Advertisement

Fluorescent Proteins from the Oceans: Marine Macromolecules as Advanced Imaging Tools for Biomedical Research

  • Edward G. Smith
  • Cecilia D’Angelo
  • Franz Oswald
  • G. Ulrich Nienhaus
  • J. Wiedenmann
Reference work entry

Abstract

Fluorescent proteins (FPs) of the green fluorescent protein (GFP)-like protein family are not only responsible for the spectacular colors of some reef corals, but they can be also found in several other marine invertebrate taxa. The chromophore of these proteins resides in the center of an 11-stranded β-barrel and is formed by autocatalytic reactions in the presence of oxygen. In some proteins, photochemical reactions are involved in the maturation of the chromophore. The variability of the chromophore structures and the interactions with the surrounding protein scaffold are responsible for the diverse emission colors, ranging from cyan to green and yellow to red. FPs develop their fluorescence also upon expression in recombinant cells which allows their use as genetically encoded markers. Application examples include the labeling of cells, cellular compartment or proteins, studies of gene activity, and sensor studies. Recently, photoactivatable FPs enabled live-cell imaging with a resolution beyond the diffraction barrier of optical microscopy. Nevertheless, before their potential as advanced markers can be fully exploited, FPs often need to undergo extensive protein engineering to alter some detrimental properties such as the tendency to form stable multimers.

Keywords

Green Fluorescent Protein Fluorescence Resonance Energy Transfer Emission Color Fluorescence Resonance Energy Transfer Efficiency Oligomerization Degree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

J.W. acknowledges funding by the Deutsche Forschungsgemeinschaft (DFG) (Grant Wi1990/2-1); the Network Fluorescence Applications in Biotechnology and Life Sciences, FABLS, Australia; the Landesstiftung Baden-Württemberg (Elite Postdoctoral Program); the Natural Environment Research Council, UK (NE/G009643/1; NE/I01683X/1); and the University of Southampton. G.U.N. was supported by the DFG and the State of Baden-Württemberg through the Center for Functional Nanostructures, by DFG grant NI 291/9 and by the Baden-Württemberg Stiftung. E.G.S is funded by a NERC-studentship.

References

  1. 1.
    Adam V, Lelimousin M, Boehme S, Desfonds G, Nienhaus K et al (2008) Structural characterization of IrisFP, an optical highlighter undergoing multiple photo-induced transformations. Proc Natl Acad Sci USA 105:18343–18348PubMedGoogle Scholar
  2. 2.
    Alieva NO, Konzen KA, Field SF, Meleshkevitch EA, Hunt ME et al (2008) Diversity and evolution of coral fluorescent proteins. PLoS One 3:e2680PubMedGoogle Scholar
  3. 3.
    Ando R, Hama H, Yamamoto-Hino M, Mizuno H, Miyawaki A (2002) An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Proc Natl Acad Sci USA 99:12651–12656PubMedGoogle Scholar
  4. 4.
    Ando R, Mizuno H, Miyawaki A (2004) Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting. Science 306:1370–1373PubMedGoogle Scholar
  5. 5.
    Andresen M, Wahl MC, Stiel AC, Grater F, Schafer LV et al (2005) Structure and mechanism of the reversible photoswitch of a fluorescent protein. Proc Natl Acad Sci USA 102:13070–13074PubMedGoogle Scholar
  6. 6.
    Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645PubMedGoogle Scholar
  7. 7.
    Bevis BJ, Glick BS (2002) Rapidly maturing variants of the Discosoma red fluorescent protein (DsRed). Nat Biotechnol 20:83–87PubMedGoogle Scholar
  8. 8.
    Campbell RE, Tour O, Palmer AE, Steinbach PA, Baird GS et al (2002) A monomeric red fluorescent protein. Proc Natl Acad Sci USA 99:7877–7882PubMedGoogle Scholar
  9. 9.
    Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805PubMedGoogle Scholar
  10. 10.
