The Chemistry of Marine Bacteria

  • Brian T. Murphy
  • Paul R. Jensen
  • William Fenical
Reference work entry


The world’s oceans harbor extensive levels of bacterial diversity. Although much of this diversity remains uncharacterized, cultured representatives from a broad range of taxonomic groups are proving to be an important source of novel secondary metabolites. These metabolites include new carbon skeletons as well as compounds with a high degree of halogenation, a relatively common feature of marine-derived secondary metabolites. The bacteria being cultured from marine sources include new taxa, which are proving to be a particularly important source of new chemical entities. This chapter will provide the reader with a brief, though not comprehensive history of the secondary metabolites that have been isolated from marine bacteria. The focus is on the taxonomic distribution of the producing strains and interesting structural features and biological activities of the compounds that are being discovered from marine bacteria.


Secondary Metabolite Marine Bacterium Cyclic Peptide Undescribed Species Genus Streptomyces 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank the National Institutes of Health (Grant # RO1 GM85770 to PRJ), and in particular the National Cancer Institute (Grant # R37 CA044848 to WF), for their support in developing the field of marine microbial natural products chemistry.


  1. 1.
    Blunt JW, Copp BR, Hu WP et al (2008) Marine natural products. Nat Prod Rep 25:35–94PubMedGoogle Scholar
  2. 2.
    Bull AT, Stach JE (2007) Marine actinobacteria: new opportunities for natural product search and discovery. Trends Microbiol 15:491–499PubMedGoogle Scholar
  3. 3.
    Clardy J (2005) Using genomics to deliver natural products from symbiotic bacteria. Genome Biol 6:232PubMedGoogle Scholar
  4. 4.
    Cragg GM, Grothaus PG, Newman DJ (2009) Impact of natural products on developing new anti-cancer agents. Chem Rev 109:3012–3043PubMedGoogle Scholar
  5. 5.
    Dobretsov S, Teplitski M, Paul V (2009) Mini-review: quorum sensing in the marine environment and its relationship to biofouling. Biofouling 25:413–427PubMedGoogle Scholar
  6. 6.
    Fenical W, Jensen PR (2006) Developing a new resource for drug discovery: marine actinomycete bacteria. Nat Chem Biol 2:666–673PubMedGoogle Scholar
  7. 7.
    Fenical W (1993) Chemical studies of marine bacteria. Chem Rev 93:1673–1683Google Scholar
  8. 8.
    Lam KS (2006) Discovery of novel metabolites from marine actinomycetes. Curr Opin Microbiol 9:245–251PubMedGoogle Scholar
  9. 9.
    Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199PubMedGoogle Scholar
  10. 10.
    Molinski TF, Dalisay DS, Lievens SL et al (2009) Drug development from marine natural products. Nat Rev Drug Discov 8:69–85PubMedGoogle Scholar
  11. 11.
    Moore BS (2005) Biosynthesis of marine natural products: microorganisms (Part A). Nat Prod Rep 22:580–593PubMedGoogle Scholar
  12. 12.
    Nett M, Konig GM (2007) The chemistry of gliding bacteria. Nat Prod Rep 24:1245–1261PubMedGoogle Scholar
  13. 13.
    Olano C, Mendez C, Salas JA (2009) Antitumor compounds from marine actinomycetes. Mar Drugs 7:210–248PubMedGoogle Scholar
  14. 14.
    Ward AC, Bora N (2006) Diversity and biogeography of marine actinobacteria. Curr Opin Microbiol 9:279–286PubMedGoogle Scholar
  15. 15.
    Williams PG (2009) Panning for chemical gold: marine bacteria as a source of new therapeutics. Trends Biotechnol 27:45–52PubMedGoogle Scholar
  16. 16.
    Laatsch H (2006) Marine bacterial metabolites. In: Proksch P, Muller WEG (eds) Frontiers in marine biotechnology. Horizon Bioscience, Norfolk, pp 225–288Google Scholar
  17. 17.
    Dworkin M, Falkow S (2006) The prokaryotes: a handbook on the biology of bacteria. Springer, New YorkGoogle Scholar
  18. 18.
    Acebal C, Canedo LM, Puentes JL et al (1999) Agrochelin, a new cytotoxic antibiotic from a marine Agrobacterium. Taxonomy, fermentation, isolation, physico-chemical properties and biological activity. J Antibiot 52:983–987PubMedGoogle Scholar
  19. 19.
