remanence methods—a user’s guide for application to palaeomagnetism and magnetic fabric studies. In Martin-Hernández, F., Lüneburg, C. M., Aubourg, C., and Jackson, M. (eds.), Magnetic Fabric: Methods and Applications. London: The Geological Society of London. Geological Society Special Publications, Vol. 238, pp. 21–36.

    Google Scholar 

  • Potter, D. K., and Stephenson, A., 1988. Single-domain particles in rocks and magnetic fabric analysis. Geophysical Research Letters, 15, 1097–1100.

    Google Scholar 

  • Rees, A. I., 1961. The effect of water currents on the magnetic remanence and anisotropy of susceptibility of some sediments. Geophysical Journal, 5, 235–251.

    Google Scholar 

  • Rees, A. I., 1966. The effect of depositional slopes on the anisotropy of magnetic susceptibility of laboratory deposited sands. Journal of Geology, 74, 856–867.

    Google Scholar 

  • Rees, A. I., 1983. Experiments on the production of transverse grain alignment in a sheared dispersion. Sedimentology, 30, 437–448.

    Google Scholar 

  • Rees, A. I., and Woodall, W. A., 1975. The magnetic fabric of some laboratory-deposited sediments. Earth and Planetary Science Letters, 25, 121–130.

    Google Scholar 

  • Rochette, P., and Fillion, C., 1988. Identification of multicomponent anisotropies in rocks using various field and temperature values in a cryogenic magnetometer. Physics of the Earth and Planetary Interiors, 51, 379–386.

    Google Scholar 

  • Rochette, P., Jackson, M. J., and Aubourg, C., 1992. Rock magnetism and the interpretation of anisotropy of magnetic susceptibility. Reviews of Geophysics, 30, 209–226.

    Google Scholar 

  • Rochette, P., Aubourg, C., and Perrin, M., 1999. Is this magnetic fabric normal? A review and case study in volcanic formations? Tectonophysics, 307, 219–234.

    Google Scholar 

  • Rosenbaum, J., Reynolds, R., Smoot, J., and Meyer, R., 2000. Anisotropy of magnetic susceptibility as a tool for recognizing core deformation: reevaluation of the paleomagnetic record of Pleistocene sediments from drill hole OL-92, Owens Lake, California. Earth and Planetary Science Letters, 178, 415–424.

    Google Scholar 

  • Sagnotti, L., and Speranza, F., 1993. Magnetic fabric analysis of the Plio-Pleistocene clayey units of the Sant’Arcangelo basin, southern Italy. Physics of the Earth and Planetary Interiors, 77, 165–176.

    Google Scholar 

  • Sagnotti, L., Faccenna, C., Funiciello, R., and Mattei, M., 1994. Magnetic fabric and structural setting of Plio-Pleistocene clayey units in an extensional regime: the Tyrrhenian margin of central Italy. Journal of Structural Geology, 16, 1243–1257.

    Google Scholar 

  • Sagnotti, L., Speranza, F., Winkler, A., Mattei, M., and Funiciello, R., 1998. Magnetic fabric of clay sediments from the external northern Apennines (Italy). Physics of the Earth and Planetary Interiors, 105, 73–93.

    Google Scholar 

  • Stephenson, A., Sadikun, S., and Potter, D. K., 1986. A theoretical and experimental comparison of the susceptibility and remanence in rocks and minerals. Geophysical Journal of the Royal Astronomical Society, 84, 185–200.

    Google Scholar 

  • Tan, X., and Kodama, K. P., 2002. Magnetic anisotropy and paleomagnetic inclination shallowing in red beds: evidence from the Mississippian Mauch Chunk Formation, Pennsylvania. Journal of Geophysical Research, 107(B11), 2311, doi:10.1029/2001JB001636.

    Google Scholar 

  • Tan, X., Kodama, K. P., Chen, H., Fang, D., Sun, D., and Li, Y., 2003. Paleomagnetism and magnetic anisotropy of Cretaceous red beds from the Tarim basin, northwest China: evidence for a rock magnetic cause of anomalously shallow paleomagnetic inclinations from central Asia. Journal of Geophysical Research, 108, 2107, doi:10.1029/2001JB001608.

    Google Scholar 

  • Tarling, D. H., and Hrouda, F., 1993. The Magnetic Anisotropy of Rocks. London: Chapman & Hall, p. 217.

    Google Scholar 

  • Tauxe, L., 2005. Lectures in paleomagnetism, available on line at http://earthref.org/MAGIC/books/Tauxe/2005/

  • Tauxe, L., Gee, J. S., and Staudigel, H., 1998. Flow direction in dikes from anisotropy of magnetic susceptibility of magnetic data; the bootstrap way. Journal of Geophysical Research, 103(B8), 17775–17790.

    Google Scholar 

  • Vaughn, J., Kodama, K. P. & Smith, D., 2005. Correction of inclination shallowing and its tectonic implications: the Cretaceous Perforada Formation, Baja California, Earth and Planetary Science Letters, 232, 72–82.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Sagnotti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Sagnotti, L. (2011). Magnetic Anisotropy. In: Gupta, H.K. (eds) Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8702-7_113

Download citation

Publish with us

Policies and ethics