    Chattoraj M, King BA, Bublitz GU, Boxer SG (1996) Ultra-fast excited state dynamics in green fluorescent protein: multiple states and proton transfer. Proc Natl Acad Sci USA 93:8362–8367PubMedGoogle Scholar
  11. 11.
    Chudakov DM, Lukyanov S, Lukyanov KA (2007) Tracking intracellular protein movements using photoswitchable fluorescent proteins PS-CFP2 and Dendra2. Nat Protoc 2:2024–2032PubMedGoogle Scholar
  12. 12.
    Chudakov DM, Lukyanov S, Lukyanov KA (2007) Using photoactivatable fluorescent protein Dendra2 to track protein movement. Biotechniques 42:553, 555, 557 passimPubMedGoogle Scholar
  13. 13.
    Cody CW, Prasher DC, Westler WM, Prendergast FG, Ward WW (1993) Chemical structure of the hexapeptide chromophore of the Aequorea green-fluorescent protein. Biochemistry 32:1212–1218PubMedGoogle Scholar
  14. 14.
    D’Angelo C, Denzel A, Vogt A, Matz MV, Oswald F et al (2008) Blue light regulation of host pigment in reef-building corals. Mar Ecol Prog Ser 364:97–106Google Scholar
  15. 15.
    Day RN, Davidson MW (2009) The fluorescent protein palette: tools for cellular imaging. Chem Soc Rev 38:2887–2921PubMedGoogle Scholar
  16. 16.
    Deheyn DD, Kubokawa K, McCarthy JK, Murakami A, Porrachia M et al (2007) Endogenous green fluorescent protein (GFP) in amphioxus. Biol Bull 213:95–100PubMedGoogle Scholar
  17. 17.
    Erickson MG, Moon DL, Yue DT (2003) DsRed as a potential FRET partner with CFP and GFP. Biophys J 85:599–611PubMedGoogle Scholar
  18. 18.
    Fradkov AF, Chen Y, Ding L, Barsova EV, Matz MV et al (2000) Novel fluorescent protein from Discosoma coral and its mutants possesses a unique far-red fluorescence. FEBS Lett 479:127–130PubMedGoogle Scholar
  19. 19.
    Fuchs J, Bohme S, Oswald F, Hedde PN, Krause M et al (2010) A photoactivatable marker protein for pulse-chase imaging with superresolution. Nat Methods 7:627–630PubMedGoogle Scholar
  20. 20.
    Goedhart J, Vermeer JE, Adjobo-Hermans MJ, van Weeren L, Gadella TW (2007) Sensitive detection of p65 homodimers using red-shifted and fluorescent protein-based FRET couples. PLoS One 2:e1011PubMedGoogle Scholar
  21. 21.
    Grashoff C, Hoffman BD, Brenner MD, Zhou R, Parsons M et al (2010) Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466:263–266PubMedGoogle Scholar
  22. 22.
    Gross LA, Baird GS, Hoffman RC, Baldridge KK, Tsien RY (2000) The structure of the chromophore within DsRed, a red fluorescent protein from coral. Proc Natl Acad Sci USA 97:11990–11995PubMedGoogle Scholar
  23. 23.
    Gurskaya NG, Fradkov AF, Terskikh A, Matz MV, Labas YA et al (2001) GFP-like chromoproteins as a source of far-red fluorescent proteins. FEBS Lett 507:16–20PubMedGoogle Scholar
  24. 24.
    Habuchi S, Tsutsui H, Kochaniak AB, Miyawaki A, van Oijen AM (2008) mKikGR, a monomeric photoswitchable fluorescent protein. PLoS One 3:e3944PubMedGoogle Scholar
  25. 25.
    Haddock SH, Mastroianni N, Christianson LM (2010) A photoactivatable green-fluorescent protein from the phylum Ctenophora. Proc R Soc Lond B: Biol Sci 277:1155–1160Google Scholar
  26. 26.
    Hanson GT, McAnaney TB, Park ES, Rendell ME, Yarbrough DK et al (2002) Green fluorescent protein variants as ratiometric dual emission pH sensors. 1. Structural characterization and preliminary application. Biochemistry 41:15477–15488PubMedGoogle Scholar
  27. 27.
