Strategies for Structural Assignment of Marine Natural Products Through Advanced NMR-based Techniques

  • Alfonso Mangoni
Reference work entry


This chapter surveys the standard 2D NMR techniques (COSY, TOCSY, NOESY and ROESY, HSQC and HMQC, HMBC, and INADEQUATE) including also some suggestion about the most suitable experimental parameters to be utilized in the different cases. In addition, an entire section describes some tricks and techniques that can be used in difficult cases of structural elucidation.


Structure Elucidation Cross Peak Correlation Peak Spectral Simulation Coherence Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kwan EE, Huang SG (2008) Structural elucidation with NMR spectroscopy: practical strategies for organic chemists. Eur J Org Chem 2008:2671–2688CrossRefGoogle Scholar
  2. 2.
    Crews P, Rodriguez J, Jaspars M (2009) Organic structure analysis, 2nd edn. Oxford University Press, New YorkGoogle Scholar
  3. 3.
    Karplus M (1963) Vicinal proton coupling in nuclear magnetic resonance. J Am Chem Soc 85:2870–2871CrossRefGoogle Scholar
  4. 4.
    Haasnoot CAG, DeLeeuw FAAM, Altona C (1980) The relationship between proton-proton NMR coupling constants and substituent electronegativities—I: an empirical generalization of the Karplus equation. Tetrahedron 36:2783–2792CrossRefGoogle Scholar
  5. 5.
    Matsumori N, Kaneno D, Murata M, Nakamura H, Tachibana K (1999) Stereochemical determination of acyclic structures based on carbon–proton spin-coupling constants. A method of configuration analysis for natural products. J Org Chem 64:866–876PubMedCrossRefGoogle Scholar
  6. 6.
    Bax A, Freeman R (1981) Investigation of complex networks of spin-spin coupling by two-dimensional NMR. J Magn Reson 44:542–561Google Scholar
  7. 7.
    Rance M, Sørensen OW, Bodenhausen G, Wagner G, Ernst RR, Wüthrich K (1983) Improved spectral resolution in COSY 1H NMR spectra of proteins via double quantum filtering. Biochem Biophys Res Commun 117:479–485PubMedCrossRefGoogle Scholar
  8. 8.
    Griesinger C, Soerensen OW, Ernst RR (1985) Two-dimensional correlation of connected NMR transitions. J Am Chem Soc 107:6394–6396CrossRefGoogle Scholar
  9. 9.
    Braunschweiler L, Ernst RR (1983) Coherence transfer by isotropic mixing: application to proton correlation spectroscopy. J Magn Reson 53:521–528; Bax A, Davis DG (1985) MLEV-17-based two-dimensional homonuclear magnetization transfer spectroscopy. J Magn Reson 65:355–360Google Scholar
  10. 10.
    Thrippleton MJ, Keeler J (2003) Elimination of zero-quantum interference in two-dimensional NMR spectra. Angew Chem Int Ed 42:3938–3941CrossRefGoogle Scholar
  11. 11.
    Costantino V, Fattorusso E, Imperatore C, Mangoni A (2008) J-coupling analysis for stereochemical assignments in furanosides: structure elucidation of vesparioside B, a glycosphingolipid from the marine sponge Spheciospongia vesparia. J Org Chem 73:6158–6165PubMedCrossRefGoogle Scholar
  12. 12.
    Jeener J, Meier BH, Bachmann P, Ernst RR (1979) Investigation of exchange processes by two-dimensional NMR spectroscopy. J Chem Phys 71:4546–4553CrossRefGoogle Scholar
  13. 13.
    Bothner-By AA, Stephens RL, Lee JM, Warren CD, Jeanholz RW (1984) Structure determination of a tetrasaccharide: transient nuclear Overhauser effects in the rotating frame. J Am Chem Soc 106:811–813. Bax A, Davis DGJ (1985) Practical aspects of two-dimensional transverse NOE spectroscopy. J Magn Reson 63:207–213CrossRefGoogle Scholar
  14. 14.
    Hwang TL, Shaka AJ (1992) Cross relaxation without TOCSY: transverse rotating-frame Overhauser effect spectroscopy. J Am Chem Soc 114:3157–3159CrossRefGoogle Scholar
  15. 15.
    Bax A, Ikura M, Kay LE, Torchia DA, Tschudin R (1990) Comparison of different modes of two-dimensional reverse-correlation NMR for the study of proteins. J Magn Reson 86:304–318Google Scholar
  16. 16.
    Bendall MR, Pegg DT, Doddrell DM (1983) Pulse sequences utilizing the correlated motion of coupled heteronuclei in the transverse plane of the doubly rotating frame. J Magn Reson 52:81–117Google Scholar
  17. 17.
