Skip to main content

Marine Protein Toxins

  • Reference work entry
  • First Online:
Handbook of Marine Natural Products

Abstract

Many marine animals produce protein toxins that are used for both predation and protection from predators. It is known that venomous stings by specific fish and jellyfish are sometimes fatal. For many years, detailed characterization of the causative toxins has been hampered by their instability. In recent years, various protein toxins have been successfully isolated and characterized from marine venomous animals. These studies have revealed that marine protein toxins exhibit unique structures and biological activities. A novel protein toxin family from the box jellyfish, the membrane-attack complex/perforin (MACPF) protein toxins isolated from the sea anemone, DNase II toxins from the starfish, and a dermatopontin family toxin from fire coral are representatives of some of these unique toxins. In this chapter, the most current studies on protein toxins isolated from marine venomous animals are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Halstead BW (1988) Hydroids, jellyfishes, sea anemones, corals. Poisonous and venomous marine animals of the world. Darwin Press, Princeton, pp 99–186

    Google Scholar 

  2. Honma T, Shiomi K (2006) Peptide toxins in sea anemones: structural and functional aspects. Mar Biotechnol 8:1–10

    PubMed  CAS  Google Scholar 

  3. Halai R, Craik DJ (2009) Conotoxins: natural product drug leads. Nat Prod Rep 26:526–536

    PubMed  CAS  Google Scholar 

  4. Halstead BW (1988) Venomous scorpionfishes. Poisonous and venomous marine animals of the world. Darwin Press, Princeton, pp 839–906

    Google Scholar 

  5. Ghadessy FJ, Chen D, Kini M, Chung MCM, Jeyaseelan K, Khoo HE, Yuen R (1996) Stonustoxin is a novel lethal factor from stonefish (Synanceja horrida) venom - cDNA cloning and characterization. J Biol Chem 271:25575–25581

    PubMed  CAS  Google Scholar 

  6. Austin L, Gills RG, Youatt G (1965) Stonefish venom: some biochemical and chemical observations. Aust J Exp Biol Med Sci 43:79–90

    PubMed  CAS  Google Scholar 

  7. Woo JS, Imm JH, Min CK, Kim KJ, Cha SS, Oh BH (2006) Structural and functional insights into the B30.2/SPRY domain. EMBO J 25:1353–1363

    PubMed  CAS  Google Scholar 

  8. Garnier P, Ducancel F, Ogawa T, Boulain JC, Goudey-Perrière F, Perrière C, Ménez A (1997) Complete amino-acid sequence of the beta-subunit of VTX from venom of the stonefish (Synanceia verrucosa) as identified from cDNA cloning experiments. Biochem Biophys Acta 1337:1–5

    PubMed  CAS  Google Scholar 

  9. Garnier P, Goudey-Perrière F, Breton P, Dewulf C, Petek F, Perrière C (1995) Enzymatic properties of the stonefish (Synanceia verrucosa Bloch and Schneider, 1801) venom and purification of a lethal, hypotensive and cytolytic factor. Toxicon 33:143–155

    PubMed  CAS  Google Scholar 

  10. Ueda A, Suzuki M, Honma T, Nagai H, Nagashima Y, Shiomi K (2006) Purification, properties and cDNA cloning of neoverrucotoxin (neoVTX), a hemolytic lethal factor from the stonefish Synanceia verrucosa venom. Biochim Biophys Acta 1760:1713–1722

    PubMed  CAS  Google Scholar 

  11. Low KS, Gwee MC, Yuen R, Gopalakrishnakone P, Khoo HE (1993) Stonustoxin: a highly potent endothelium-dependent vasorelaxant in the rat. Toxicon 31:1471–1478

    PubMed  CAS  Google Scholar 

  12. Liew HC, Khoo HE, Moore PK, Bhatia M, Lu J, Moochhala SM (2007) Synergism between hydrogen sulfide (H2S) and nitric oxide (NO) in vasorelaxation induced by stonustoxin (SNTX), a lethal and hypotensive protein factor isolated from stonefish Synanceja horrida venom. Life Sci 80:1664–1668

    PubMed  CAS  Google Scholar 

  13. Sung JML, Low KS, Khoo HE (2002) Characterization of the mechanism underlying stonustoxin-mediated relaxant response in the rat aorta in vitro. Biochem Pharmacol 63:1113–1118