    Canedo LM, de la Fuente JA, Gesto C et al (1999) Agrochelin, a new cytotoxic alkaloid from the marine bacteria Agrobacteria sp. Tetrahedron Lett 40:6841–6844Google Scholar
  20. 20.
    Takaishi S, Tuchiya N, Sato A et al (1998) B-90063, a novel endothelin converting enzyme inhibitor isolated from a new marine bacterium, Blastobacter sp. SANK 71894. J Antibiot 51:805–815PubMedGoogle Scholar
  21. 21.
    Ohlendorf B, Leyers S, Krick A et al (2008) Phenylnannolones A-C: biosynthesis of new secondary metabolites from the myxobacterium Nannocystis exedens. Chembiochem 9:2997–3003PubMedGoogle Scholar
  22. 22.
    Fudou R, Iizuka T, Sato S et al (2001) Haliangicin, a novel antifungal metabolite produced by a marine myxobacterium. 2. Isolation and structural elucidation. J Antibiot 54:153–156PubMedGoogle Scholar
  23. 23.
    Kundim BA, Itou Y, Sakagami Y et al (2003) New haliangicin isomers, potent antifungal metabolites produced by a marine myxobacterium. J Antibiot 56:630–638PubMedGoogle Scholar
  24. 24.
    Kobayashi M, Aoki S, Gato K et al (1994) Marine natural products. XXXIV. Trisindoline, a new antibiotic indole trimer, produced by a bacterium of Vibrio sp. separated from the marine sponge Hyrtios altum. Chem Pharm Bull (Tokyo) 42:2449–2451Google Scholar
  25. 25.
    Bell R, Carmeli S, Sar N (1994) Vibrindole A, a metabolite of the marine bacterium, Vibrio parahaemolyticus, isolated from the toxic mucus of the boxfish Ostracion cubicus. J Nat Prod 57:1587–1590PubMedGoogle Scholar
  26. 26.
    Fotso Fondja Yao CB, Zereini WA, Fotso S et al (2010) Aqabamycins A-G: novel nitro maleimides from a marine Vibrio species: II. Structure elucidation. J Antibiot 63:297–301PubMedGoogle Scholar
  27. 27.
    Oku N, Kawabata K, Adachi K et al (2008) Unnarmicins A and C, new antibacterial depsipeptides produced by marine bacterium Photobacterium sp. MBIC06485. J Antibiot 61:11–17PubMedGoogle Scholar
  28. 28.
    Gandhi NM, Nazareth J, Divekar PV et al (1973) Letter: magnesidin, a novel magnesium-containing antibiotic. J Antibiot 26:797–798PubMedGoogle Scholar
  29. 29.
    Imamura N, Adachi K, Sano H (1994) Magnesidin A, a component of marine antibiotic magnesidin, produced by Vibrio gazogenes ATCC29988. J Antibiot 47:257–261PubMedGoogle Scholar
  30. 30.
    Chen X, Schauder S, Potier N et al (2002) Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415:545–549PubMedGoogle Scholar
  31. 31.
    Burkholder PR, Pfister RM, Leitz FH (1966) Production of a pyrrole antibiotic by a marine bacterium. Appl Microbiol 14:649–653PubMedGoogle Scholar
  32. 32.
    Fedorov R, Bohl M, Tsiavaliaris G et al (2009) The mechanism of pentabromopseudilin inhibition of myosin motor activity. Nat Struct Mol Biol 16:80–88PubMedGoogle Scholar
  33. 33.
    De Rosa S, De Giulio A, Tommonaro G et al (2000) A beta-amino acid containing tripeptide from a Pseudomonas-alteromonas bacterium associated with a black sea sponge. J Nat Prod 63:1454–1455PubMedGoogle Scholar
  34. 34.
    Shigemori H, Bae M-A, Yazawa K et al (1992) Alteramide A, a new tetracyclic alkaloid from a bacterium Alteromonas sp. associated with the marine sponge Halichondria okadai. J Org Chem 57:4317–4320Google Scholar
  35. 35.
    Shiozawa H, Kagasaki T, Torikata A et al (1995) Thiomarinols B and C, new antimicrobial antibiotics produced by a marine bacterium. J Antibiot 48:907–909PubMedGoogle Scholar
  36. 36.
    Gil-Turnes MS, Hay ME, Fenical W (1989) Symbiotic marine bacteria chemically defend crustacean embryos from a pathogenic fungus. Science 246:116–118PubMedGoogle Scholar
  37. 37.