    Heim R, Prasher DC, Tsien RY (1994) Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc Natl Acad Sci USA 91:12501–12504PubMedGoogle Scholar
  28. 28.
    Hofmann M, Eggeling C, Jakobs S, Hell SW (2005) Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proc Natl Acad Sci USA 102:17565–17569PubMedGoogle Scholar
  29. 29.
    Hopf M, Gohring W, Ries A, Timpl R, Hohenester E (2001) Crystal structure and mutational analysis of a perlecan-binding fragment of nidogen-1. Nat Struct Mol Biol 8:634–640Google Scholar
  30. 30.
    Jayaraman S, Haggie P, Wachter RM, Remington SJ, Verkman AS (2000) Mechanism and cellular applications of a green fluorescent protein-based halide sensor. J Biol Chem 275:6047–6050PubMedGoogle Scholar
  31. 31.
    Karasawa S, Araki T, Yamamoto-Hino M, Miyawaki A (2003) A green-emitting fluorescent protein from Galaxeidae coral and its monomeric version for use in fluorescent labeling. J Biol Chem 278:34167–34171PubMedGoogle Scholar
  32. 32.
    Karasawa S, Araki T, Nagai T, Mizuno H, Miyawaki A (2004) Cyan-emitting and orange-emitting fluorescent proteins as a donor/acceptor pair for fluorescence resonance energy transfer. Biochem J 381:307–312PubMedGoogle Scholar
  33. 33.
    Kelmanson IV, Matz MV (2003) Molecular basis and evolutionary origins of color diversity in great star coral Montastraea cavernosa (Scleractinia: Faviida). Mol Biol Evol 20:1125–1133PubMedGoogle Scholar
  34. 34.
    Kogure T, Karasawa S, Araki T, Saito K, Kinjo M et al (2006) A fluorescent variant of a protein from the stony coral Montipora facilitates dual-color single-laser fluorescence cross-correlation spectroscopy. Nat Biotechnol 24:577–581PubMedGoogle Scholar
  35. 35.
    Kredel S, Nienhaus K, Oswald F, Wolff M, Ivanchenko S et al (2008) Optimized and far-red-emitting variants of fluorescent protein eqFP611. Chem Biol 15:224–233PubMedGoogle Scholar
  36. 36.
    Kredel S, Oswald F, Nienhaus K, Deuschle K, Roecker C et al (2009) mRuby, a bright monomeric red fluorescent protein for labeling of subcellular structures. PLoS One 4:e4391PubMedGoogle Scholar
  37. 37.
    Leutenegger A, D’Angelo C, Matz MV, Denzel A, Oswald F et al (2007) It’s cheap to be colorful. Anthozoans show a slow turnover of GFP-like proteins. FEBS J 274:2496–2505PubMedGoogle Scholar
  38. 38.
    Leutenegger A, Kredel S, Gundel S, D’Angelo C, Salih A et al (2007) Analysis of fluorescent and non-fluorescent sea anemones from the Mediterranean Sea during a bleaching event. J Exp Mar Biol Ecol 353:221–234Google Scholar
  39. 39.
    Llopis J, McCaffery JM, Miyawaki A, Farquhar MG, Tsien RY (1998) Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins. Proc Natl Acad Sci USA 95:6803–6808PubMedGoogle Scholar
  40. 40.
    Lukyanov KA, Fradkov AF, Gurskaya NG, Matz MV, Labas YA et al (2000) Natural animal coloration can be determined by a nonfluorescent green fluorescent protein homolog. J Biol Chem 275:25879–25882PubMedGoogle Scholar
  41. 41.
    Ma T, Vetrivel L, Yang H, Pedemonte N, Zegarra-Moran O et al (2002) High-affinity activators of cystic fibrosis transmembrane conductance regulator (CFTR) chloride conductance identified by high-throughput screening. J Biol Chem 277:37235–37241PubMedGoogle Scholar
  42. 42.