    PubMed  CAS  Google Scholar 

  14. Yuen R, Cai B, Khoo HE (1995) Production and characterization of monoclonal antibodies against stonustoxin from Synanceja horrida. Toxicon 33:1557–1564

    PubMed  CAS  Google Scholar 

  15. Chaatwal I, Dreyer F (1992) Isolation and characterization of dracotoxin from the venom of the greater weever fish Trachinus draco. Toxicon 30:87–93

    Google Scholar 

  16. Russel FE, Fairchild MD, Michaelson J (1958) Some properties of the venom of the stingray. Med Arts Sci 12:78–86

    PubMed  CAS  Google Scholar 

  17. Magalhães KW, Lima C, Piran-Soares AA, Marques EE, Hiruma-Lima CA, Lopes-Ferreira M (2006) Biological and biochemical properties of the Brazilian Potamotrygon stingrays: Potamotrygon cf. scobina and Potamotrygon gr. orbignyi. Toxicon 47:575–583

    PubMed  Google Scholar 

  18. Conceição K, Konno K, Melo RL, Marques EE, Hiruma-Lima CA, Lima C, Richardson M, Pimenta DC, Lopes-Ferreira M (2006) Orpotrin: a novel vasoconstrictor peptide from the venom of the Brazilian stingray Potamotrygon gr. orbignyi. Peptides 27:3039–3046

    PubMed  Google Scholar 

  19. Perriere C, Goudey-Perriere F (1989) Origin and function of supporting cells in the venom glands of the lesser weeverfish (Trachinus vipera). Toxicon 27:287–295

    PubMed  CAS  Google Scholar 

  20. Auddy B, Gomes A (1996) Indian catfish (Plotosus canius, Hamilton) venom. Occurrence of lethal protein toxin (toxin-PC). Adv Exp Med Biol 391:225–229

    PubMed  CAS  Google Scholar 

  21. Schaeffer RC Jr, Carlson RW, Russell FE (1971) Some chemical properties of the venom of the scorpionfish Scorpaena guttata. Toxicon 9:69–78

    PubMed  CAS  Google Scholar 

  22. Hahn ST, O'Connor JM (2000) An investigation of the biological activity of bullrout (Notesthes robusta) venom. Toxicon 38:79–89

    PubMed  CAS  Google Scholar 

  23. Lopes-Ferreira M, Barbaro KC, Cardoso DF, Moura-Da-Silva AM, Mota I (1998) Thalassophryne nattereri fish venom: biological and biochemical characterization and serum neutralization of its toxic activities. Toxicon 36:405–410

    PubMed  CAS  Google Scholar 

  24. Williamson J, Burnett J (1995) Clinical toxicology of marine coelenterate injuries. In: Meiter J, White J (eds) Clinical toxicology of animal venoms and poisons. CRC Press, Boca Raton, pp 89–116

    Google Scholar 

  25. Walker MJA (1988) Coelenterate and Echinoderm toxins: mechanisms and actions. In: Tu AT (ed) Handbook of natural toxins, vol 3. Marcel Dekker, New York, pp 279–325

    Google Scholar 

  26. Lewis C, Bentlage B (2009) Evolution of box jellyfish (Cnidaria: Cubozoa), a group of highly toxic invertebrates. Zootaxa 2030:59–65

    Google Scholar 

  27. Fenner PJ, Williamson JA (1996) Worldwide deaths and severe envenomation from jellyfish stings. Med J Australia 165:658–661

    PubMed  CAS  Google Scholar 

  28. Fenner PJ, Harrison SL (2000) Irukandji and Chironex fleckeri jellyfish envenomation in tropical Australia. Wilderness Environ Med 11:233–240

    PubMed  CAS  Google Scholar 

  29. Nagai H, Takuwa K, Nakao M, Ito E, Miyake M, Noda M, Nakajima T (2000) Novel proteinaceous toxins from the box jellyfish (sea wasp) Carybdea rastoni. Biochem Biophys Res Commun 275:582–588

    PubMed  CAS  Google Scholar 

  30. Thomas CS, Scott SA, Galanis DJ, Goto RS (2001) Box jellyfish (Carybdea alata) in Waikiki: Their influx cycle plus the analgestic effect of hot and cold packs on their stings to swimmers at the beach: a randomized, placebo-controlled, clinical trial. Hawaii Med J 60:100–107