    Yoshikawa K, Adachi K, Nishida F et al (2003) Planar structure and antibacterial activity of korormicin derivatives isolated from Pseudoalteromonas sp. F-420. J Antibiot 56:866–870PubMedGoogle Scholar
  38. 38.
    Yoshikawa K, Nakayama Y, Hayashi M et al (1999) Korormicin, an antibiotic specific for gram-negative marine bacteria, strongly inhibits the respiratory chain-linked Na+-translocating NADH: quinone reductase from the marine Vibrio alginolyticus. J Antibiot 52:182–185PubMedGoogle Scholar
  39. 39.
    Speitling M, Smetanina OF, Kuznetsova TA et al (2007) Bromoalterochromides A and A′, unprecedented chromopeptides from a marine Pseudoalteromonas maricaloris strain KMM 636 T. J Antibiot 60:36–42PubMedGoogle Scholar
  40. 40.
    Wang L, Grosse T, Stevens H et al (2006) Bioactive hydroxyphenylpyrrole-dicarboxylic acids from a new marine Halomonas sp.: production and structure elucidation. Appl Microbiol Biotechnol 72:816–822PubMedGoogle Scholar
  41. 41.
    Homann VV, Sandy M, Tincu JA et al (2009) Loihichelins A-F, a suite of amphiphilic siderophores produced by the marine bacterium Halomonas LOB-5. J Nat Prod 72:884–888PubMedGoogle Scholar
  42. 42.
    Spyere A, Rowley DC, Jensen PR et al (2003) New neoverrucosane diterpenoids produced by the marine gliding bacterium Saprospira grandis. J Nat Prod 66:818–822PubMedGoogle Scholar
  43. 43.
    Oku N, Adachi K, Matsuda S et al (2008) Ariakemicins A and B, novel polyketide-peptide antibiotics from a marine gliding bacterium of the genus Rapidithrix. Org Lett 10:2481–2484PubMedGoogle Scholar
  44. 44.
    Sobik P, Grunenberg J, Boroczky K et al (2007) Identification, synthesis, and conformation of tri- and tetrathiacycloalkanes from marine bacteria. J Org Chem 72:3776–3782PubMedGoogle Scholar
  45. 45.
    Schuhmann I, Yao CB, Al-Zereini W et al (2009) Nitro derivatives from the Arctic ice bacterium Salegentibacter sp. isolate T436. J Antibiot 62:453–460PubMedGoogle Scholar
  46. 46.
    Nett M, Erol O, Kehraus S et al (2006) Siphonazole, an unusual metabolite from Herpetosiphon sp. Angew Chem Int Ed Engl 45:3863–3867PubMedGoogle Scholar
  47. 47.
    Shindo K, Asagi E, Sano A et al (2008) Diapolycopenedioic acid xylosyl esters A, B, and C, novel antioxidative glyco-C30-carotenoic acids produced by a new marine bacterium Rubritalea squalenifaciens. J Antibiot 61:185–191PubMedGoogle Scholar
  48. 48.
    Andrianasolo EH, Haramaty L, Rosario-Passapera R et al (2009) Ammonificins A and B, hydroxyethylamine chroman derivatives from a cultured marine hydrothermal vent bacterium, Thermovibrio ammonificans. J Nat Prod 72:1216–1219PubMedGoogle Scholar
  49. 49.
    Iizuka T, Fudou R, Jojima Y et al (2006) Miuraenamides A and B, novel antimicrobial cyclic depsipeptides from a new slightly halophilic myxobacterium: taxonomy, production, and biological properties. J Antibiot 59:385–391PubMedGoogle Scholar
  50. 50.
    Boehler M, Jensen PR, Fenical W (1997) Bahamamide, an unusual cyclic bis-amide produced by an undescribed marine bacterium. Nat Prod Lett 10:75–78Google Scholar
  51. 51.
    Gil-Turnes MS, Fenical W (1992) Embryos of Homarus americanus are protected by epibiotic bacteria. Biol Bull 182:105–108Google Scholar
  52. 52.
    Gustafson K, Roman M, Fenical W (1989) The macrolactins, a novel class of antiviral and cytotoxic macrolides from a deep-sea marine bacterium. J Am Chem Soc 111:7519–7524Google Scholar
  53. 53.
    Rychnovsky SD, Skalitzky DJ, Pathirana C et al (1992) Stereochemistry of the macrolactins. J Am Chem Soc 114:671–677Google Scholar
  54. 54.