    Mateus C, Avery SV (2000) Destabilized green fluorescent protein for monitoring dynamic changes in yeast gene expression with flow cytometry. Yeast 16:1313–1323PubMedGoogle Scholar
  43. 43.
    Matz MV, Fradkov AF, Labas YA, Savitsky AP, Zaraisky AG et al (1999) Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol 17:969–973PubMedGoogle Scholar
  44. 44.
    McKinney SA, Murphy CS, Hazelwood KL, Davidson MW, Looger LL (2009) A bright and photostable photoconvertible fluorescent protein. Nat Methods 6:131–133PubMedGoogle Scholar
  45. 45.
    Merzlyak EM, Goedhart J, Shcherbo D, Bulina ME, Shcheglov AS et al (2007) Bright monomeric red fluorescent protein with an extended fluorescence lifetime. Nat Methods 4:555–557PubMedGoogle Scholar
  46. 46.
    Miesenbock G, De Angelis DA, Rothman JE (1998) Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394:192–195PubMedGoogle Scholar
  47. 47.
    Mishin AS, Subach FV, Yampolsky IV, King W, Lukyanov KA et al (2008) The first mutant of the Aequorea victoria green fluorescent protein that forms a red chromophore. Biochemistry 47:4666–4673PubMedGoogle Scholar
  48. 48.
    Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA et al (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388:882–887PubMedGoogle Scholar
  49. 49.
    Miyawaki A, Griesbeck O, Heim R, Tsien RY (1999) Dynamic and quantitative Ca2+ measurements using improved cameleons. Proc Natl Acad Sci USA 96:2135–2140PubMedGoogle Scholar
  50. 50.
    Mizuno H, Mal TK, Tong KI, Ando R, Furuta T et al (2003) Photo-induced peptide cleavage in the green-to-red conversion of a fluorescent protein. Mol Cell 12:1051–1058PubMedGoogle Scholar
  51. 51.
    Mocz G (2007) Fluorescent proteins and their use in marine biosciences, biotechnology, and proteomics. Mar Biotechnol 9:305–328PubMedGoogle Scholar
  52. 52.
    Morin JG (1974) Coelenterate bioluminescence. In: Muscatine L, Lenhoff HM (eds) Coelenterate biology reviews and new perspectives. Academic, New York, pp 397–448Google Scholar
  53. 53.
    Morin JG, Hastings JW (1971) Biochemistry of the bioluminescence of colonial hydroids and other coelenterates. J Cell Physiol 77:305–312PubMedGoogle Scholar
  54. 54.
    Morin JG, Hastings JW (1971) Energy transfer in a bioluminescent system. J Cell Physiol 77:313–318PubMedGoogle Scholar
  55. 55.
    Nienhaus GU (2008) The green fluorescent protein: a key tool to study chemical processes in living cells. Angew Chem Int Ed 47:8992–8994Google Scholar
  56. 56.
    Nienhaus GU, Wiedenmann J (2009) Structure, dynamics and optical properties of fluorescent proteins: perspectives for marker development. Chemphyschem 10:1369–1379PubMedGoogle Scholar
  57. 57.
    Nienhaus K, Nienhaus GU, Wiedenmann J, Nar H (2005) Structural basis for photo-induced protein cleavage and green-to-red conversion of fluorescent protein EosFP. Proc Natl Acad Sci USA 102:9156–9159PubMedGoogle Scholar
  58. 58.
    Nienhaus GU, Nienhaus K, Holzle A, Ivanchenko S, Red F et al (2006) Photoconvertible fluorescent protein EosFP: biophysical properties and cell biology applications. Photochem Photobiol 82:351–358PubMedGoogle Scholar
  59. 59.
    Nienhaus K, Renzi F, Vallone B, Wiedenmann J, Nienhaus GU (2006) Exploring chromophore-protein interactions in fluorescent protein cmFP512 from Cerianthus membranaceus: X-ray structure analysis and optical spectroscopy. Biochemistry 45:12942–12953PubMedGoogle Scholar
  60. 60.