    Reynolds WF, McLean S, Tay LL, Yu M, Enriquez RG, Estwick DM, Pascoe KO (1997) Comparison of 13C resolution and sensitivity of HSQC and HMQC sequences and application of HSQC-based sequences to the total 1H and 13C spectral assignment for clinasterol. Magn Reson Chem 35:455–462CrossRefGoogle Scholar
  18. 18.
    Bax A, Summers MF (1986) Proton and carbon-13 assignments from sensitivity-enhanced detection of heteronuclear multiple-bond connectivity by 2D multiple quantum NMR. J Am Chem Soc 108:2093–2094CrossRefGoogle Scholar
  19. 19.
    Nyberg NT, Duus JØ, Sørensen OW (2005) Heteronuclear two-bond correlation: suppressing heteronuclear three-bond or higher NMR correlations while enhancing two-bond correlations even for vanishing 2 J CH. J Am Chem Soc 127:6154–6155PubMedCrossRefGoogle Scholar
  20. 20.
    Petersen BO, Vinogradov E, Kay W, Würtz P, Nyberg NT, Duusa JØ, Sørensen OW (2006) H2BC: a new technique for NMR analysis of complex carbohydrates. Carbohydr Res 341:550–556PubMedCrossRefGoogle Scholar
  21. 21.
    Kock M, Reif B, Fenical W, Griesinger C (1996) Differentiation of HMBC two- and three-bond correlations: a method to simplify the structure determination of natural products. Tetrahedron Lett 37:363–366CrossRefGoogle Scholar
  22. 22.
    Williamson RT, Marquez BL, Gerwick WH, Koehn FE (2001) ACCORD-ADEQUATE: an improved technique for the acquisition of inverse-detected INADEQUATE data. Magn Reson Chem 39:544–548CrossRefGoogle Scholar
  23. 23.
    He H, Janso JE, Williamson RT, Yang HY, Carter GT (2003) Cytosporacin, a highly unsaturated polyketide: application of the ACCORD-ADEQUATE experiment to the structural determination of natural products. J Org Chem 68:6079–6082PubMedCrossRefGoogle Scholar
  24. 24.
    Wright AD, Nielson JL, Tapiolas DM, Motti CA, Ovenden SPB, Kearns PS, Liptrot CH (2003) Detailed NMR, including 1,1-ADEQUATE, and anticancer studies of compounds from the echinoderm Colobometra perspinosa. Mar Drugs 7:565–575CrossRefGoogle Scholar
  25. 25.
    Bax A, Freeman R, Kempsell SP (1980) Natural abundance carbon-13-carbon-13 coupling observed via double-quantum coherence. J Am Chem Soc 102:4849–4851CrossRefGoogle Scholar
  26. 26.
    Levitt MH, Ernst RR (1983) Improvement of pulse performance in NMR coherence transfer experiments. A compensated INADEQUATE experiment. Mol Phys 50:1109–1124CrossRefGoogle Scholar
  27. 27.
    Bugni TS, Bernan VS, Greenstein M, Janso JE, Maiese WM, Mayne CL, Ireland CM (2003) Brocaenols A-C: novel polyketides from a marine-derived Penicillium brocae. J Org Chem 68:2014–2017PubMedCrossRefGoogle Scholar
  28. 28.
    Fujita Y, Kasuya A, Matsushita Y, Suga M, Kizuka M, Iijima Y, Ogita T (2005) Structural elucidation of A-74528, an inhibitor for 20,50-phosphodiesterase isolated from Streptomyces sp. Bioorg Med Chem Lett 15:4317–4321PubMedCrossRefGoogle Scholar
  29. 29.
    Williamson RT, Boulanger A, Vulpanovici A, Roberts MA, Gerwick WH (2002) Structure and absolute stereochemistry of phormidolide, a new toxic metabolite from the marine cyanobacterium Phormidium sp. J Org Chem 67:7927–7936PubMedCrossRefGoogle Scholar
  30. 30.
    Doi Y, Ishibashi M, Nakamichi H, Kosaka T, Ishikawa T, Kobayashi J (1997) Luteophanol A, a new polyhydroxyl compound from symbiotic marine dinoflagellate Amphidinium sp. J Org Chem 62:3820–3823CrossRefGoogle Scholar
  31. 31.
    Marshall JL (1983) Carbon-carbon and carbon-proton NMR couplings: applications to organic stereochemistry and conformational analysis, vol 2, Methods in Stereochemical Analysis. VCH, New YorkGoogle Scholar
  32. 32.