    PubMed  CAS  Google Scholar 

  31. Nagai H, Takuwa K, Nakao M, Sakamoto B, Crow GL, Nakajima T (2000) Isolation and characterization of a novel protein toxin from the Hawaiian box jellyfish (sea wasp) Carybdea alata. Biochem Biophys Res Commun 275:589–594

    PubMed  CAS  Google Scholar 

  32. Nagai H, Takuwa-Kuroda K, Nakao M, Oshiro N, Iwanaga S, Nakajima T (2002) A novel protein toxin from the deadly box jellyfish (Sea Wasp, Habu-kurage) Chiropsalmus quadrigatus. Biosci Biotech Biochem 66:97–102

    Google Scholar 

  33. Kini RM, Evans HJ (1989) A common cytolytic region in myotoxins, hemolysins, cardiotoxins and antibacterial peptides. Int J Peptide Protein Res 34:277–286

    CAS  Google Scholar 

  34. Belmonte G, Menestrina G, Pederzolli C, Krizaj I, Gubensek F, Turk T, Macek P (1994) Primary and secondary structure of a pore-forming toxin from the sea anemone, Actinia equina L., and its association with lipid vesicles. Biochem Biophys Acta 1192:197–204

    PubMed  CAS  Google Scholar 

  35. Rottini G, Gusmani L, Parovel E, Avian M, Patriarca P (1995) Purification and properties of a cytolytic toxin in venom of the jellyfish Carybdea marsupialis. Toxicon 33:315–326

    PubMed  CAS  Google Scholar 

  36. Sánchez-Rodríguez J, Torrens E, Segura-Puertas L (2006) Partial purification and characterization of a novel neurotoxin and three cytolysins from box jellyfish (Carybdea marsupialis) nematocyst venom. Arch Toxicol 80:163–168

    PubMed  Google Scholar 

  37. Brinkman D, Burnell J (2007) Identification, cloning and sequencing of two major venom proteins from the box jellyfish, Chironex fleckeri. Toxicon 50:850–860

    PubMed  CAS  Google Scholar 

  38. Brinkman D, Burnell J (2008) Partial purification of cytolytic venom proteins from the box jellyfish, Chironex fleckeri. Toxicon 51:853–863

    PubMed  CAS  Google Scholar 

  39. Othman I, Burnett JW (1990) Techniques applicable for purifying Chironex fleckeri (box-jellyfish) venom. Toxicon 28:821–835

    PubMed  CAS  Google Scholar 

  40. Burnett JW, Bloom DA, Imafuku S, Houck H, Vanucci S, Aurelian L, Morris SC (1996) Coelenterate venom research 1991–1995: clinical, chemical and immunological aspects. Toxicon 34:1377–1383

    PubMed  CAS  Google Scholar 

  41. Ishikawa T, Vucenik I, Shamsuddin A, Niculescu F, Burnett JW (2004) Two new actions of sea nettle (Chrysaora quinquecirrha) nematocyst venom: studies on the mechanism of actions on complement activation and on the central nervous system. Toxicon 44:895–899

    PubMed  CAS  Google Scholar 

  42. Cariello L, Romano G, Spagnuolo A, Zanetti L (1988) Isolation and partial characterization of rhizolysin, a high molecular weight protein with hemolytic activity, from the jellyfish Rhizostoma pulmo. Toxicon 26:1057–1065

    PubMed  CAS  Google Scholar 

  43. Ghosh TK, Gomes A, Chaudhuri AK (1993) Isolation of a toxin from jellyfish Acromitus rabanchatu and its effect on skeletal muscle. Toxicon 31:873–880

    PubMed  CAS  Google Scholar 

  44. Lotan A, Fishman L, Zlotkin E (1996) Toxin compartmentation and delivery in the Cnidaria: the nematocyst's tubule as a multiheaded poisonous arrow. J Exp Zool 275:444–451

    PubMed  CAS  Google Scholar 

  45. Sosa BP, Alagón AC, Martin BM, Possani LD (1986) Biochemical characterization of the phospholipase A2 purified from the venom of the Mexican beaded lizard (Heloderma horridum horridum Wiegmann). Biochemistry 25:2927–2933

    PubMed  CAS  Google Scholar 

  46. Shipolini RA, Doonan S, Vernon CA (1974) The disulphide bridges of phospholipase A2 from bee venom. Eur J Biochem 48:477–483