    Nienhaus K, Renzi F, Vallone B, Wiedenmann J, Nienhaus GU (2006) Chromophore-protein interactions in the anthozoan green fluorescent protein asFP499. Biophys J 91:4210–4220PubMedGoogle Scholar
  61. 61.
    Oswald F, Schmitt F, Leutenegger A, Ivanchenko S, D’Angelo C et al (2007) Contributions of host and symbiont pigments to the coloration of reef corals. FEBS J 274:1102–1109PubMedGoogle Scholar
  62. 62.
    Patterson GH, Lippincott-Schwartz J (2004) Selective photolabeling of proteins using photoactivatable GFP. Methods 32:445–450PubMedGoogle Scholar
  63. 63.
    Patterson GH, Knobel SM, Sharif WD, Kain SR, Piston DW (1997) Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys J 73:2782–2790PubMedGoogle Scholar
  64. 64.
    Petersen J, Wilmann PG, Beddoe T, Oakley AJ, Devenish RJ et al (2003) The 2.0-angstrom crystal structure of eqFP611, a far red fluorescent protein from the sea anemone Entacmaea quadricolor. J Biol Chem 278:44626–44631PubMedGoogle Scholar
  65. 65.
    Pletneva NV, Pletnev SV, Chudakov DM, Tikhonova TV, Popov VO et al (2007) Three-dimensional structure of yellow fluorescent protein zYFP538 from Zoanthus sp. at the resolution 1.8 angstrom. Bioorg Khim 33:421–430PubMedGoogle Scholar
  66. 66.
    Prasher DC, Eckenrode VK, Ward WW, Prendergast FG, Cormier MJ (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111:229–233PubMedGoogle Scholar
  67. 67.
    Prescott M, Ling M, Beddoe T, Oakley AJ, Dove S et al (2003) The 2.2 A crystal structure of a pocilloporin pigment reveals a nonplanar chromophore conformation. Structure 11:275–284PubMedGoogle Scholar
  68. 68.
    Quillin ML, Anstrom DM, Shu X, O’Leary S, Kallio K et al (2005) Kindling fluorescent protein from Anemonia sulcata: dark-state structure at 1.38 A resolution. Biochemistry 44:5774–5787PubMedGoogle Scholar
  69. 69.
    Remington SJ (2006) Fluorescent proteins: maturation, photochemistry and photophysics. Curr Opin Struct Biol 16:714–721PubMedGoogle Scholar
  70. 70.
    Sakaue-Sawano A, Kurokawa H, Morimura T, Hanyu A, Hama H et al (2008) Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell 132:487–498PubMedGoogle Scholar
  71. 71.
    Shagin DA, Barsova EV, Yanushevich YG, Fradkov AF, Lukyanov KA et al (2004) GFP-like proteins as ubiquitous metazoan superfamily: evolution of functional features and structural complexity. Mol Biol Evol 21:841–850PubMedGoogle Scholar
  72. 72.
    Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE et al (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22:1567–1572PubMedGoogle Scholar
  73. 73.
    Shaner NC, Lin MZ, McKeown MR, Steinbach PA, Hazelwood KL et al (2008) Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat Methods 5:545–551PubMedGoogle Scholar
  74. 74.
    Shcherbo D, Merzlyak EM, Chepurnykh TV, Fradkov AF, Ermakova GV et al (2007) Bright far-red fluorescent protein for whole-body imaging. Nat Methods 4:741–746PubMedGoogle Scholar
  75. 75.
    Shcherbo D, Murphy CS, Ermakova GV, Solovieva EA, Chepurnykh TV et al (2009) Far-red fluorescent tags for protein imaging in living tissues. Biochem J 418:567–574PubMedGoogle Scholar
  76. 76.
    Shimomura O (1995) A short story of Aequorin. Biol Bull 189:1–5PubMedGoogle Scholar
  77. 77.
    Shimomura O, Johnson FH, Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol 59:223–239PubMedGoogle Scholar
  78. 78.