    Lu XL, Xu QZ, Liu XY et al (2008) Marine drugs – macrolactins. Chem Biodivers 5:1669–1674PubMedGoogle Scholar
  55. 55.
    Suzumura K, Yokoi T, Funatsu M et al (2003) YM-266183 and YM-266184, novel thiopeptide antibiotics produced by Bacillus cereus isolated from a marine sponge II. Structure elucidation. J Antibiot 56:129–134PubMedGoogle Scholar
  56. 56.
    Wang G-Y-S, Kuramoto M, Yamada K et al (1995) Homocereulide, an extremely potent cytotoxic depsipeptide from the marine bacterium Bacillus cereus. Chem Lett 791–792Google Scholar
  57. 57.
    Pettit GR, Knight JC, Herald DL et al (2009) Antineoplastic Agents. 570. Isolation and Structure Elucidation of Bacillistatins 1 and 2 from a Marine Bacillus silvestris. J Nat Prod 72(3):366–371PubMedGoogle Scholar
  58. 58.
    Gerard JM, Haden P, Kelly MT et al (1999) Loloatins A-D, cyclic decapeptide antibiotics produced in culture by a tropical marine bacterium. J Nat Prod 62:80–85PubMedGoogle Scholar
  59. 59.
    Barsby T, Kelly MT, Gagne SM et al (2001) Bogorol A produced in culture by a marine Bacillus sp. reveals a novel template for cationic peptide antibiotics. Org Lett 3:437–440PubMedGoogle Scholar
  60. 60.
    Barsby T, Warabi K, Sorensen D et al (2006) The Bogorol family of antibiotics: template-based structure elucidation and a new approach to positioning enantiomeric pairs of amino acids. J Org Chem 71:6031–6037PubMedGoogle Scholar
  61. 61.
    Imada C, Okami Y, Hotta K (2002) Production of selenohomocystine as an antibiotic by a marine Bacillus sp. no. 14 with selenomethionine resistance. J Antibiot 55:223–226PubMedGoogle Scholar
  62. 62.
    Azumi M, K-i O, Fujita T et al (2008) Bacilosarins A and B, novel bioactive isocoumarins with unusual heterocyclic cores from the marine-derived bacterium Bacillus subtilis. Tetrahedron 64:6420–6425Google Scholar
  63. 63.
    Osawa A, Ishii Y, Sasamura N et al (2010) Hydroxy-3,4-dehydro-apo-8’-lycopene and methyl hydroxy-3,4-dehydro-apo-8’-lycopenoate, novel C(30) carotenoids produced by a mutant of marine bacterium Halobacillus halophilus. J Antibiot. doi:10.1038/ja.2010.33:1-5Google Scholar
  64. 64.
    Teasdale ME, Liu J, Wallace J et al (2009) Secondary metabolites produced by the marine bacterium Halobacillus salinus that inhibit quorum sensing-controlled phenotypes in gram-negative bacteria. Appl Environ Microbiol 75:567–572PubMedGoogle Scholar
  65. 65.
    Kanoh K, Matsuo Y, Adachi K et al (2005) Mechercharmycins A and B, cytotoxic substances from marine-derived Thermoactinomyces sp. YM3-251. J Antibiot 58:289–292PubMedGoogle Scholar
  66. 66.
    Hernandez D, Altuna M, Cuevas C et al (2008) Synthesis and antitumor activity of mechercharmycin A analogues. J Med Chem 51:5722–5730PubMedGoogle Scholar
  67. 67.
    Bae M-A, Yamada K, Ijuin Y et al (1996) Aburatubolactam A, a novel inhibitor of superoxide anion generation from a marine microorganism. Heterocycl Commun 2:315–318Google Scholar
  68. 68.
    Takahashi A, Ikeda D, Nakamura H et al (1989) Altemicidin, a new acaricidal and antitumor substance II. Structure determination. J Antibiot 42:1562–1566PubMedGoogle Scholar
  69. 69.
    Mitchell SS, Nicholson B, Teisan S et al (2004) Aureoverticillactam, a novel 22-atom macrocyclic lactam from the marine actinomycete Streptomyces aureoverticillatus. J Nat Prod 67:1400–1402PubMedGoogle Scholar
  70. 70.