    PubMed  CAS  Google Scholar 

  47. Tamkun MM, Hessinger DA (1981) Isolation and partial characterization of a hemolytic and toxic protein from the nematocyst venom of the Portuguese Man-of-War, Physalia physalis. Biochim Biophys Acta 667:87–98

    PubMed  CAS  Google Scholar 

  48. Anderluh G, Macek P (2002) Cytolytic peptide and protein toxins from sea anemones (Anthozoa: Actiniaria). Toxicon 40:111–124

    PubMed  CAS  Google Scholar 

  49. Kristan K, Podlesek Z, Hojnik V, Gutiérrez-Aguirre I, Guncar G, Turk D, González-Mañas JM, Lakey JH, Macek P, Anderluh G (2004) Pore formation by equinatoxin, a eukaryotic pore-forming toxin, requires a flexible N-terminal region and a stable beta-sandwich. J Biol Chem 279:46509–46517

    PubMed  CAS  Google Scholar 

  50. Bakrac B, Gutiérrez-Aguirre I, Podlesek Z, Sonnen AF, Gilbert RJ, Macek P, Lakey JH, Anderluh G (2008) Molecular determinants of sphingomyelin specificity of a eukaryotic pore-forming toxin. J Biol Chem 283:18665–18677

    PubMed  CAS  Google Scholar 

  51. Athanasiadis A, Anderluh G, Macek P, Turk D (2001) Crystal structure of the soluble form of equinatoxin II, a pore-forming toxin from the sea anemone Actinia equina. Structure 9:341–346

    PubMed  CAS  Google Scholar 

  52. Mancheño JM, Martín-Benito J, Martínez-Ripoll M, Gavilanes JG, Hermoso JA (2003) Crystal and electron microscopy structures of sticholysin II actinoporin reveal insights into the mechanism of membrane pore formation. Structure 11:1319–1328

    PubMed  Google Scholar 

  53. Kawashima Y, Nagai H, Ishida M, Nagashima Y, Shiomi K (2003) Primary structure of echotoxin 2, an actinoporin-like hemolytic toxin from the salivary gland of the marine gastropod Monoplex echo. Toxicon 42:491–497

    PubMed  CAS  Google Scholar 

  54. Shiomi K, Kawashima Y, Mizukami M, Nagashima Y (2002) Properties of proteinaceous toxins in the salivary gland of the marine gastropod (Monoplex echo). Toxicon 40:563–571

    PubMed  CAS  Google Scholar 

  55. Gutiérrez-Aguirre I, Trontelj P, Macek P, Lakey JH, Anderluh G (2006) Membrane binding of zebrafish actinoporin-like protein: AF domains, a novel superfamily of cell membrane binding domains. Biochem J 398:381–392

    PubMed  Google Scholar 

  56. Nagai H, Oshiro N, Takuwa-Kuroda K, Iwanaga S, Nozaki M, Nakajima T (2002) Novel proteinaceous toxins from the nematocyst venom of the Okinawan sea anemone Phyllodiscus semoni Kwietniewski. Biochem Biophys Res Commun 294:760–763

    PubMed  CAS  Google Scholar 

  57. Satoh H, Oshiro N, Iwanaga S, Namikoshi M, Nagai H (2007) Characterization of PsTX-60B, a new membrane-attack complex/perforin (MACPF) family toxin, from the venomous sea anemone Phyllodiscus semoni. Toxicon 49:1208–1210

    PubMed  CAS  Google Scholar 

  58. Oshiro N, Kobayashi C, Iwanaga S, Nozaki M, Namikoshi M, Spring J, Nagai H (2004) A new membrane-attack complex/perforin (MACPF) domain lethal toxin from the nematocyst venom of the Okinawan sea anemone Actineria villosa. Toxicon 43:225–228

    PubMed  CAS  Google Scholar 

  59. Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, Khanna A, Marshall M, Moxon S, Sonnhammer EL, Studholme DJ, Yeats C, Eddy SR (2004) The Pfam protein families database. Nucleic Acids Res 32:D138–D141

    PubMed  CAS  Google Scholar 

  60. Letunic I, Goodstadt L, Dickens NJ, Doerks T, Schultz J, Mott R, Ciccarelli F, Copley RR, Ponting CP, Bork P (2002) Recent improvements to the SMART domain-based sequence annotation resource. Nucleic Acids Res 30:242–244