    Sniegowski JA, Lappe JW, Patel HN, Huffman HA, Wachter RM (2005) Base catalysis of chromophore formation in Arg96 and Glu222 variants of green fluorescent protein. J Biol Chem 280:26248–26255PubMedGoogle Scholar
  79. 79.
    Stiel AC, Trowitzsch S, Weber G, Andresen M, Eggeling C et al (2007) 1.8 A bright-state structure of the reversibly switchable fluorescent protein Dronpa guides the generation of fast switching variants. Biochem J 402:35–42PubMedGoogle Scholar
  80. 80.
    Stiel AC, Andresen M, Bock H, Hilbert M, Schilde J et al (2008) Generation of monomeric reversibly switchable red fluorescent proteins for far-field fluorescence nanoscopy. Biophys J 95:2989–2997PubMedGoogle Scholar
  81. 81.
    Strack RL, Strongin DE, Bhattacharyya D, Tao W, Berman A et al (2008) A noncytotoxic DsRed variant for whole-cell labeling. Nat Methods 5:955–957PubMedGoogle Scholar
  82. 82.
    Strack RL, Strongin DE, Mets L, Glick BS, Keenan RJ (2010) Chromophore formation in DsRed occurs by a branched pathway. J Am Chem Soc 132:8496–8505PubMedGoogle Scholar
  83. 83.
    Subach FV, Patterson GH, Manley S, Gillette JM, Lippincott-Schwartz J et al (2009) Photoactivatable mCherry for high-resolution two-color fluorescence microscopy. Nat Methods 6:311Google Scholar
  84. 84.
    Subach FV, Subach OM, Gundorov IS, Morozova KS, Piatkevich KD et al (2009) Monomeric fluorescent timers that change color from blue to red report on cellular trafficking. Nature Chem Biol 5:118–126Google Scholar
  85. 85.
    Terskikh A, Fradkov A, Ermakova G, Zaraisky A, Tan P et al (2000) “Fluorescent timer”: protein that changes color with time. Science 290:1585–1588PubMedGoogle Scholar
  86. 86.
    Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544PubMedGoogle Scholar
  87. 87.
    Tsutsui H, Karasawa S, Shimizu H, Nukina N, Miyawaki A (2005) Semi-rational engineering of a coral fluorescent protein into an efficient highlighter. EMBO Rep 6:233–238PubMedGoogle Scholar
  88. 88.
    van Roessel P, Brand AH (2002) Imaging into the future: visualizing gene expression and protein interactions with fluorescent proteins. Nat Cell Biol 4:E15–E20PubMedGoogle Scholar
  89. 89.
    Verkhusha VV, Chudakov DM, Gurskaya NG, Lukyanov S, Lukyanov KA (2004) Common pathway for the red chromophore formation in fluorescent proteins and chromoproteins. Chem Biol 11:845–854PubMedGoogle Scholar
  90. 90.
    Vogt A, D’Angelo C, Oswald F, Denzel A, Mazel CH et al (2008) A green fluorescent protein with photoswitchable emission from the deep sea. PLoS One 3:e3766PubMedGoogle Scholar
  91. 91.
    Wacker SA, Oswald F, Wiedenmann J, Knochel W (2007) A green to red photoconvertible protein as an analyzing tool for early vertebrate development. Dev Dyn 236:473–480PubMedGoogle Scholar
  92. 92.
    Wacker SA, Alvarado C, von Wichert G, Knippschild U, Wiedenmann J et al (2011) RITA, a novel modulator of Notch signalling, acts via nuclear export of RBP-J. EMBO J 30:43–56PubMedGoogle Scholar
  93. 93.
    Wang Y, Chien S (2007) Analysis of integrin signaling by fluorescence resonance energy transfer. Methods Enzymol 426:177–201PubMedGoogle Scholar
  94. 94.
    Wang L, Jackson WC, Steinbach PA, Tsien RY (2004) Evolution of new nonantibody proteins via iterative somatic hypermutation. Proc Natl Acad Sci USA 101:16745–16749PubMedGoogle Scholar
  95. 95.