    Pretsch E, Bühlmann P, Badertscher M (2009) Structure determination of organic compounds, 4th edn. Springer, Berlin, p 81Google Scholar
  33. 33.
    Costantino V, Fattorusso E, Imperatore C, Mangoni A (2000) The first 12-methylhopanoid: 12-methylbacteriohopanetetrol from the marine sponge Plakortis simplex. Tetrahedron 56:3781–3784CrossRefGoogle Scholar
  34. 34.
    He H, Ding WD, Bernan VS, Richardson AD, Ireland CM, Greenstein M, Ellestad GA, Carter GT (2001) Lomaiviticins A and B, potent antitumor antibiotics from micromonospora lomaivitiensis. J Am Chem Soc 123:5362–5363PubMedCrossRefGoogle Scholar
  35. 35.
    Kawabata J, Fukushi E, Hara M, Mizutani J (1992) Detection of connectivity between equivalent carbons in a C2 molecule using isotopomeric asymmetry: identification of hopeaphenol in Carex pumila. Magn Reson Chem 30:6–10CrossRefGoogle Scholar
  36. 36.
    Costantino V, Fattorusso E, Imperatore C, Mangoni A (2006) Clathrosides and isoclathrosides, unique glycolipids from the Caribbean Sponge Agelas clathrodes. J Nat Prod 69:73–78PubMedCrossRefGoogle Scholar
  37. 37.
    Costantino V, Fattorusso E, Mangoni A, Perinu C, Cirino G, De Gruttola L, Roviezzo F (2009) Tedanol: a potent anti-inflammatory ent-pimarane diterpene from the Caribbean Sponge Tedania ignis. Bioorg Med Chem 17:7542–7547PubMedCrossRefGoogle Scholar
  38. 38.
    Aknin M, Samb A, Mirailles J, Costantino V, Fattorusso E, Mangoni A (1992) Polysiphenol, a new brominated 9,10-dihydrophenantrene from the Senegalese Red Alga Polysiphonia ferulacea. Tetrahedron Lett 33:555–558CrossRefGoogle Scholar
  39. 39.
    Costantino V, Fattorusso E, Imperatore C, Mangoni A (2004) Clarhamnoside, the first rhamnose-containing α-glycosyl ceramide from the Marine Sponge Agelas clathrodes. J Org Chem 69:1174–1179PubMedCrossRefGoogle Scholar
  40. 40.
    Mucci A, Parenti F, Schenetti L (2002) On the Recovery of 3 J H,H and the Reduction of Molecular Symmetry by Simple NMR Inverse Detection Experiments. Eur J Org Chem 2002:938–940CrossRefGoogle Scholar
  41. 41.
    Rinehart KL, Chilton WS, Hichens M, Von Phillipsborn W (1963) Chemistry of the neomycins. XI. NMR assignment of the glycosidic linkages. J Am Chem Soc 84:3216–3218CrossRefGoogle Scholar
  42. 42.
    Kupce E, Freeman R (2008) Molecular structure from a single NMR experiment. J Am Chem Soc 130:10788–10792PubMedCrossRefGoogle Scholar
  43. 43.
    Lindel T, Junker J, Köck M (1997) Cocon: from NMR correlation data to molecular constitutions. J Mol Model 3:364–368CrossRefGoogle Scholar
  44. 44.
    ACD/Structure Elucidator, Advanced Chemistry DevelopmentGoogle Scholar
  45. 45.
    Ohtaki T, Akasaka K, Kabuto C, Ohrui H (2005) Chiral discrimination of secondary alcohols by both 1H-NMR and HPLC after labeling with a chiral derivatization reagent, 2-(2,3-anthracenedicarboximide)cyclohexane carboxylic acid. Chirality 17(Suppl):S171–176PubMedCrossRefGoogle Scholar
  46. 46.
    Gil RR, Gayathri C, Tsarevsky NV, Matyjaszewski K (2008) Stretched poly(methyl methacrylate) gel aligns small organic molecules in chloroform. Stereochemical analysis and diastereotopic proton NMR assignment in ludartin using residual dipolar couplings and 3 J coupling constant analysis. J Org Chem 73:840–848PubMedCrossRefGoogle Scholar
  47. 47.
    Kummerlöwe G, Crone B, Kretschmer M, Kirsch SF, Luy B (2011) Residual dipolar couplings as a powerful tool for constitutional analysis: the unexpected formation of tricyclic compounds. Angew Chem Intl Ed 50:2643–2645CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Dipartimento di Chimica delle Sostanze NaturaliUniversità di Napoli Federico IINaplesItaly

Personalised recommendations