    PubMed  CAS  Google Scholar 

  61. Müller-Eberhard HJ (1986) The membrane attack complex of complement. Annu Rev Immunol 4:503–528

    PubMed  Google Scholar 

  62. Liu CC, Walsh CM, Young JD (1995) Perforin: structure and function. Immunol Today 16:194–201

    PubMed  Google Scholar 

  63. Nagai H, Oshiro N, Takuwa-Kuroda K, Iwanaga S, Nozaki M, Nakajima T (2002) A new polypeptide toxin from the nematocyst venom of an Okinawan sea anemone Phyllodiscus semoni (Japanese name “unbachi-isoginchaku”). Biosci Biotechnol Biochem 66:2621–2625

    PubMed  CAS  Google Scholar 

  64. Uechi G, Toma H, Arakawa T, Sato Y (2005) Molecular cloning and functional expression of hemolysin from the sea anemone Actineria villosa. Protein Expr Purif 40:379–384

    PubMed  CAS  Google Scholar 

  65. Mizuno M, Nishikawa K, Yuzawa Y, Kanie T, Mori H, Araki Y, Hotta N, Matsuo S (2000) Acute renal failure after a sea anemone sting. Am J Kidney Dis 36:E10

    PubMed  CAS  Google Scholar 

  66. Mizuno M, Nozaki M, Morine N, Suzuki N, Nishikawa K, Morgan BP, Matsuo S (2007) A protein toxin from the sea anemone Phyllodiscus semoni targets the kidney and causes a severe renal injury with predominant glomerular endothelial damage. Am J Pathol 171:402–414

    PubMed  CAS  Google Scholar 

  67. Bernheimer AW, Avigad LS (1978) A cholesterol-inhibitable cytolytic protein from the sea anemone Metridium senile. Biochim Biophys Acta 541:96–106

    CAS  Google Scholar 

  68. Lewis JW (2006) Biology and ecology of the hydrocoral millepora on coral reefs. Adv Mar Biol 50:1–55

    PubMed  Google Scholar 

  69. Wittle LW, Middlebrook RE, Lane CE (1971) Isolation and partial purification of a toxin from Millepora alcicornis. Toxicon 9:327–331

    PubMed  CAS  Google Scholar 

  70. Middlebrook RE, Wittle LW, Scura ED, Lane CE (1971) Isolation and purification of a toxin from Millepora dichotoma. Toxicon 9:333–336

    PubMed  CAS  Google Scholar 

  71. Wittle LW, TScura ED, Middlebrook RE (1974) Stinging coral (Millepora tenera) toxin: a comparison of crude extracts with isolated nematocyst extracts. Toxicon 12:481–486

    PubMed  CAS  Google Scholar 

  72. Shiomi K, Hosaka M, Yanaike N, Yamanaka H, Kikuchi T (1989) Partial characterization of venoms from two species of fire corals Millepora platyphylla and Millepora dichotoma. Nippon Suisan Gakkaishi 55:357–362

    CAS  Google Scholar 

  73. Radwan FF, Aboul-Dahab HM (2004) Milleporin-1, a new phospholipase A2 active protein from the fire coral Millepora platyphylla nematocysts. Comp Biochem Physiol C 139:267–272

    Google Scholar 

  74. Iguchi A, Iwanaga S, Nagai H (2008) Isolation and characterization of a novel protein toxin from fire coral. Biochem Biophys Res Commun 365:107–112

    PubMed  CAS  Google Scholar 

  75. Neame PJ, Choi HU, Rosenberg LC (1989) The isolation and primary structure of a 22-kDa extracellular matrix protein from bovine skin. J Biol Chem 264:5474–5479

    PubMed  CAS  Google Scholar 

  76. Superti-Furga A, Rocchi M, Schafer BW, Gitzelmann R (1993) Complementary DNA sequence and chromosomal mapping of a human proteoglycan-binding cell-adhesion protein (dermatopontin). Genomics 17:463–467

    PubMed  CAS  Google Scholar 

  77. Cronshaw AD, MacBeath JR, Shackleton DR, Collins JF, Fothergill-Gilmore LA, Hulmes DJ (1993) TRAMP (tyrosine rich acidic matrix protein), a protein that co-purifies with lysyl oxidase from porcine skin. Identification of TRAMP as the dermatan sulphate proteoglycan-associated 22K extracellular matrix protein. Matrix 13:255–266

    PubMed  CAS  Google Scholar 

  78. Tzen CY, Huang YW (2004) Cloning of murine early quiescence-1 gene: the murine counterpart of dermatopontin gene can induce and be induced by cell quiescence. Exp Cell Res 294:30–38

    PubMed  CAS  Google Scholar 

  79. Fujii N, Minetti CA, Nakhasi HL, Chen SW, Barbehenn E, Nunes PH, Nguyen NY (1992) Isolation, cDNA cloning, and characterization of an 18-kDa hemagglutinin and amebocyte aggregation factor from Limulus polyphemus. J Biol Chem 267:22452–22459

    PubMed  CAS  Google Scholar 

  80. Schütze J, Skorokhod A, Müller IM, Müller WE (2001) Molecular evolution of the metazoan extracellular matrix: cloning and expression of structural proteins from the demosponges Suberites domuncula and Geodia cydonium. J Mol Evol 53:402–415

    PubMed  Google Scholar 

  81. Marxen JC, Nimtz M, Becker W, Mann K (2003) The major soluble 19.6 kDa protein of the organic shell matrix of the freshwater snail Biomphalaria glabrata is an N-glycosylated dermatopontin. Biochim Biophys Acta 1650:92–98

    PubMed  CAS  Google Scholar 

  82. Okamoto O, Fujiwara S (2006) Dermatopontin, a novel player in the biology of the extracellular matrix. Connect Tissue Res 47:177–189

    PubMed  CAS  Google Scholar 

  83. MacPherson JC, Jacobs RS (2000) An 18.5 kDa protein from the amebocyte of Limulus polyphemus, homologous to the previously described amebocyte aggregation factor, expresses alternative phospholipase A2 activity. Comp Biochem Physiol B 127:31–44

    PubMed  CAS  Google Scholar 

  84. Lomonte B, Rojas G, Gutierrez JM, Ramirez G (1990) Isolation of a galactose-binding lectin from the venom of the snake Bothrops godmani (Godmann's pit viper). Toxicon 28:75–81

    PubMed  CAS  Google Scholar 

  85. Liang SP, Pan X (1995) A lectin-like peptide isolated from the venom of the Chinese bird spider Selenocosmia huwena. Toxicon 33:875–882

    PubMed  CAS  Google Scholar 

  86. Aragon-Ortiz F, Brenes-Brenes JR, Gubensek F (1989) Characterization of a lectin-like protein isolated from Lachesis muta snake venom. Rev Biol Trop 37:79–83

    PubMed  CAS  Google Scholar 

  87. Carvalho DD, Marangoni S, Oliveira B, Novello JC (1998) Isolation and characterization of a new lectin from the venom of the snake Bothrops jararacussu. Biochem Mol Biol Int 44:933–938

    CAS  Google Scholar 

  88. de Carvalho DD, Schmitmeier S, Novello JC, Markland FS (2001) Effect of BJcuL (a lectin from the venom of the snake Bothrops jararacussu) on adhesion and growth of tumor and endothelial cells. Toxicon 39:1471–1476

    PubMed  Google Scholar 

  89. Panunto PC, da Silva MA, Linardi A, Buzin MP, Melo SESFC, Mello SM, Prado-Franceschi J, Hyslop S (2006) Biological activities of a lectin from Bothrops jararacussu snake venom. Toxicon 47:21–31

    PubMed  CAS  Google Scholar 

  90. Klug M, Weber J, Tardent P (1989) Hemolytic and toxic properties of Hydra attenuata nematocysts. Toxicon 27:325–339

    PubMed  CAS  Google Scholar 

  91. Zhang M, Fishman Y, Sher D, Zlotkin E (2003) Hydralysin, a novel animal group-selective paralytic and cytolytic protein from a noncnidocystic origin in hydra. Biochemistry 42:8939–8944

    PubMed  CAS  Google Scholar 

  92. Sher D, Fishman Y, Zhang M, Lebendiker M, Gaathon A, Mancheño JM, Zlotkin E (2005) Hydralysins, a new category of beta-pore-forming toxins in cnidaria. J Biol Chem 280:22847–2255

    PubMed  CAS  Google Scholar 

  93. Sher D, Knebel A, Bsor T, Nesher N, Tal T, Morgenstern D, Cohen E, Fishman Y, Zlotkin E (2005) Toxic polypeptides of the hydra--a bioinformatic approach to cnidarian allomones. Toxicon 45:865–879

    PubMed  CAS  Google Scholar 

  94. Shiomi K, Midorikawa S, Ishida M, Nagashima Y, Nagai H (2004) Plancitoxins, lethal factors from the crown-of-thorns starfish Acanthaster planci, are deoxyribonucleases II. Toxicon 44:499–506

    PubMed  CAS  Google Scholar 

  95. Ota E, Nagashima Y, Shiomi K, Sakurai T, Kojima C, Waalkes MP, Himeno S (2006) Caspase-independent apoptosis induced in rat liver cells by plancitoxin I, the major lethal factor from the crown-of-thorns starfish Acanthaster planci venom. Toxicon 48:1002–1010

    PubMed  CAS  Google Scholar 

  96. Kini RM (2003) Excitement ahead: structure, function and mechanism of snake venom phospholipase A2 enzymes. Toxicon 42:827–840

    PubMed  CAS  Google Scholar 

  97. Shiomi K, Kazama A, Shimakura K, Nagashima Y (1998) Purification and properties of phospholipases A2 from the crown-of-thorns starfish (Acanthaster planci) venom. Toxicon 36:589–599

    PubMed  CAS  Google Scholar 

  98. Ota E, Nagai H, Nagashima Y, Shiomi K (2006) Molecular cloning of two toxic phospholipases A2 from the crown-of-thorns starfish Acanthaster planci venom. Comp Biochem Physiol B 143:54–60

    PubMed  Google Scholar 

  99. Alender CB, Feigen GA, Tomita JT (1965) Isolation and characterization of sea urchin toxin. Toxicon 3:9–17

    PubMed  CAS  Google Scholar 

  100. Mebs D (1984) A toxin from the sea urchin Tripneustes gratilla. Toxicon 22:306–307

    PubMed  CAS  Google Scholar 

  101. Nakagawa H, Tu AT, Kimura A (1991) Purification and characterization of Contractin A from the pedicellarial venom of sea urchin, Toxopneustes pileolus. Arch Biochem Biophys 284:279–284

    PubMed  CAS  Google Scholar 

  102. Nakagawa H, Tanigawa T, Tomita K, Tomihara Y, Araki Y, Tachikawa E (2003) Recent studies on the pathological effects of purified sea urchin toxins. J Toxicol Toxin Rev 22:633–649

    CAS  Google Scholar 

  103. Takei M, Nakagawa H (2006) A sea urchin lectin, SUL-1, from the Toxopneustid sea urchin induces DC maturation from human monocyte and drives Th1 polarization in vitro. Toxicol Appl Pharamcol 213:27–36

    CAS  Google Scholar 

  104. Sheumack DD, Howden ME, Spence I, Quinn RJ (1978) Maculotoxin: a neurotoxin from the venom glands of the octopus Hapalochlaena maculosa identified as tetrodotoxin. Science 199:188–189

    PubMed  CAS  Google Scholar 

  105. Ghiretti F (1959) Cephalotoxin: the Crab-paralysing Agent of the Posterior Salivary Glands of Cephalopods. Nature 183:1192–1193

    Google Scholar 

  106. Ghiretti F (1960) Toxicity of octopus saliva against crustaces. Ann N Y Acad Sci 90:726–741

    PubMed  CAS  Google Scholar 

  107. MacDonald NM, Cottrell GA (1970) Purification and mode of action of toxin from Eledone cirrhosa. Toxicon 8:142

    Google Scholar 

  108. Songdahl JH, Shapiro BJ (1974) Purification and composition of a toxin from the posterior salivary gland of Octopus dofleini. Toxicon 12:109–115

    PubMed  CAS  Google Scholar 

  109. Cariello L, Zanetti L (1977) Alpha- and beta-cephalotoxin: two paralysing proteins from posterior salivary glands of Octopus vulgaris. Comp Biochem Physiol C 57:169–173

    PubMed  CAS  Google Scholar 

  110. Ueda A, Nagai H, Ishida M, Nagashima Y, Shiomi K (2008) Purification and molecular cloning of SE-cephalotoxin, a novel proteinaceous toxin from the posterior salivary gland of cuttlefish Sepia esculenta. Toxicon 52:574–581

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks Okinawa Prefectural Institute of Health and Environment for the courtesy of the photographs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Nagai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this entry

Cite this entry

Nagai, H. (2012). Marine Protein Toxins. In: Fattorusso, E., Gerwick, W., Taglialatela-Scafati, O. (eds) Handbook of Marine Natural Products. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3834-0_29

Download citation

Publish with us

Policies and ethics