    Bernan VS, Montenegro DA, Korshalla JD et al (1994) Bioxalomycins, new antibiotics produced by the marine Streptomyces sp. LL-31 F508: taxonomy and fermentation. J Antibiot 47:1417–1424PubMedGoogle Scholar
  71. 71.
    Hohmann C, Schneider K, Bruntner C et al (2009) Caboxamycin, a new antibiotic of the benzoxazole family produced by the deep-sea strain Streptomyces sp. NTK 937. J Antibiot 62:99–104PubMedGoogle Scholar
  72. 72.
    Li F, Maskey RP, Qin S et al (2005) Chinikomycins A and B: isolation, structure elucidation, and biological activity of novel antibiotics from a marine Streptomyces sp. isolate M045. J Nat Prod 68:349–353PubMedGoogle Scholar
  73. 73.
    Asolkar RN, Jensen PR, Kauffman CA et al (2006) Daryamides A-C, weakly cytotoxic polyketides from a marine-derived actinomycete of the genus Streptomyces strain CNQ-085. J Nat Prod 69:1756–1759PubMedGoogle Scholar
  74. 74.
    Macherla VR, Liu J, Bellows C et al (2005) Glaciapyrroles A, B, and C, pyrrolosesquiterpenes from a Streptomyces sp. isolated from an Alaskan marine sediment. J Nat Prod 68:780–783PubMedGoogle Scholar
  75. 75.
    Ford PW, Gadepalli M, Davidson BS (1998) Halawanones A-D, new polycyclic quinones from a marine-derived streptomycete. J Nat Prod 61:1232–1236PubMedGoogle Scholar
  76. 76.
    Takahashi C, Takada T, Yamada T et al (1994) Halichomycin, a new class of potent cytotoxic macrolide produced by an actinomycete from a marine fish. Tetrahedron Lett 35:5013–5014Google Scholar
  77. 77.
    Motohashi K, Takagi M, Shin-Ya K (2010) Tetrapeptides possessing a unique skeleton, JBIR-34 and JBIR-35, isolated from a sponge-derived actinomycete, Streptomyces sp. Sp080513GE-23. J Nat Prod 73:226–228PubMedGoogle Scholar
  78. 78.
    Manam RR, Teisan S, White DJ et al (2005) Lajollamycin, a nitro-tetraene spiro-beta-lactone-gamma-lactam antibiotic from the marine actinomycete Streptomyces nodosus. J Nat Prod 68:240–243PubMedGoogle Scholar
  79. 79.
    Hawas UW, Shaaban M, Shaaban KA et al (2009) Mansouramycins A-D, cytotoxic isoquinolinequinones from a marine streptomycete. J Nat Prod 72:2120–2124PubMedGoogle Scholar
  80. 80.
    Boonlarppradab C, Kauffman CA, Jensen PR et al (2008) Marineosins A and B, cytotoxic spiroaminals from a marine-derived actinomycete. Org Lett 10:5505–5508PubMedGoogle Scholar
  81. 81.
    Trischman JA, Tapiolas DM, Jensen PR et al (1994) Salinamides A and B: anti-inflammatory depsipeptides from a marine streptomycete. J Am Chem Soc 116:757–758Google Scholar
  82. 82.
    Strangman WK, Kwon HC, Broide D et al (2009) Potent inhibitors of pro-inflammatory cytokine production produced by a marine-derived bacterium. J Med Chem 52:2317–2327PubMedGoogle Scholar
  83. 83.
    Okazaki T, Kitahara T, Okami Y (1975) Studies on marine microorganisms. IV. A new antibiotic SS-228 Y produced by Chainia isolated from shallow sea mud. J Antibiot 28:176–184PubMedGoogle Scholar
  84. 84.
    Jeong SY, Shin HJ, Kim TS et al (2006) Streptokordin, a new cytotoxic compound of the methylpyridine class from a marine-derived Streptomyces sp. KORDI-3238. J Antibiot 59:234–240PubMedGoogle Scholar
  85. 85.
    Izumikawa M, Khan ST, Komaki H et al (2010) JBIR-31, a new teleocidin analog, produced by salt-requiring Streptomyces sp. NBRC 105896 isolated from a marine sponge. J Antibiot 63:33–36PubMedGoogle Scholar
  86. 86.
    El-Gendy MM, Shaaban M, Shaaban KA et al (2008) Essramycin: a first triazolopyrimidine antibiotic isolated from nature. J Antibiot 61:149–157PubMedGoogle Scholar
  87. 87.
    Maskey RP, Sevvana M, Uson I et al (2004) Gutingimycin: a highly complex metabolite from a marine streptomycete. Angew Chem Int Ed Engl 43:1281–1283PubMedGoogle Scholar
  88. 88.
    Martin GD, Tan LT, Jensen PR et al (2007) Marmycins A and B, cytotoxic pentacyclic C-glycosides from a marine sediment-derived actinomycete related to the genus Streptomyces. J Nat Prod 70:1406–1409PubMedGoogle Scholar
  89. 89.
    Raju R, Piggott AM, Conte M et al (2009) Naseseazines A and B: a new dimeric diketopiperazine framework from a marine-derived actinomycete, Streptomyces sp. Org Lett 11:3862–3865PubMedGoogle Scholar
  90. 90.
    Carlson JC, Li S, Burr DA et al (2009) Isolation and characterization of tirandamycins from a marine-derived Streptomyces sp. J Nat Prod 72:2076–2079PubMedGoogle Scholar
  91. 91.
    Carlson JC, Fortman JL, Anzai Y et al (2010) Identification of the tirandamycin biosynthetic gene cluster from Streptomyces sp. 307–9. Chembiochem 11:564–572PubMedGoogle Scholar
  92. 92.
    Hughes CC, Prieto-Davo A, Jensen PR et al (2008) The marinopyrroles, antibiotics of an unprecedented structure class from a marine Streptomyces sp. Org Lett 10:629–631PubMedGoogle Scholar
  93. 93.
    Hughes CC, Kauffman CA, Jensen PR et al (2010) Structures, reactivities, and antibiotic properties of the marinopyrroles A-F. J Org Chem 75:3240–3250PubMedGoogle Scholar
  94. 94.
    Hughes CC, Yang YL, Liu WT et al (2009) Marinopyrrole a target elucidation by acyl dye transfer. J Am Chem Soc 131:12094–12096PubMedGoogle Scholar
  95. 95.
    Miller ED, Kauffman CA, Jensen PR et al (2007) Piperazimycins: cytotoxic hexadepsipeptides from a marine-derived bacterium of the genus Streptomyces. J Org Chem 72:323–330PubMedGoogle Scholar
  96. 96.
    Shin HJ, Jeong HS, Lee HS et al (2007) Isolation and structure determination of streptochlorin, an antiproliferative agent from a marine-derived Streptomyces sp. 04DH110. J Microbiol Biotechnol 17:1403–1406PubMedGoogle Scholar
  97. 97.
    Choi IK, Shin HJ, Lee HS et al (2007) Streptochlorin, a marine natural product, inhibits NF-kappaB activation and suppresses angiogenesis in vitro. J Microbiol Biotechnol 17:1338–1343PubMedGoogle Scholar
  98. 98.
    Cho JY, Kwon HC, Williams PG et al (2006) Azamerone, a terpenoid phthalazinone from a marine-derived bacterium related to the genus Streptomyces (Actinomycetales). Org Lett 8:2471–2474PubMedGoogle Scholar
  99. 99.
    Cho JY, Kwon HC, Williams PG et al (2006) Actinofuranones A and B, polyketides from a marine-derived bacterium related to the genus Streptomyces (actinomycetales). J Nat Prod 69:425–428PubMedGoogle Scholar
  100. 100.
    Hughes CC, MacMillan JB, Gaudencio SP et al (2009) The ammosamides: structures of cell cycle modulators from a marine-derived Streptomyces species. Angew Chem Int Ed Engl 48:725–727PubMedGoogle Scholar
  101. 101.
    Hughes CC, MacMillan JB, Gaudencio SP et al (2009) Ammosamides A and B target myosin. Angew Chem Int Ed Engl 48:728–732PubMedGoogle Scholar
  102. 102.
    Kwon HC, Kauffman CA, Jensen PR et al (2006) Marinomycins A-D, antitumor-antibiotics of a new structure class from a marine actinomycete of the recently discovered genus “Marinispora”. J Am Chem Soc 128:1622–1632PubMedGoogle Scholar
  103. 103.
    Kwon HC, Kauffman CA, Jensen PR et al (2009) Marinisporolides, polyene-polyol macrolides from a marine actinomycete of the new genus Marinispora. J Org Chem 74:675–684PubMedGoogle Scholar
  104. 104.
    Macherla VR, Liu J, Sunga M et al (2007) Lipoxazolidinones A, B, and C: antibacterial 4-oxazolidinones from a marine actinomycete isolated from a Guam marine sediment. J Nat Prod 70:1454–1457PubMedGoogle Scholar
  105. 105.
    McArthur KA, Mitchell SS, Tsueng G et al (2008) Lynamicins A-E, chlorinated bisindole pyrrole antibiotics from a novel marine actinomycete. J Nat Prod 71:1732–1737PubMedGoogle Scholar
  106. 106.
    Feling RH, Buchanan GO, Mincer TJ et al (2003) Salinosporamide A: a highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus Salinospora. Angew Chem Int Ed 42:355–357Google Scholar
  107. 107.
    Fenical W, Jensen PR, Palladino MA et al (2009) Discovery and development of the anticancer agent salinosporamide A (NPI-0052). Bioorg Med Chem 17:2175–2180PubMedGoogle Scholar
  108. 108.
    Tsueng G, Lam KS (2007) Stabilization effect of resin on the production of potent proteasome inhibitor NPI-0052 during submerged fermentation of Salinispora tropica. J Antibiot 60:469–472PubMedGoogle Scholar
  109. 109.
    Lam KS, Tsueng G, McArthur KA et al (2007) Effects of halogens on the production of salinosporamides by the obligate marine actinomycete Salinispora tropica. J Antibiot 60:13–19PubMedGoogle Scholar
  110. 110.
    Denora N, Potts BC, Stella VJ (2007) A mechanistic and kinetic study of the beta-lactone hydrolysis of Salinosporamide A (NPI-0052), a novel proteasome inhibitor. J Pharm Sci 96:2037–2047PubMedGoogle Scholar
  111. 111.
    Eustaquio AS, O’Hagan D, Moore BS (2010) Engineering fluorometabolite production: fluorinase expression in Salinispora tropica yields fluorosalinosporamide. J Nat Prod 73:378–382PubMedGoogle Scholar
  112. 112.
    Buchanan GO, Williams PG, Feling RH et al (2005) Sporolides A and B: structurally unprecedented halogenated macrolides from the marine actinomycete Salinispora tropica. Org Lett 7:2731–2734PubMedGoogle Scholar
  113. 113.
    Udwary DW, Zeigler L, Asolkar RN et al (2007) Genome sequencing reveals complex secondary metabolome in the marine actinomycete Salinispora tropica. Proc Natl Acad Sci USA 104:10376–10381PubMedGoogle Scholar
  114. 114.
    Perrin CL, Rodgers BL, O’Connor JM (2007) Nucleophilic addition to a p-benzyne derived from an enediyne: a new mechanism for halide incorporation into biomolecules. J Am Chem Soc 129:4795–4799PubMedGoogle Scholar
  115. 115.
    Renner MK, Shen Y-C, Cheng X-C et al (1999) Cyclomarins A-C, New Antiinflammatory Cyclic Peptides Produced by a Marine Bacterium (Streptomyces sp.). J Am Chem Soc 121:11273–11276Google Scholar
  116. 116.
    Schultz AW, Oh DC, Carney JR et al (2008) Biosynthesis and structures of cyclomarins and cyclomarazines, prenylated cyclic peptides of marine actinobacterial origin. J Am Chem Soc 130:4507–4516PubMedGoogle Scholar
  117. 117.
    Asolkar RN, Freel KC, Jensen PR et al (2008) Arenamides A-C, Cytotoxic NFkappaB Inhibitors from the Marine Actinomycete Salinispora arenicola. J Nat Prod 72:396–402Google Scholar
  118. 118.
    Williams PG, Miller ED, Asolkar RN et al (2007) Arenicolides A-C, 26-membered ring macrolides from the marine actinomycete Salinispora arenicola. J Org Chem 72:5025–5034PubMedGoogle Scholar
  119. 119.
    Williams PG, Asolkar RN, Kondratyuk T et al (2007) Saliniketals A and B, bicyclic polyketides from the marine actinomycete Salinispora arenicola. J Nat Prod 70:83–88PubMedGoogle Scholar
  120. 120.
    Asolkar RN, Kirkland TN, Jensen PR et al (2010) Arenimycin, an antibiotic effective against rifampin- and methicillin-resistant Staphylococcus aureus from the marine actinomycete Salinispora arenicola. J Antibiot 63:37–39PubMedGoogle Scholar
  121. 121.
    Oh DC, Gontang EA, Kauffman CA et al (2008) Salinipyrones and pacificanones, mixed-precursor polyketides from the marine actinomycete Salinispora pacifica. J Nat Prod 71:570–575PubMedGoogle Scholar
  122. 122.
    Oh DC, Williams PG, Kauffman CA et al (2006) Cyanosporasides A and B, chloro- and cyano-cyclopenta[a]indene glycosides from the marine actinomycete “Salinispora pacifica”. Org Lett 8:1021–1024PubMedGoogle Scholar
  123. 123.
    Charan RD, Schlingmann G, Janso J et al (2004) Diazepinomicin, a new antimicrobial alkaloid from a marine Micromonospora sp. J Nat Prod 67:1431–1433PubMedGoogle Scholar
  124. 124.
    He H, Ding WD, Bernan VS et al (2001) Lomaiviticins A and B, potent antitumor antibiotics from Micromonospora lomaivitiensis. J Am Chem Soc 123:5362–5363PubMedGoogle Scholar
  125. 125.
    Perez Baz J, Canedo LM, Fernandez Puentes JL et al (1997) Thiocoraline, a novel depsipeptide with antitumor activity produced by a marine Micromonospora. II. Physico-chemical properties and structure determination. J Antibiot 50:738–741PubMedGoogle Scholar
  126. 126.
    Erba E, Bergamaschi D, Ronzoni S et al (1999) Mode of action of thiocoraline, a natural marine compound with anti-tumour activity. Br J Cancer 80:971–980PubMedGoogle Scholar
  127. 127.
    Negri A, Marco E, Garcia-Hernandez V et al (2007) Antitumor activity, X-ray crystal structure, and DNA binding properties of thiocoraline A, a natural bisintercalating thiodepsipeptide. J Med Chem 50:3322–3333PubMedGoogle Scholar
  128. 128.
    Canedo LM, Fernandez-Puentes JL, Baz JP (2000) IB-96212, a novel cytotoxic macrolide produced by a marine Micromonospora. II. Physico-chemical properties and structure determination. J Antibiot 53:479–483PubMedGoogle Scholar
  129. 129.
    Riedlinger J, Reicke A, Zahner H et al (2004) Abyssomicins, inhibitors of the para-aminobenzoic acid pathway produced by the marine Verrucosispora strain AB-18-032. J Antibiot 57:271–279PubMedGoogle Scholar
  130. 130.
    Fiedler HP, Bruntner C, Riedlinger J et al (2008) Proximicin A, B and C, novel aminofuran antibiotic and anticancer compounds isolated from marine strains of the actinomycete Verrucosispora. J Antibiot 61:158–163PubMedGoogle Scholar
  131. 131.
    Shirai M, Okuda M, Motohashi K et al (2010) Terpenoids produced by actinomycetes: isolation, structural elucidation and biosynthesis of new diterpenes, gifhornenolones A and B from Verrucosispora gifhornensis YM28-088. J Antibiot 63:245–250PubMedGoogle Scholar
  132. 132.
    Shin J, Seo Y, Lee HS et al (2003) A new cyclic peptide from a marine-derived bacterium of the genus Nocardiopsis. J Nat Prod 66:883–884PubMedGoogle Scholar
  133. 133.
    Cho JY, Williams PG, Kwon HC et al (2007) Lucentamycins A-D, cytotoxic peptides from the marine-derived actinomycete Nocardiopsis lucentensis. J Nat Prod 70:1321–1328PubMedGoogle Scholar
  134. 134.
    Schumacher RW, Harrigan BL, Davidson BS (2001) Kahakamides A and B, new neosidomycin metabolites from a marine-derived actinomycete. Tetrahedron Lett 42:5133–5135Google Scholar
  135. 135.
    Pimentel-Elardo SM, Gulder TAM, Hentschel U et al (2008) Cebulactams A1 and A2, new macrolactams isolated from Saccharopolyspora cebuensis, the first obligate marine strain of the genus Saccharopolyspora. Tetrahedron Lett 49:6889–6892Google Scholar
  136. 136.
    Maloney KN, Macmillan JB, Kauffman CA et al (2009) Lodopyridone, a structurally unprecedented alkaloid from a marine actinomycete. Org Lett 11:5422–5424PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Brian T. Murphy
    • 1
  • Paul R. Jensen
    • 1
  • William Fenical
    • 1
  1. 1.Center for Marine Biotechnology and BiomedicineScripps Institution of Oceanography, University of CaliforniaSan DiegoUSA

Personalised recommendations