    Ward WW (2005) Biochemical and physical properties of green fluorescent protein. In: Chalfie M, Kain SR (eds) Green fluorescent protein: properties, applications and protocols, 2nd edn. Wiley, Hoboken, pp 39–65Google Scholar
  96. 96.
    Wiedenmann J (1997) The application of an orange fluorescent protein and further colored proteins and the corresponding genes from the species group Anemonia sp. (sulcata) Pennant, (Cnidaria, Anthozoa, Actinaria) in gene technology and molecular biology. Patent DE 197 18 640. Deutsches Patent und Markenamt, Deutschland, pp 1–18Google Scholar
  97. 97.
    Wiedenmann J, Nienhaus GU (2006) Live-cell imaging with EosFP and other photoactivatable marker proteins of the GFP family. Expert Rev Proteomics 3:361–374PubMedGoogle Scholar
  98. 98.
    Wiedenmann J, Röcker C, Funke W (1999) The morphs of Anemonia aff. sulcata (Cnidaria, Anthozoa) in particular consideration of the ectodermal pigments. Verh Ges Ökol 29:497–503Google Scholar
  99. 99.
    Wiedenmann J, Elke C, Spindler KD, Funke W (2000) Cracks in the beta-can: fluorescent proteins from Anemonia sulcata (Anthozoa, Actinaria). Proc Natl Acad Sci USA 97:14091–14096PubMedGoogle Scholar
  100. 100.
    Wiedenmann J, Schenk A, Rocker C, Girod A, Spindler KD et al (2002) A far-red fluorescent protein with fast maturation and reduced oligomerization tendency from Entacmaea quadricolor (Anthozoa, Actinaria). Proc Natl Acad Sci USA 99:11646–11651PubMedGoogle Scholar
  101. 101.
    Wiedenmann J, Ivanchenko S, Oswald F, Schmitt F, Rocker C et al (2004) EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion. Proc Natl Acad Sci USA 101:15905–15910PubMedGoogle Scholar
  102. 102.
    Wiedenmann J, Ivanchenko S, Oswald F, Nienhaus GU (2004) Identification of GFP-like proteins in nonbioluminescent, azooxanthellate anthozoa opens new perspectives for bioprospecting. Mar Biotechnol 6:270–277PubMedGoogle Scholar
  103. 103.
    Wiedenmann J, Oswald F, Nienhaus GU (2009) Fluorescent proteins for live cell imaging: opportunities, limitations, and challenges. IUBMB Life 61:1029–1042PubMedGoogle Scholar
  104. 104.
    Wolff M, Kredel S, Haasen D, Wiedenmann J, Nienhaus GU et al (2010) High content screening of CXCR2-dependent signalling pathways. Comb Chem High Throughput Screen 13:3–15PubMedGoogle Scholar
  105. 105.
    Yang F, Moss LG, Phillips GN Jr (1996) The molecular structure of green fluorescent protein. Nat Biotechnol 14:1246–1251PubMedGoogle Scholar
  106. 106.
    Yarbrough D, Wachter RM, Kallio K, Matz MV, Remington SJ (2001) Refined crystal structure of DsRed, a red fluorescent protein from coral, at 2.0-A resolution. Proc Natl Acad Sci USA 98:462–467PubMedGoogle Scholar
  107. 107.
    Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K (2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107:881–891PubMedGoogle Scholar
  108. 108.
    Yuan L, Cao Y, Oswald F, Knochel W (2008) IRE1beta is required for mesoderm formation in Xenopus embryos. Mech Dev 125:207–222PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Edward G. Smith
    • 1
  • Cecilia D’Angelo
    • 1
  • Franz Oswald
    • 2
  • G. Ulrich Nienhaus
    • 3
    • 4
  • J. Wiedenmann
    • 1
  1. 1.National Oceanography Centre SouthamptonUniversity of SouthamptonSouthamptonUK
  2. 2.Department of Internal Medicine IUniversity of UlmUlmGermany
  3. 3.Center for Functional Nanostructures, Karlsruhe Institute of TechnologyKarlsruheGermany
  4. 4.Department of PhysicsUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations