The Chemistry of Marine Algae and Cyanobacteria

  • Hyukjae Choi
  • Alban R. Pereira
  • William H. Gerwick
Reference work entry


This chapter reviews the major metabolic themes that are characteristic of the prominent groups of marine algae and cyanobacteria. The taxonomic organization of the chapter facilitates an appreciation of the uniqueness of each of these groups in their capacity to elaborate specific classes of secondary metabolites. For each compound discussed, which are chosen as representatives of chemical themes, a brief story is presented which describes the natural history of the organism, the isolation of the natural product, its structure elucidation, and as appropriate, the pharmacology, chemical ecology, and biosynthesis of the isolated metabolite. Many unanswered questions remain in understanding these diverse algal chemistries, and numerous areas for future exploration are suggested throughout the chapter.


Natural Product Okadaic Acid Domoic Acid Marine Cyanobacterium Shellfish Poisoning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Leflaive J, Ten-Hage L (2007) Algal and cyanobacterial secondary metabolites in freshwaters: a comparison of allelopathic compounds and toxins. Freshwater Biol 52:199–214Google Scholar
  2. 2.
    Jones AC, Gu L, Sorrels CM, Sherman DH, Gerwick WH (2009) New tricks from ancient algae: natural products biosynthesis in marine cyanobacteria. Curr Opin Chem Biol 13:216–223PubMedGoogle Scholar
  3. 3.
    Tan LT (2010) Filamentous tropical marine cyanobacteria: a rich source of natural products for anticancer drug discovery. J Appl Phycol 22:659–676Google Scholar
  4. 4.
    Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR (2011) Marine natural products. Nat Prod Rep 28:196–268PubMedGoogle Scholar
  5. 5.
    Bold HC, Wynne MJ (1978) Introduction to the algae; structure and reproduction. Prentice-Hall, Englewood CliffsGoogle Scholar
  6. 6.
    Engene N, Coates RC, Gerwick WH (2010) 16S rRNA Gene heterogeneity in the filamentous marine cyanobacterial genus Lyngbya. J Phycology 46:591–601Google Scholar
  7. 7.
    Castenholz RW, Rippka R, Herdman M (2001) Phylum BX cyanobacteria. In: Garrity GM, Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology, Vol 1. Springer, New YorkGoogle Scholar
  8. 8.
    Erwin PM, Thacker RW (2008) Phototrophic nutrition and symbiont diversity of two Caribbean sponge-cyanobacteria symbioses. Mar Ecol Prog Ser 362:139–147Google Scholar
  9. 9.
    MarinLit Database. Department of Chemistry, University of Canterbury. Accessed 17 Nov 2011
  10. 10.
    Ishida T, Watanabe MM, Sugiyama J, Yokota A (2001) Evidence for polyphyletic origin of the members of the orders of Oscillatoriales and Pleurocapsales as determined by 16S rDNA analysis. FEMS Microbiol Lett 201:79–82PubMedGoogle Scholar
  11. 11.
    Tidgewell K, Clark BT, Gerwick WH (2010) The natural products chemistry of cyanobacteria. In: Moore B, Crews P (eds) Comprehensive natural products chemistry, 2nd edn. Elsevier, OxfordGoogle Scholar
  12. 12.
    Tan LT (2007) Bioactive natural products from marine cyanobacteria for drug discovery. Phytochem 68:954–979Google Scholar
  13. 13.
    van Wagoner RM, Drummond AK, Wright JLC (2007) Biogenetic diversity of cyanobacterial metabolites. Adv Appl Microbiol 61:89–217PubMedGoogle Scholar
  14. 14.
    Jones AC, Monroe EA, Eisman EB, Gerwick L, Sherman DH, Gerwick WH (2010) The unique mechanistic transformations involved in the biosynthesis of modular natural products from marine cyanobacteria. Nat Prod Rep 27:1048–1065PubMedGoogle Scholar
  15. 15.
    Grindberg RV, Shuman CF, Sorrels CM, Wingerd J, Gerwick WH (2008) Neurotoxic alkaloids from cyanobacteria. In: Fattorusso E, Taglialatela-Scafati O (eds) Modern alkaloids, structure, isolation, synthesis and biology. Wiley-VCH Verlang GmbH & Co, WeinheimGoogle Scholar
  16. 16.
    Klein D, Braekman JC, Daloze D, Hoffmann L, Demoulin V (1997) Lyngbyaloside, a novel 2,3,4-tri-O-methyl-6-deoxy-alpha-mannopyranoside macrolide from Lyngbya bouillonii (cyanobacteria). J Nat Prod 60:1057–1059Google Scholar
  17. 17.
    Wu M, Milligan KE, Gerwick WH (1997) Three new malyngamides from the marine cyanobacterium Lyngbya majuscula. Tetrahedron 53:15983–15990Google Scholar
  18. 18.
    Paquette LA, Yotsu-Yamashita M (2007) Polycavernosides. In: Botana LM (ed) Phycotoxins: chemistry and biochemistry. Blackwell, AmesGoogle Scholar
  19. 19.
    Simonin P, Juergens UJ, Rohmer M (1992) 35-O-beta-6-Amino-6-deoxyglucopyranosyl bacteriohopanetetrol, a novel triterpenoid of the hopane series from the cyanobacterium Synechocystis sp. PCC 6714. Tetrahedron Lett 33:3629–3632Google Scholar
  20. 20.
    Cardellina JH II, Marner FJ, Moore RE (1979) Seaweed dermatitis: structure of lyngbyatoxin A. Science 204:193–195PubMedGoogle Scholar
  21. 21.
    Edwards DJ, Gerwick WH (2004) Lyngbyatoxin biosynthesis: sequence of biosynthetic gene cluster and identification of a novel aromatic prenyltransferase. J Am Chem Soc 126:11432–11433PubMedGoogle Scholar
  22. 22.
    Sato N, Wada H (2009) Lipid biosynthesis and its regulation in cyanobacteria. In: Wada H, Murata N (eds) Advances in photosynthesis and respiration, 30 (Lipids in photosynthesis essential and regulatory function). Springer, DordrechtGoogle Scholar
  23. 23.
    Sitachitta N, Gerwick WH (1998) Grenadadiene and grenadamide, cyclopropyl-containing fatty acid metabolites from the marine cyanobacterium Lyngbya majuscula. J Nat Prod 61:681–684PubMedGoogle Scholar
  24. 24.
    Moore RE, Blackman AJ, Cheuk CE, Mynderse JS, Matsumoto GK, Clardy J, Woodard RW, Craig JC (1984) Absolute stereochemistries of the aplysiatoxins and oscillatoxin A. J Org Chem 49:2484–2489Google Scholar
  25. 25.
    Osborne NJ, Shaw GR, Webb PM (2007) Health effects of recreational exposure to Moreton Bay, Australia waters during a Lyngbya majuscula bloom. Environ Int 33:309–314PubMedGoogle Scholar
  26. 26.
    Palenik B, Ren Q, Dupont CL, Myers GS, Heidelberg JF, Badger JH, Madupu R, Nelson WC, Brinkac LM, Dodson RJ, Durkin AS, Daugherty SC, Sullivan SA, Khouri H, Mohamoud Y, Halpin R, Paulsen IT (2006) Genome sequence of Synechococcus CC9311: insights into adaptation to a coastal environment. Proc Natl Acad Sci USA 103:13555–13559PubMedGoogle Scholar
  27. 27.
    Kishi Y, Rando RR (1998) Structural basis of protein kinase C activation by tumor promoters. Acc Chem Res 31:163–172Google Scholar
  28. 28.
    Singh IP, Milligan KE, Gerwick WH (1999) Tanikolide, a toxic and antifungal lactone from the marine cyanobacterium Lyngbya majuscula. J Nat Prod 62:1333–1335PubMedGoogle Scholar
  29. 29.
    Gutiérrez M, Andrianasolo EH, Shin WK, Goeger DE, Yokochi A, Schemies J, Jung M, France D, Cornell-Kennon S, Lee E, Gerwick WH (2009) Structural and synthetic investigations of tanikolide dimer, a SIRT2 selective inhibitor, and tanikolide seco acid from the madagascar marine cyanobacterium Lyngbya majuscula. J Org Chem 74:5267–5275PubMedGoogle Scholar
  30. 30.
    Gruenewald J, Marahiel MA (2006) Chemoenzymatic and template-directed synthesis of bioactive macrocyclic peptides. Microbiol Mol Biol Rev 70:121–146Google Scholar
  31. 31.
    Donia MS, Ravel J, Schmidt EW (2008) A global assembly line for cyanobactins. Nat Chem Biol 4:341–343PubMedGoogle Scholar
  32. 32.
    Taori K, Paul VJ, Luesch H (2008) Kempopeptins A and B, serine protease inhibitors with different selectivity profiles from a marine cyanobacterium, Lyngbya sp. J Nat Prod 71:1625–1629PubMedGoogle Scholar
  33. 33.
    Linington RG, EdwardsDJ SCF, McPhail KL, Matainaho T, Gerwick WH (2008) Symplocamide A, a potent cytotoxin and chymotrypsin inhibitor from the marine cyanobacterium Symploca sp. J Nat Prod 71:22–27PubMedGoogle Scholar
  34. 34.
    Ersmark K, Del Valle JR, Hanessian S (2008) Chemistry and biology of the aeruginosin family of serine protease inhibitors. Angew Chem Int Ed 47:1202–1223Google Scholar
  35. 35.
    Rouhiainen L, Paulin L, Suomalainen S, Hyytiainen H, Buikema W, Haselkorn R, Sivonen K (2000) Genes encoding synthetases of cyclic depsipeptides, anabaenopeptilides, in Anabaena strain 90. Mol Microbiol 37:156–167PubMedGoogle Scholar
  36. 36.
    Long PF, Dunlap WC, Battershill CN, Jaspars M (2005) Shotgun cloning and heterologous expression of the patellamide gene cluster as a strategy to achieving sustained metabolite production. ChemBioChem 6:1760–1765PubMedGoogle Scholar
  37. 37.
    Schmidt EW, Nelson JT, Rasko DA, Sudek S, Eisen JA, Haygood MG, Ravel J (2005) Patellamide A and C biosynthesis by a microcin-like pathway in Prochloron didemni, the cyanobacterial symbiont of Lissoclinum patella. Proc Nat Acad Sci USA 102:7315–7320PubMedGoogle Scholar
  38. 38.
    Rashid MA, Gustafson KR, Cardellina JH II, Boyd MR (1995) Patellamide F, a new cytotoxic cyclic peptide from the colonial ascidian Lissoclinum patella. J Nat Prod 58:594–597PubMedGoogle Scholar
  39. 39.
    McIntosh JA, Schmidt EW (2010) Marine molecular machines: heterocyclization in cyanobactin biosynthesis. ChemBioChem 11:1413–1421PubMedGoogle Scholar
  40. 40.
    Li B, Sher D, Kelly L, Shi Y, Huang K, Knerr PJ, Joewono I, Rusch D, Chisholm SW, van der Donk W (2010) Catalytic promiscuity in the biosynthesis of cyclic peptide secondary metabolites in planktonic marine cyanobacteria. Proc Nat Acad Sci USA 107:10430–10435PubMedGoogle Scholar
  41. 41.
    Hooper GJ, Orjala J, Schatzman RC, Gerwick WH (1998) Carmabin A and B, new lipopeptides from the Caribbean cyanobacterium Lyngbya majuscula. J Nat Prod 61:529–533PubMedGoogle Scholar
  42. 42.
    McPhail KL, Correa J, Linington RG, Gonzalez J, Ortega-Barria E, Capson TL, Gerwick WH (2007) Antimalarial linear lipopeptides from a Panamanian strain of the marine cyanobacterium Lyngbya majuscula. J Nat Prod 70:984–988PubMedGoogle Scholar
  43. 43.
    Gerwick WH, Proteau PJ, Nagle DG, Hamel E, Blokhin A, Slate D (1994) Structure of curacin A, a novel antimitotic, antiproliferative, and brine shrimp toxic natural product from the marine cyanobacterium Lyngbya majuscula. J Org Chem 59:1243–1245Google Scholar
  44. 44.
    Blokhin AV, Yoo H-D, Geralds RS, Nagle DG, Gerwick WH, Hamel E (1995) Characterization of the interaction of the marine cyanobacterial natural product curacin A with the colchicine site of tubulin and initial structure-activity studies with analogs. Mol Pharmacol 48:523–531PubMedGoogle Scholar
  45. 45.
    Wipf P, Reeves JT, Balachandran R, Day BW (2002) Synthesis and biological evaluation of structurally highly modified analogues of the antimitotic natural product curacin A. J Med Chem 45:1901–1917PubMedGoogle Scholar
  46. 46.
    Chang Z, Sitachitta N, Rossi JV, Roberts MA, Flatt PM, Jia J, Sherman DH, Gerwick WH (2004) Biosynthetic pathway and gene cluster analysis of curacin A, an anti-tubulin natural product from the tropical marine cyanobacterium Lyngbya majuscula. J Nat Prod 67:1356–1367PubMedGoogle Scholar
  47. 47.
    Gu L, Wang B, Kulkarni A, Geders TW, Grindberg RV, Gerwick L, Håkansson K, Wipf P, Smith JL, Gerwick WH, Sherman DH (2009) Metamorphic enzyme assembly in polyketide diversification. Nature 459:731–735PubMedGoogle Scholar
  48. 48.
    Neumann CS, Fujimori DG, Walsh CT (2008) Halogenation strategies in natural product biosynthesis. Chem Biol 15:99–109PubMedGoogle Scholar
  49. 49.
    Gu L, Wang B, Kulkarni A, Gehret JJ, Lloyd KR, Gerwick L, Gerwick WH, Wipf P, Hakansson K, Smith JL, Sherman DH (2009) Polyketide decarboxylative chain termination preceded by O-sulfonation in curacin A biosynthesis. J Am Chem Soc 131:16033–16035PubMedGoogle Scholar
  50. 50.
    Pettit GR, Day JF, Hartwell JL, Wood HB (1970) Antineoplastic components of marine animals. Nature 227:962–963PubMedGoogle Scholar
  51. 51.
    Patel S, Keohan ML, Saif MW, Rushing D, Baez L, Feit K, DeJager R, Anderson S (2006) Phase II study of intravenous TZT-1027 in patients with advanced or metastatic soft-tissue sarcomas with prior exposure to anthracycline-based chemotherapy. Cancer 107:2881–2887PubMedGoogle Scholar
  52. 52.
    Luesch H, Moore RE, Paul VJ, Mooberry SL, Corbett TH (2001) Isolation of dolastatin 10 from the marine cyanobacterium Symploca species VP642 and total stereochemistry and biological evaluation of its analogue symplostatin 1. J Nat Prod 64:907–910PubMedGoogle Scholar
  53. 53.
    Luesch H, Yoshida WY, Moore RE, Paul VJ, Corbett TH (2001) Total structure determination of apratoxin A, a potent novel cytotoxin from the marine cyanobacterium Lyngbya majuscule. J Am Chem Soc 123:5418–5423PubMedGoogle Scholar
  54. 54.
    Liu Y, Law BK, Luesch H (2009) Apratoxin A reversibly inhibits the secretory pathway by preventing cotranslational translocation. Mol Pharmacol 76:91–104PubMedGoogle Scholar
  55. 55.
    Shen S, Zhang P, Lovchik MA, Li Y, Tang L, Chen Z, Zeng R, Ma D, Yuan J, Yu Q (2009) Cyclodepsipeptide toxin promotes the degradation of Hsp90 client proteins through chaperone-mediated autophagy. J Cell Biol 185:629–639PubMedGoogle Scholar
  56. 56.
    Doi T, Numajiri Y, Munakata A, Takahashi T (2006) Total synthesis of apratoxin A. Org Lett 8:531–534PubMedGoogle Scholar
  57. 57.
    Tidgewell K, Engene N, Byrum T, Media J, Valeriote FA, Gerwick WH (2010) Diversification of a modular natural product pathway: production of apratoxins F and G, two cytotoxic cyclic depsipeptides from a Palmyra collection of Lyngbya bouillonii. ChemBioChem 11:1458–1466PubMedGoogle Scholar
  58. 58.
    Grindberg RV, Ishoey T, Brinza D, Esquenazi E, Coates RC, Liu W, Gerwick L, Dorrestein PC, Pevzner P, Lasken R, Gerwick WH (2011) Single cell genome amplification accelerates natural product pathway characterization from complex microbial assemblages. PLoS One 6(4):e18565PubMedGoogle Scholar
  59. 59.
    Kanchan T, Paul VJ, Luesch H (2008) Structure and activity of largazole, a potent antiproliferative agent from the Floridian marine cyanobacterium Symploca sp. J Am Chem Soc 130:1806–1807Google Scholar
  60. 60.
    Carmeli S, Moore RE, Patterson GML (1991) Mirabazoles, minor tantazole-related cytotoxins from the terrestrial blue-green alga Scytonema mirabile. Tetrahedron Lett 32:2593–2596Google Scholar
  61. 61.
    Li WI, Berman FW, Okino T, Yokokawa F, Shioiri T, Gerwick WH, Murray TF (2001) Antillatoxin is a marine cyanobacterial toxin that potently activates voltage-gated sodium channels. Proc Natl Acad Sci USA 98:7599–7604PubMedGoogle Scholar
  62. 62.
    Orjala J, Nagle DG, Hsu V, Gerwick WH (1995) Antillatoxin, an exceptionally ichthyotoxic cyclic lipopeptide from the tropical cyanobacterium Lyngbya majuscula. J Am Chem Soc 117:8281–8282Google Scholar
  63. 63.
    Cao Z, Gerwick WH, Murray TF (2010) Antillatoxin is a sodium channel activator that displays unique efficacy in heterologously expressed rNav1.2, rNav1.4 and rNav1.5 alpha subunits. BMC Neurosci 11:154Google Scholar
  64. 64.
    Nagle DG, Paul VJ (1999) Production of secondary metabolites by filamentous tropical marine cyanobacteria: ecological functions of the compounds. J Phycol 35:1412–1421Google Scholar
  65. 65.
    Tachibana K, Scheuer PJ, Tsukitani Y, Kikuchi H, Engen DV, Clardy J, Gopichand Y, Schmitz FJ (1981) Okadaic acid, a cytotoxic polyether from two marine sponges of the genus Halichondria. J Am Chem Soc 103:2469–2471Google Scholar
  66. 66.
    Murakami M, Oshima Y, Yasumoto T (1982) Identification of okadaic acid as a toxic component of a marine dinoflagellate Prorocentrum lima. B Jpn Soc Sci Fish 48:69–72Google Scholar
  67. 67.
    Yasumoto T, Oshima Y, Sugasawa W, Fukuyo Y, Oguri H, Igarashi T, Fujita N (1980) Identification of Dinophysis fortii as the causative organisms of diarrhetic shellfish poisoning. Nippon Suisan Gakk 46:1405–1411Google Scholar
  68. 68.
    Bialojan C, Takai A (1988) Inhibitory effect of a marine-sponge toxin, okadaic acid, on protein phosphatases. Biochem J 256:283–290PubMedGoogle Scholar
  69. 69.
    Haystead TAJ, Sim ATR, Carling D, Honnor RC, Tsukitani Y, Cohen P, Hardie DG (1989) Effects of the tumour promoter okadaic acid on intracellular protein phosphorylation and metabolism. Nature 337:78–81PubMedGoogle Scholar
  70. 70.
    Shimizu Y (1978) Dinoflagellate toxins. In: Scheuer PJ (ed) Marine natural products. Academic, New YorkGoogle Scholar
  71. 71.
    Lin YY, Risk M, Ray SM, van Engen D, Clardy J, Golik J, James JC, Nakanishi K (1981) Isolation and structure of brevetoxin B from the “red tide” dinoflagellate Ptychodiscus brevis (Gymnodinium breve). J Am Chem Soc 103:6773–6775Google Scholar
  72. 72.
    Sagir Ahmed MD, Arakawa O, Onoue Y (1995) Toxicity of cultured Chattonella marina. In: Lassus P, Arzul G, Erhard E, Gentien P, Marcaillou C (eds) Harmful marine algal blooms. Lavoisier, ParisGoogle Scholar
  73. 73.
    Khan S, Arakawa O, Onoue Y (1997) Neurotoxins in a toxic red tide of Heterosigma akashiwo (Raphidophyceae) in Kagoshima Bay, Japan. Aquac Res 28:9–14Google Scholar
  74. 74.
    Hallegraeff GM, Munday BL, Baden DG, Whitney PL (1998) Chattonnella marina raphidophyte bloom associated with mortality of cultured bluefin tuna (Thunnus accoyii) in south Australia. In: Reguera B, Blanco J, Fernandez M, Wyatt T (eds) Harmful algae, Proceedings of the VIII international conference on harmful algae. Xunta de Galicia/IOC of UNESCO, Vigo, SpainGoogle Scholar
  75. 75.
    Alam M, Trieff NM, Ray SM, Hudson JE (1975) Isolation and partial characterization of toxins from the dinoflagellate Gymnodinium breve Davis. J Pharm Sci 64:865–867PubMedGoogle Scholar
  76. 76.
    Shimizu Y, Chou HN, Bando H, van Duyne GD, Clardy J (1986) Structure of brevetoxin A (GB-1 toxin), the most potent toxin in the Florida red tide organism Gymnodinium breve (Ptychodiscus brevis). J Am Chem Soc 108:514–515PubMedGoogle Scholar
  77. 77.
    Nicolaou KC, Yang Z, Shi G-Q, Gunzner JL, Agrios KA, Gärtner P (1998) Total synthesis of brevetoxin A. Nature 392:264–269PubMedGoogle Scholar
  78. 78.
    Baden DG (1983) Marine food-born dinoflagellate toxins. Int Rev Cytol 82:99–150PubMedGoogle Scholar
  79. 79.
    Kirkpatrick B, Fleming LE, Squicciarini D, Backer LC, Clark R, Abraham W, Benson J, Chenge YS, Johnson D, Pierce R, Zaias J, Bossart GD, Baden DG (2004) Literature review of Florida red tide: implications for human health effects. Harmful Algae 3:99–115PubMedGoogle Scholar
  80. 80.
    Morris PD, Campbell DS, Taylor TJ, Freeman JI (1991) Clinical and epidemiological features of neurotoxic shellfish poisoning in North Carolina. Am J Public Health 81:471–474PubMedGoogle Scholar
  81. 81.
    Baden DG, Adams DJ (2000) Brevetoxins: chemistry, mechanism of action, and methods of detection. In: Botana LM (ed) Seafood and freshwater toxins: pharmacology, physiology and detection. Marcel Dekker, New YorkGoogle Scholar
  82. 82.
    Cheng YS, Zhou Y, Irvin CM, Pierce RH, Naar J, Backer LC, Fleming LE, Kirkpatrick B, Baden DG (2005) Characterization of marine aerosol for assessment of human exposure to brevetoxins. Environ Health Perspect 113:638–643PubMedGoogle Scholar
  83. 83.
    Sandlers L (2010) Fish tale. New York Times. April 9, 2010Google Scholar
  84. 84.
    Terao K (2000) Ciguatera toxins: toxicology. In: Botana LM (ed) Seafood and freshwater toxins: pharmacology, physiology and detection. Marcel Dekker, New YorkGoogle Scholar
  85. 85.
    Murata M, Legrand AM, Ishibashi Y, Yasumoto T (1989) Structures of ciguatoxin and its congener. J Am Chem Soc 111:8929–8931Google Scholar
  86. 86.
    Murata M, Legrand AM, Ishibashi Y, Fukui M, Yasumoto T (1990) Structures and configurations of ciguatoxin from the moray eel Gymnothorax javanicus and its likely precursor from the dinoflagellate Gambierdiscus toxicus. J Am Chem Soc 112:4380–4386Google Scholar
  87. 87.
    Satake M, Morohashi A, Oguri H, Oishi T, Hirama M, Harada N, Yasumoto T (1997) The absolute configuration of ciguatoxin. J Am Chem Soc 119:11325–11326Google Scholar
  88. 88.
    Yasumoto T, Nakajima I, Bagnis R, Adachi R (1977) Finding of a dinoflagellate as a likely culprit of ciguatera. B Jpn Soc Sci Fish 43:1021–1026Google Scholar
  89. 89.
    Legrand AM (1999) Ciguatera toxins: origin, transfer through the food chain and toxicity to humans. In: Reguera B, Blanco J, Fernandez M, Wyatt T (eds) Harmful algae, Proceedings of the VIII international conference on harmful algae. Xunta de Galicia/IOC of UNESCO, Vigo, SpainGoogle Scholar
  90. 90.
    Guzman-Perez SE, Park DL (2000) Ciguatera toxins: chemistry and diction. In: Botana LM (ed) Seafood and freshwater toxins: pharmacology, physiology and detection. Marcel Dekker, New YorkGoogle Scholar
  91. 91.
    Lewis RJ, Molgo J, Adams DJ (2000) Pharmacology of toxins involved in ciguatera and related fish poisonings. In: Botana LM (ed) Seafood and freshwater toxins: pharmacology, physiology and detection. Marcel Dekker, New YorkGoogle Scholar
  92. 92.
    Lewis RJ, Sellin M, Poli MA, Norton RS, MacLeod JK, Sheil MM (1991) Purification and characterization of ciguatoxins from moray eel (Lycodontis javanicus, Muraenidae). Toxicon 29:1115–1127PubMedGoogle Scholar
  93. 93.
    Scheuer PJ, Takahashi W, Tsutsumi J, Yoshida T (1967) Ciguatoxin: isolation and chemical nature. Science 155:1267–1268PubMedGoogle Scholar
  94. 94.
    Moore RE, Scheuer PJ (1971) Palytoxin-new marine toxin from a coelenterate. Science 172:495–498PubMedGoogle Scholar
  95. 95.
    Moore RE, Bartolini G (1981) Structure of palytoxin. J Am Chem Soc 103:2491–2494Google Scholar
  96. 96.
    Uemura D, Ueda K, Hirata Y, Naoki H, Iwashita T (1981) Further-studies on palytoxin II. Structure of palytoxin. Tetrahedron Lett 22:2781–2784Google Scholar
  97. 97.
    Armstrong RW, Beau JM, Cheon SH, Christ WJ, Fujioka H, Ham W-H, Hawkins LD, Jin H, Kang SH, Kishi Y, Martinelli MJ, McWhorter WW Jr, Mizuno M, Nakata M, Stutz AE, Talamas FX, Taniguchi M, Tino JA, Ueda K, Uenishi J, White JB, Yonaga M (1989) Total synthesis of palytoxin carboxylic acid and palytoxin amide. J Am Chem Soc 111:7530–7533Google Scholar
  98. 98.
    Suh EM, Kishi Y (1994) Synthesis of palytoxin from palytoxin carboxylic acid. J Am Chem Soc 116:11205–11206Google Scholar
  99. 99.
    Maeda M, Kodama R, Tanaka T, Yohizumi H, Nomyoto K, Takemoto T, Fujita M (1985) Structures of insecticidal substances isolated from a red alga, Chondria armata. In: Symposium Organizing Committee (eds) Proceedings of the 27th symposium on the chemistry of natural products, Hiroshima, JapanGoogle Scholar
  100. 100.
    Usami M, Satake M, Ishida S, Inoue A, Kan Y, Yasumoto T (1995) Palytoxin analogs from the dinoflagellate Ostreopsis siamensis. J Am Chem Soc 117:5389–5390Google Scholar
  101. 101.
    Carballeira NM, Emiliano A, Sostre A, Restituyo JA, González IM, Colón GM, Tosteson CG, Tosteson TR (1998) Fatty acid composition of bacteria associated with the toxic dinoflagellate Ostreopsis lenticularis and with Caribbean Palythoa species. Lipids 33:627–632PubMedGoogle Scholar
  102. 102.
    Seemann P, Gernert C, Schmitt S, Mebs D, Hentschel U (2009) Detection of hemolytic bacteria from Palythoa caribaeorum (Cnidaria, Zoantharia) using a novel palytoxin-screening assay. Antonie van Leeuwenhoek 96:405–411PubMedGoogle Scholar
  103. 103.
    Frolova GM, Kuznetsova TA, Mikhailov VV, Elyakov GB (2000) An enzyme linked immunosorbent assay for detecting palytoxin-producing bacteria. Russ J Bioorg Chem 26:285–289Google Scholar
  104. 104.
    Piel J (2009) Metabolites from symbiotic bacteria. Nat Prod Rep 26:338–362PubMedGoogle Scholar
  105. 105.
    Bottinger H, Beress L, Habermann E (1986) Involvement of (Na+, K+-ATPase) in binding and actions of palytoxin on human erythrocytes. Biochim Biophys Acta 861:164–176Google Scholar
  106. 106.
    Alcala AC, Alcala LC, Garth JS, Yasumura D, Yasumoto T (1998) Human fatality due to ingestion of the crab Demania reynaudii contained a palytoxin-like toxin. Toxicon 26:105–107Google Scholar
  107. 107.
    Granéli E, Ferreira CEL, Yasumoto T, Rodrigues E, Neves MHB (2002) Sea urchins poisoning by the benthic dinoflagellate Ostreopsis ovata on the Brazilian coast. The Xth International Conference on Harmful Algae, 21–25 October, Florida, USAGoogle Scholar
  108. 108.
    Fukui M, Murata M, Inoue A, Gawel M, Yasumoto T (1987) Occurrence of palytoxin in the trigger fish Melichthys vidua. Toxicon 25:1121–1124PubMedGoogle Scholar
  109. 109.
    Onuma Y, Satake M, Ukena T, Roux J, Chanteau S, Rasolofonirina N, Ratsimaloto N, Naoki H, Yasumoto T (1999) Identification of putative palytoxin as the cause of clupeotoxism. Toxicon 37:55–65PubMedGoogle Scholar
  110. 110.
    Taniyama S, Arakawa O, Terada M, Nishio S, Takatani T, Mahmud Y, Noguchi T (2003) Ostreopsis sp., a possible origin of palytoxin (PTX) in parrotfish Scarus ovifrons. Toxicon 42:29–33PubMedGoogle Scholar
  111. 111.
    Hoffmann K, Hermanns-Clausen M, Buhl C, Buchler MW, Schemmer P, Mebs D, Kauferstein S (2008) A case of palytoxin poisoning due to contact with zoanthid corals through a skin injury. Toxicon 51:1535–1537PubMedGoogle Scholar
  112. 112.
    Deeds JR, Schwartz MD (2009) Human risk associated with palytoxin exposure. Toxicon 56:150–162PubMedGoogle Scholar
  113. 113.
    Ciminiello P, Dell'Aversano C, Fattorusso E, Forino M, Magno GS, Tartaglione L, Grillo C, Melchiorre N (2006) The Genoa 2005 outbreak. Determination of putative palytoxin in Mediterranean Ostreopsis ovata by a new liquid chromatography tandem mass spectrometry method. Anal Chem 78:6153–6159PubMedGoogle Scholar
  114. 114.
    Kodama M (2000) Ecology, classification, and origin. In: Botana LM (ed) Seafood and freshwater toxins: pharmacology, physiology and detection. Marcel Dekker, New YorkGoogle Scholar
  115. 115.
    Sommer H, Meyer KF (1937) Paralytic shellfish poisoning. Arch Pathol 24:560–598Google Scholar
  116. 116.
    Schantz EJ, Mold JD, Stanger DW, Shavel J, Riel FJ, Bowden JP, Lynch JM, Wyler RS, Riegel B, Sommer H (1957) Paralytic shellfish poison. VI. A procedure for the isolation and purification of the poison from toxic clam and mussel tissues. J Am Chem Soc 79:5230–5235Google Scholar
  117. 117.
    Schantz EJ, Ghazarossian VE, Schnoes HK, Strong FM, Springer JP, Pezzanite JO, Clardy J (1975) Structure of saxitoxin. J Am Chem Soc 97:1238–1239PubMedGoogle Scholar
  118. 118.
    Tanito H, Nakata T, Kaneko T, Kishi Y (1977) A stereospecific total synthesis of d/l-saxitoxin. J Am Chem Soc 99:2818–2819Google Scholar
  119. 119.
    Jacobi PA, Martinelli MJ, Polanc S (1984) Total synthesis of (+/−)-saxitoxin. J Am Chem Soc 106:5594–5598Google Scholar
  120. 120.
    Fleming JJ, Fiori KW, Du Bois J (2003) Novel iminium ion equivalents prepared through C − H oxidation for the stereocontrolled synthesis of functionalized propargylic amine derivatives. J Am Chem Soc 125:2028–2029PubMedGoogle Scholar
  121. 121.
    Fleming JJ, Du Bois J (2006) A synthesis of (+)-saxitoxin. J Am Chem Soc 128:3926–3927PubMedGoogle Scholar
  122. 122.
    Shimizu Y, Norte M, Hori A, Genenah A, Kobayashi M (1984) Biosynthesis of saxitoxin analogues: the unexpected pathway. J Am Chem Soc 106:6433–6434Google Scholar
  123. 123.
    Kellmann R, Mihali TK, Jeon YJ, Pickford R, Pomati F, Neilan BA (2008) Biosynthetic intermediate analysis and functional homology reveal a saxitoxin gene cluster in cyanobacteria. Appl Environ Microbiol 74:4044–4053PubMedGoogle Scholar
  124. 124.
    Shumway SE (1990) A review of the effects of algal blooms on shellfish and aquaculture. J World Aquacult Soc 21:65–104Google Scholar
  125. 125.
    Carmichael WW, Evans WR, Yin QQ, Bell P, Moczydlowski E (1997) Evidence for paralytic shellfish poisons in the freshwater cyanobacterium Lyngbya wollei (Farlow ex Gomont) comb. nov. Appl Environ Microbiol 63:3104–3110PubMedGoogle Scholar
  126. 126.
    Galvão JA, Oetterer M, Bittencourt-Oliveira MC, Barros SG, Hiller S, Erler K, Luckas B, Pinto E, Kujbida P (2009) Saxitoxins accumulation by freshwater tilapia (Oreochromis niloticus) for human consumption. Toxicon 54:891–894PubMedGoogle Scholar
  127. 127.
    Arias HR (2006) Marine toxins targeting ion channels. Mar Drugs 4:37–69Google Scholar
  128. 128.
    Lagos N, Andrinolo D (2000) Paralytic shellfish poisoning (PSP): toxicology and kinetics. In: Botana LM (ed) Seafood and freshwater toxins: pharmacology, physiology and detection. Marcel Dekker, New YorkGoogle Scholar
  129. 129.
    Satake M, Ofuji K, Naoki H, James KJ, Furey A, McMahon T, Silke J, Yasumoto T (1998) Azaspiracid, a new marine toxin having unique spiro ring assemblies, isolated from Irish mussels, Mytilus edulis. J Am Chem Soc 120:9967–9968Google Scholar
  130. 130.
    James KJ, Fidalgo Saez MJ, Furey A, Lehane M (2003) Azaspiracid poisoning, the food-borne illness associated with shellfish consumption. Food Addit Contam 21:879–892Google Scholar
  131. 131.
    Hess P, McMahon T, Slattery D, Swords D, Dowling G, McCarron M, Clarke D, Gibbons W, Silke J, O' Cinneide M (2003) Use of LC-MS testing to identify lipophilic toxins, to establish local trends and interspecies differences and to test the comparability of LC-MS testing with the mouse bioassay: an example from the Irish biotoxin monitoring programme 2001. In: Villalba A, Reguera B, Romalde JL, Beiras R (eds) Molluscan shellfish safety, Proceedings of the 4th international conference on molluscan shellfish safety. Consellería de Pesca e Asuntos Marítimos da Xunta de Galicia and Intergovernmental Oceanographic Commission of UNESCO, Santiago de Compostela, SpainGoogle Scholar
  132. 132.
    Braña Magdalena A, Lehane M, Krys S, Fernandez ML, Furey A, James KJ (2003) The first identification of azaspiracids in shellfish from France and Spain. Toxicon 42:105–108Google Scholar
  133. 133.
    James KJ, Furey A, Lehane M, Ramstad H, Aune T, Hovgaard P, Morris S, Higman W, Satake M, Yasumoto T (2002) First evidence of an extensive northern European distribution of azaspiracid poisoning (AZP) toxins in shellfish. Toxicon 40:909–915PubMedGoogle Scholar
  134. 134.
    Aasen JAB, Torgersen T, Dahl E, Naustvoll L-J, Aune T (2006) Confirmation of azaspiracids in mussels in Norwegian coastal areas, and full profile at one location. In: Henshilwood K, Deegan B, McMahon T, Cusack C, Keaveney S, Silke J, O' Cinneide M, Lyons D, Hess P (eds) Proceedings of the 5th international conference on molluscan shellfish safety, Galway, Ireland, June 14–18 2004, The Marine Institute, Rinville, Oranmore, Galway, IrelandGoogle Scholar
  135. 135.
    Torgersen T, Bruun Bremmes N, Rundberget T, Aune T (2008) Structural confirmation and occurrence of azaspiracids in Scandinavian brown crabs (Cancer pagurus). Toxicon 51:93–101PubMedGoogle Scholar
  136. 136.
    Taleb H, Vale P, Amanhir R, Benhadouch A, Sagou R, Chafik A (2006) First detection of azaspiracids in mussels in north west Africa. J Shellfish Res 25:1067–1070Google Scholar
  137. 137.
    Anonimity (2004) Regulation (EC) No 853/2004 of 29 April 2004 laying down specific hygiene rules for the hygiene of foodstuffs. Off J Eur Commun L139, 55ffGoogle Scholar
  138. 138.
    Nicolaou KC, Li Y, Uesaka N, Koftis TV, Vyskocil S, Ling T, Govindasamy M, Qian W, Bernal F, Chen D (2003) Total synthesis of the proposed azaspiracid-1 structure, Part 1: Construction of the enantiomerically pure C1-C20, C21-C27, and C28-C40 fragments. Angew Chem 42:3643–3648Google Scholar
  139. 139.
    Nicolaou KC, Chen D, Li Y, Quan W, Ling T, Vyskocil S, Koftis TV, Govindasamy M, Uesaka N (2003) Total synthesis of the proposed azaspiracid-1 structure, Part 2: Coupling of the C1-C20, C21-C27, and C28-C40 fragments and completion of the synthesis. Angew Chem 42:3649–3653Google Scholar
  140. 140.
    Nicolaou KC, Vyskocil S, Koftis TV, Yamada TMA, Ling T, Chen DYK, Tang W, Petrovic G, Frederick MO (2004) Structural revision and total synthesis of azaspiracid-1, Part 1: Intelligence gathering and tentative proposal. Angew Chem 116:2–8Google Scholar
  141. 141.
    Nicolaou KC, Koftis TV, Vyskocil S, Petrovic G, Ling T, Yamada TMA, Tang W, Frederick MO (2004) Structural revision and total synthesis of azaspiracid-1, Part 2: Definition of the ABCD domain and total synthesis. Angew Chem Int Ed 43:4318–4324Google Scholar
  142. 142.
    Yasumoto T (2001) The chemistry and biological function of natural marine toxins. Chem Record 1:228–242Google Scholar
  143. 143.
    Ito E, Satake M, Ofuji K, Kurita N, McMahon T, James K, Yasumoto T (2000) Multiple organ damage caused by a new toxin Azaspiracid, isolated from mussels produced in Ireland. Toxicon 38:917–930PubMedGoogle Scholar
  144. 144.
    James KJ, Moroney C, Roden C, Satake M, Yasumoto T, Lehane M, Furey A (2003) Ubiquitous ‘benign’ alga emerges as the cause of shellfish contamination responsible for the human toxic syndrome, azaspiracid poisoning. Toxicon 41:145–151PubMedGoogle Scholar
  145. 145.
    James KJ, Sierra MD, Lehane M, Braña Magdalena A, Moroney C, Furey A (2004) Azaspiracid poisoning: Aetiology, toxin dynamics and bioconversion in shellfish. In: Steidinger K, Landsberg J, Tomas CR, Vargo GA (eds) Harmful algae 2002, Florida Fish and Wildlife Conservation Commission, Florida Institute of Oceanography, and Intergovernmental Oceanographic Commission of UNESCOGoogle Scholar
  146. 146.
    Satake M, Ofuji K, James KJ, Furey A, Yasumoto T (1998) New toxic event caused by Irish mussels. In: Reguera B, Blanco J, Fernandez M, Wyatt T (eds) Harmful algae, Proceedings of the VIII international conference on harmful algae. Xunta de Galicia/IOC of UNESCO, Vigo, SpainGoogle Scholar
  147. 147.
    Ito E, Terao K, McMahon T, Silke J, Yasumoto T (1998) Acute pathological changes in mice caused by crude extracts of novel toxins isolated from Irish mussels. In: Reguera B, Blanco J, Fernandez M, Wyatt T (eds) Harmful algae, Proceedings of the VIII international conference on harmful algae. Xunta de Galicia/IOC of UNESCO, Vigo, SpainGoogle Scholar
  148. 148.
    Seki T, Satake M, Mackenzie L, Kaspar HF, Yasumoto T (1995) Gymnodimine, a new marine toxin of unprecedented structure isolated from New Zealand oysters and the dinoflagellate Gymnodinium sp. Tetrahedron Lett 36:7093–7096Google Scholar
  149. 149.
    Seki T, Satake M, MacKenzie L, Kaspar HF, Yasumoto T (1996) Gymnodimine, a novel toxic imine isolated from the Foveaux strait oysters and Gymnodinium sp. In: Yasumoto T, Oshima Y, Fukuyo Y (eds) Harmful and toxic algal blooms. Intergovernmental Oceanographic Commission of UNESCO, ParisGoogle Scholar
  150. 150.
    Mackenzie L, Haywood A, Adamson J, Truman P, Till D, Seki T, Satake M, Yasumoto T (1996) Gymnodimine contamination of shellfish in New Zealand. In: Yasumoto T, Oshima Y, Fukuyo Y (eds) Harmful and toxic algal blooms. Intergovernmental Oceanographic Commission of UNESCO, ParisGoogle Scholar
  151. 151.
    Stirling DJ (2001) Survey of historical New Zealand shellfish samples for accumulation of gymnodimine. New Zeal J Mar Fresh 35:851–857Google Scholar
  152. 152.
    Haywood AJ, Steidinger KA, Truby EW, Bergquist PR, Bergquist PL, Adamson J, Mackenzie L (2004) Comparative morphology and molecular phylogenetic analysis of three new species of the genus Karenia (Dinophyceae) from New Zealand. J Phycol 40:165–179Google Scholar
  153. 153.
    Stewart M, Blunt JW, Munro MHG, Robinson WT, Hannah DJ (1997) The absolute stereochemistry of the New Zealand shellfish toxin gymnodimine. Tetrahedron Lett 38:4889–4890Google Scholar
  154. 154.
    Kharrat R, Servent D, Girard E, Ouanounou G, Amar M, Marrouchi R, Benoit E, Molgo J (2008) The marine phycotoxin gymnodimine targets muscular and neuronal nicotinic acetylcholine receptor subtypes with high affinity. J neurochem 107:952–963PubMedGoogle Scholar
  155. 155.
    Provasoli L (1968) Media and prospects for the cultivation of marine algae. In: Watanabe A, Hattori A (eds) Culture and collection of algae. Japanese Society of Plant Physiology, Tokyo, JapanGoogle Scholar
  156. 156.
    Ishibashi M, Yamaguchi N, Sasaki T, Kobayashi J (1994) Amphidinolide N, a novel 26-membered macrolide with remarkably potent cytotoxicity from the cultured marine dinoflagellate Amphidinium sp. J Chem Soc Chem Comm 12:1455–1456Google Scholar
  157. 157.
    Bauer J, Maranda L, Young KA, Shimizu Y, Fairchild C, Cornell L, MacBeth J, Huang S (1995) Isolation and structure of caribenolide I, a highly potent antitumor macrolide from a cultured free-swimming Caribbean dinoflagellate, Amphidinium sp. S1-36-5. J Org Chem 60:1084–1086Google Scholar
  158. 158.
    Sharma GM, Michaels L, Burkholder PR (1968) Goniodomin, a new antibiotic from a dinoflagellate. J Antibiot 21:659–664PubMedGoogle Scholar
  159. 159.
    Murakami M, Makabe K, Yamaguchi K, Konosu S, Walchli MR (1988) Goniodomin A, a novel polyether macrolide from the dinoflagellate Goniodoma pseudogoniaulax. Tetrahedron Lett 29:1149–1152Google Scholar
  160. 160.
    Trench RK (1981) Cellular and molecular interactions in symbioses between dinoflagellates and marine invertebrates. Pure Appl Chem 53:819–835Google Scholar
  161. 161.
    Blank RJ, Trench RK (1985) Speciation and symbiotic dinoflagellates. Science 229:656–658PubMedGoogle Scholar
  162. 162.
    Rowan R, Powers DA (1991) A molecular genetic classification of zooxanthellae and the evolution of animal-algal symbioses. Science 251:1348–1351PubMedGoogle Scholar
  163. 163.
    Nakamura H, Asari T, Murai A, Kan Y, Kondo T, Yoshida K, Ohizumi Y (1995) Zooxanthellatoxin-A, a potent vasoconstrictive 62-membered lactone from a symbiotic dinoflagellate. J Am Chem Society 117:550–551Google Scholar
  164. 164.
    Rho MC, Nakahata N, Nakamura H, Murai A, Ohizumi Y (1995) Activation of rabbit platelets by Ca2+ influx and thromboxane A2 release in an external Ca2+-dependent manner by zooxanthellatoxin-A, a novel polyol. Brit J Pharmacol 115:433–440Google Scholar
  165. 165.
    Kita M, Ohishi N, Konishi K, Kondo M, Koyama T, Kitamura M, Yamada K, Uemura D (2007) Symbiodinolide, a novel polyol macrolide that activates N-type Ca2+ channel, from the symbiotic marine dinoflagellate Symbiodinium sp. Tetrahedron 63:6241–6251Google Scholar
  166. 166.
    Satake M, Murata M, Yasumoto T, Fujita T, Naoki H (1991) Amphidinol, a polyhydroxypolyene antifungal agent with an unprecedented structure, from a marine dinoflagellate, Ampbidnium klebsii. J Am Chem Soc 113:9859–9861Google Scholar
  167. 167.
    Houdai T, Matsuoka S, Morsy N, Matsumori N, Satake M, Murata M (2005) Hairpin conformation of amphidinols possibly accounting for potent membrane permeabilizing activities. Tetrahedron 61:2795–2802Google Scholar
  168. 168.
    Armbrust EV, Berges JA, Bowler C et al (2004) The genome of the diatom Thalassiosira pseudonana: Ecology, evolution, and metabolism. Science 306:79–86PubMedGoogle Scholar
  169. 169.
    Bowler C, Allen AE, Badger JH et al (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:239–244PubMedGoogle Scholar
  170. 170.
    Lefebvre KA, Robertson A (2010) Domoic acid and human exposure risks: a review. Toxicon 56:218–230PubMedGoogle Scholar
  171. 171.
    Wright JLC, Boyd RK, De Freitas ASW, Falk M, Foxall RA, Jamieson WD, Laycock MV, McCulloch AW, McInnes AG et al (1989) Identification of domoic acid, a neuroexcitatory amino acid, in toxic mussels from eastern Prince Edward Island. Can J Chem 67:481–90Google Scholar
  172. 172.
    Ramsey UP, Douglas DJ, Walter JA, Wright JLC (1998) Biosynthesis of domoic acid by the diatom Pseudo-nitzschia multiseries. Nat Toxins 6:137–146PubMedGoogle Scholar
  173. 173.
    Gerwick WH, Moghaddam MF, Hamberg M (1991) Oxylipin metabolism in the red alga Gracilariopsis lemaneiformis: Mechanism of formation of vicinal dihydroxy fatty acids. Arch Biochem Biophys 290:436–444PubMedGoogle Scholar
  174. 174.
    Wang R, Shimizu Y (1990) Bacillarolides I and II, a new type of cyclopentane eicosanoids from the diatom Nitzschia pungens. J Chem Soc Chem Comm 5:413–14Google Scholar
  175. 175.
    Wang R, Shimizu Y, Steiner JR, Clardy J (1993) The absolute configuration of bacillariolides I and II, a new type of cyclopentane icosanoids from a marine diatom. J Chem Soc Chem Comm 4:379–81Google Scholar
  176. 176.
    Ianora A, Miralto A (2010) Toxigenic effects of diatoms on grazers, phytoplankton and other microbes: a review. Ecotoxicology 19:493–511PubMedGoogle Scholar
  177. 177.
    Pohnert G (2005) Diatom/copepod interactions in plankton: the indirect chemical defense of unicellular algae. ChemBioChem 6:946–959PubMedGoogle Scholar
  178. 178.
    Fontana A, d'Ippolito G, Cutignano A, Miralto A, Lanora A, Romano G, Cimino G (2007) Chemistry of oxylipin pathways in marine diatoms. Pure Appl Chem 79:481–490Google Scholar
  179. 179.
    Masse G, Belt ST, Rowland SJ (2004) Biosynthesis of unusual monocyclic alkenes by the diatom Rhizosolenia setigera (Brightwell). Phytochem 65:1101–1106Google Scholar
  180. 180.
    Simon TB, Guillaume Massé WGA, Jean-Michel R, Steven JR (2001) C25 highly branched isoprenoid alkenes in planktonic diatoms of the Pleurosigma genus. Org Geochem 32:1271–1275Google Scholar
  181. 181.
    Elovson J, Vagelos PR (1969) A new class of lipids: chlorosulfolipids. Proc Natl Acad Sci USA 62:957–963PubMedGoogle Scholar
  182. 182.
    Haines TH, Pousada M, Stern B, Mayers GL (1969) Microbial sulpholipids: (R)-13-Chloro-l-(R)-14-docosanediol disulphate and polychlorosulpholipids in Ochromonas danica. Biochem J 113:565–566PubMedGoogle Scholar
  183. 183.
    Elovson J, Vagelos PR (1970) Structure of the major species of chlorosulfolipid from Ochromonas danica. 2,2,11,13,15,16-Hexachloro-n-docosane-1,4-disulfate. Biochemistry 9:3110–3126PubMedGoogle Scholar
  184. 184.
    Haines TH (1973) Sulfolipids and halosulfolipids. In: Erwin JA (ed) Lipids and biomembranes of eukaryotic microorganisms. Academic, New YorkGoogle Scholar
  185. 185.
    Haines TH (1973) Halogen- and sulfur-containing lipids of Ochromonas. Annu Rev Microbiol 27:403–412PubMedGoogle Scholar
  186. 186.
    Chen JL, Proteau PJ, Roberts MA, Gerwick WH, Slate DL, Lee RH (1994) Structure of malhamensilipin A, an inhibitor of protein tyrosine kinase, from the cultured chrysophyte Poterioochromonas malhamensis. J Nat Prod 57:524–527PubMedGoogle Scholar
  187. 187.
    Pereira AR, Byrum T, Shibuya GM, Vanderwal CD, Gerwick WH (2010) Structure revision and absolute configuration of malhamensilipin A from the freshwater chrysophyte Poterioochromonas malhamensis. J Nat Prod 73:279–283PubMedGoogle Scholar
  188. 188.
    Bedke DK, Shibuya GM, Pereira AR, Gerwick WH, Vanderwal CD (2010) A concise enantioselective synthesis of the chlorosulfolipid malhamensilipin A. J Am Chem Soc 132:2542–2543PubMedGoogle Scholar
  189. 189.
    Ciminiello P, Fattorusso E, Forino M, Magno S, Di Rosa M, Ianaro A, Poletti R (2001) Structural elucidation of a new cytotoxin isolated from mussels of the Adriatic Sea. J Org Chem 66:578–582PubMedGoogle Scholar
  190. 190.
    Ciminiello P, Dell’Aversano C, Fattorusso E, Forino M, Di Rosa M, Ianaro A, Poletti R (2002) Structure and stereochemistry of a new cytotoxic polychlorinated sulfolipid from Adriatic shellfish. J Am Chem Soc 124:13114–13120PubMedGoogle Scholar
  191. 191.
    Ciminiello P, Dell’Aversano C, Fattorusso E, Forino M, Magno S (2003) Toxins from Adriatic blue mussels. A decade of studies. Pure Appl Chem 75:325–336Google Scholar
  192. 192.
    Ciminiello P, Dell’Aversano C, Fattorusso E, Forino M, Magno S, Di Meglio P, Ianaro A, Poletti R (2004) A new cytotoxic polychlorinated sulfolipid from contaminated Adriatic mussels. Tetrahedron 60:7093–7098Google Scholar
  193. 193.
    Ciminiello P, Fattorusso E (2004) Shellfish toxins – Chemical studies on northern Adriatic mussels. Eur J Org Chem 12:2533–2551Google Scholar
  194. 194.
    Chao CH, Huang HC, Wang GH, Wen ZH, Wang WH, Chen IM, Sheu JH (2010) Chlorosulfolipids and the corresponding alcohols from the octocoral Dendronephthya griffini. Chem Pharm Bull 58:944–946PubMedGoogle Scholar
  195. 195.
    Chen LL, Pousada M, Haines TH (1976) The flagellar membrane of Ochromonas danica. J Biol Chem 251:1835–1842PubMedGoogle Scholar
  196. 196.
    Kawahara T, Kumaki Y, Kamada T, Ishii T, Okino T (2009) Absolute configuration of chlorosulfolipids from the chrysophyta Ochromonas danica. J Org Chem 74:6016–6025PubMedGoogle Scholar
  197. 197.
    Shibuya GM, Kanady JS, Vanderwal CD (2008) Stereoselective dichlorination of allylic alcohol derivatives to access key stereochemical arrays of the chlorosulfolipids. J Am Chem Soc 130:12514–12518PubMedGoogle Scholar
  198. 198.
    Kanady JS, Nguyen JD, Ziller JW, Vanderwal CD (2009) Synthesis and characterization of all four diastereomers of 3,4-dichloro-2-pentanol, motifs relevant to the chlorosulfolipids. J Org Chem 74:2175–2178PubMedGoogle Scholar
  199. 199.
    Yoshimitsu T, Fukumoto N, Tanaka T (2009) Enantiocontrolled synthesis of polychlorinated hydrocarbon motifs: a nucleophilic multiple chlorination process revisited. J Org Chem 74:696–702PubMedGoogle Scholar
  200. 200.
    Nilewski C, Geisser RW, Carreira EM (2009) Total synthesis of a chlorosulpholipid cytotoxin associated with seafood poisoning. Nature 457:573–576PubMedGoogle Scholar
  201. 201.
    Nilewski C, Geisser RW, Ebert MO, Carreira EM (2009) Conformational and configurational analysis in the study and synthesis of chlorinated natural products. J Am Chem Soc 131:15866–15876PubMedGoogle Scholar
  202. 202.
    Bedke DK, Shibuya GM, Pereira A, Gerwick WH, Haines TH, Vanderwal CD (2009) Relative stereochemistry determination and synthesis of the major chlorosulfolipid from Ochromonas danica. J Am Chem Soc 131:7570–7572PubMedGoogle Scholar
  203. 203.
    Gerwick WH, Lopez A, Van Duyne GD, Clardy J, Ortiz W, Baez A (1986) Hormothamnione, a novel cytotoxic styrylchromone from the marine cyanophyte Hormothamnion enteromorphoides Grunow. Tetrahedron Lett 27:1979–1982Google Scholar
  204. 204.
    Gerwick WH (1989) 6-Desmethoxyhormothamnione, a new cytotoxic styrylchromone from the marine Chrysophyte Chrysophaeum taylori. J Nat Prod 52:252–256PubMedGoogle Scholar
  205. 205.
    Lewis IF, Bryan HF (1941) A new protophyte from the dry tortugas. Am J Bot 28:343–348Google Scholar
  206. 206.
    Takamatsu S, Hodges TW, Rajbhandari I, Gerwick WH, Hamann MT, Nagle DG (2003) Marine natural products as novel antioxidant prototypes. J Nat Prod 66:605–608PubMedGoogle Scholar
  207. 207.
    Takamatsu S, Nagle DG, Gerwick WH (2004) Secondary metabolites from marine cyanobacteria and algae inhibit LFA-1/ICAM-1 mediated cell adhesion. Planta Med 70:127–131PubMedGoogle Scholar
  208. 208.
    Alonso R, Brossi A (1988) Synthesis of hormothamnione. Tetrahedron Lett 29:735–738Google Scholar
  209. 209.
    Ayyangar NR, Khan RA, Deshpande VH (1988) Synthesis of hormothamnione. Tetrahedron Lett 29:2347–2348Google Scholar
  210. 210.
    McGarry LW, Detty MR (1990) Synthesis of highly functionalized flavones and chromones using cycloacylation reactions and C-3 functionalization. A total synthesis of hormothamnione. J Org Chem 55:4349–4356Google Scholar
  211. 211.
    Niveta J, Gambhir G, Krishnamurty HG (2001) Synthesis of hormothamnione and 6-desmethoxyhormothamnione. Indian J Chem 40B:278–283Google Scholar
  212. 212.
    Plaza A, Keffer JL, Bifulco G, Lloyd JR, Bewley CA (2010) Chrysophaentins A-H, antibacterial bisdiarylbutene macrocycles that inhibit the bacterial cell division protein FtsZ. J Am Chem Soc 132:9069–9077PubMedGoogle Scholar
  213. 213.
    Lock RL, Harry EJ (2008) Cell-division inhibitors: new insights for future antibiotics. Nat Rev Drug Discovery 7:324–338Google Scholar
  214. 214.
    Otterstrøm CV, Steemann-Nielsen E (1940) Two cases of extensive mortality in fishes caused by the flagellate Prymnesium parvum Carter. Rep Dan Biol Sta 44:1–24Google Scholar
  215. 215.
    Shilo M, Aschner M (1953) Factors governing the toxicity of cultures containing phytoflagellate Prymnesium parvum Carter. J Gen Microbiol 8:333–343PubMedGoogle Scholar
  216. 216.
    Lindholm T, Virtanen T (1992) A Bloom of Prymnesium parvum Carter in a small coastal inlet in Dragsfjard, Southwestern Finland. Environ Toxic Water Qual 7:165–170Google Scholar
  217. 217.
    Guo MX, Harrison PJ, Taylor FJR (1996) Fish kills related to Prymnesium parvum N. Carter (Haptophyta) in the people’s Republic of China. J Appl Phycol 8:111–117Google Scholar
  218. 218.
    Watson S (2001) Literature review of the microalga Prymnesium parvum and its associated toxicity. Prepared for the Texas Parks and Wildlife Department. landwater/water/environconcerns/hab/ga/literature/. Accessed 22 March 2011
  219. 219.
    Manning SR, La Claire JW (2010) Prymnesins: toxic metabolites of the golden alga, Prymnesium parvum Carter (Haptophyta). Mar Drugs 8:678–704PubMedGoogle Scholar
  220. 220.
    Igarashi T, Satake M, Yasumoto T (1999) Structures and partial stereochemical assignments for Prymnesin-1 and Prymnesin-2: potent hemolytic and ichthyotoxic glycosides isolated from the red tide alga Prymnesium parvum. J Am Chem Soc 121:8499–8511Google Scholar
  221. 221.
    Shilo M, Rosenberger M (1960) Studies on the toxic principles formed by the chrysomonad Prymnesium parvum Carter. Ann NY Acad Sci 90:866–876Google Scholar
  222. 222.
    Yariv J, Hestrin S (1961) Toxicity of the extracellular phase of Prymnesium parvum cultures. J Gen Microbiol 24:165–175PubMedGoogle Scholar
  223. 223.
    Ulitzur S, Shilo M (1970) Procedure for purification and separation of Prymnesium parvum toxins. Biochim Biophys Acta 201:350–363PubMedGoogle Scholar
  224. 224.
    Kozakai H, Oshima Y, Yasumoto T (1982) Isolation and structural elucidation of hemolysin from the phytoflagellate Prymnesium parvum. Agric Biol Chem 46:233–236Google Scholar
  225. 225.
    Igarashi T, Satake M, Yasumoto T (1996) Prymnesin-2: a potent ichthyotoxic and hemolytic glycoside isolated from the red tide alga Prymnesium parvum. J Am Chem Soc 118:479–480Google Scholar
  226. 226.
    Sasaki M, Shida T, Tachibana K (2001) Synthesis and stereochemical confirmation of the HI/JK ring system of prymnesins, potent hemolytic and ichthyotoxic glycoside toxins isolated from the red tide alga. Tetrahedron Lett 42:5725–5728Google Scholar
  227. 227.
    Sasaki M, Ebine M, Takagi H, Takakura H, Shida T, Satake M, Oshima Y, Igarashi T, Yasumoto T (2004) Synthesis of the CDE/FG ring models of prymnesins: reassignment of the relative configuration of the E/F ring juncture. Org Lett 6:1501–1504PubMedGoogle Scholar
  228. 228.
    Sasaki M, Takeda N, Fuwa H, Watanabe R, Satake M, Oshima Y (2006) Synthesis of the JK/LM-ring model of prymnesins, potent hemolytic and ichthyotoxic polycyclic ethers isolated from the red tide alga Prymnesium parvum: confirmation of the relative configuration of the K/L-ring juncture. Tetrahedron Lett 47:5687–5691Google Scholar
  229. 229.
    Morohashi A, Satake M, Oshima Y, Igarashi T, Yasumoto T (2001) Absolute configuration at C14 and C85 in Prymnesin-2, a potent hemolytic and ichthyotoxic glycoside isolated from the red tide alga Prymnesium parvum. Chirality 13:601–605PubMedGoogle Scholar
  230. 230.
    Paul VJ, Sun HH, Fenical W (1982) Udoteal, a linear diterpenoid feeding deterrent from tropical green alga Udotea flabellum. Phytochem 21:468–469Google Scholar
  231. 231.
    Nakatsu T, Ravi BN, Faulkner DJ (1981) Antimicrobial constituents of Udotea flabellum. J Org Chem 46:2435–2538Google Scholar
  232. 232.
    Puglisi MP, Tan LT, Jensen P, Fenical W (2004) Capisterones A and B from the tropical green alga Penicillus capitatus: unexpected anti-fungal defenses targeting the marine pathogen Lindra thallasiae. Tetrahedron 60:7035–7039Google Scholar
  233. 233.
    Li X-C, Jacob MR, Ding Y, Agarwal AK, Smillie TJ, Khan SI, Nagle DG, Ferreira D, Clark AM (2006) Capisterones A and B, which enhance fluconazole activity in Saccharomyces cerevisiae, from the marine green alga Penicillus capitatus. J Nat Prod 69:542–546PubMedGoogle Scholar
  234. 234.
    Hogberg HE, Thomason RH, King TJ (1976) The cymopols, a group of prenylated bromohydroquinones from the green calcareous alga Cymopolia barbata. J Chem Soc Per Trans 1(16):1696–1701Google Scholar
  235. 235.
    Mayer AMS, Paul VJ, Fenical W, Norris JN, de Carvalho MS, Jacobs RS (1993) Phospholipase A2 inhibitors from marine algae. Hydrobiologia 260–261:521–529Google Scholar
  236. 236.
    McConnell OJ, Hughes PA, Targett NM (1982) Diastereoisomers of cyclocymopol and cyclocymopol monomethyl ether from Cymopolia barbata. Phytochem 21:2139–2141Google Scholar
  237. 237.
    McConnell OJ, Hughes PA, Targett NM, Daley J (1982) Effects of secondary metabolites from marine algae on feeding by the sea urchin, Lytechinus variegatus. J Chem Ecol 8:1437–1453Google Scholar
  238. 238.
    Wall ME, Wani MC, Manikumar G, Taylor H, Hughes TJ, Gaetano K, Gerwick WH, McPhail AT, McPhail DR (1989) Plant antimutagenic agents, 7. Structure and antimutagenic properties of cymobarbatol and 4-isocymobarbatol, new cymopols from green alga (Cymopolia barbata). J Nat Prod 52:1092–1099PubMedGoogle Scholar
  239. 239.
    Aguilar-Santos G, Doty MS (1968) Chemical studies on three species of the marine algal genus Caulerpa. In: Freudenthal HD (ed) Drugs from the sea. Marine Technology Society, Washington, DCGoogle Scholar
  240. 240.
    Aguilar-Santos G (1970) Caulerpin, a new red pigment from green algae of the genus Caulerpa. J Chem Soc (C) 6:842–843Google Scholar
  241. 241.
    Maiti BC, Thomson RH, Mahendran M (1978) The structure of caulerpin, a pigment from Caulerpa algae. J Chem Res Synop 4:126–127Google Scholar
  242. 242.
    Raub MF, Cardellina JH II, Schwede JG (1987) The green algal pigment caulerpin as a plant growth regulator. Phytochem 26:619–620Google Scholar
  243. 243.
    Liu Y, Morgan JB, Coothankandaswamy V, Liu R, Jekabsons MB, Mahdi F, Nagle DG, Zhou Y-D (2009) The Caulerpa pigment caulerpin inhibits HIF-1 activation and mitochondrial respiration. J Nat Prod 72:2104–2109PubMedGoogle Scholar
  244. 244.
    de Souza ET, de Lira DP, de Queiroz AC, da Silva DJC, de Aquino AB, Mella EAC, Lorenzo VP, de Miranda GEC, de Araujo-Junior JX, Chaves MCO, Barbosa-Filho JM, de Athayde-Filho PF, Santos BVO, Alexandre-Moreira MS (2009) The antinociceptive and anti-inflammatory activities of caulerpin, a bisindole alkaloid isolated from seaweeds of the genus Caulerpa. Mar Drugs 7:689–704PubMedGoogle Scholar
  245. 245.
    Alarif WM, Abou-Elnaga ZS, Ayyad SN, Al-lihaibi SS (2010) Insecticidal metabolites from the green alga Caulerpa racemosa. Clean: Soil, Air, Water 38:548–557Google Scholar
  246. 246.
    Perez-Rodriguez E, Gomez I, Karsten U, Figueroa FL (1998) Effects of UV radiation on Photosynthesis and excretion of UV-absorbing compounds of Dasycladus vermicularis (Dasycladales, Chlorophyta) from Southern Spain. Phycologia 37:379–387Google Scholar
  247. 247.
    Menzel D, Kazlauskas R, Reichelt J (1983) Coumarins in the siphonalean green algal family Dasycladaceae Kützing (Chlorophyceae). Bot Mar 29:23–29Google Scholar
  248. 248.
    Baily F, Maurin C, Teissier E, Vezin H, Cotelle P (2004) Antioxidant properties of 3-hydroxycoumarin derivatives. Bioorg Med Chem 12:5611–5618Google Scholar
  249. 249.
    Ross C, Kupper FC, Vreeland V, Waite JH, Jacobs RS (2005) Evidence of a latent oxidative burst in relation to wound repair in the giant unicellular Chlorophyte Dasycladus vermicularis. J Phycol 41:531–541Google Scholar
  250. 250.
    Sun HH, Paul VJ, Fenical W (1983) Avrainvilleol, a brominated diphenylmethane derivative with feeding deterrent properties from the tropical green alga Avrainvillea longicaulis. Phytochem 22:743–745Google Scholar
  251. 251.
    Higa T, Scheuer PJ (1975) Constituents of the marine annelid Thelepus setosus. Tetrahedron 31:2379–2381Google Scholar
  252. 252.
    Pedersen M (1978) Bromochlorophenols and brominated diphenylmethane in red algae Marianne Pedersen. Phytochem 17:291–293Google Scholar
  253. 253.
    Chevolot-Magueur A, Cave A, Potier P, Teste J, Chiaroni A, Riche C (1976) Composés bromés de Rytiphlea tinctoria (Rhodophyceae). Phytochem 15:767–771Google Scholar
  254. 254.
    Colon M, Guevara P, Gerwick WH, Ballantine D (1987) 5′-Hydroxyisoavrainvilleol, a new diphenylmethane derivative from the tropical green alga Avrainvillea nigricans. J Nat Prod 50:368–374PubMedGoogle Scholar
  255. 255.
    Carte BK, Troupe N, Chan JA, Westley JW, Faulkner J (1989) Rawsonol, an inhibitor of HMG-CoA Reductase from the tropical green alga Avrainvillea Rawsonii. Phytochem 28:3917–2919Google Scholar
  256. 256.
    Chen JL, Gerwick WH, Schatzman R, Laney M (1994) Isorawsonol and related IMP dehydrogenase inhibitors from the tropical green alga Avrainvillea rawsonii. J Nat Prod 57:947–952PubMedGoogle Scholar
  257. 257.
    Williams DE, Sturgeon CM, Roberge M, Andersen RJ (2007) Nigricanosides A and B, antimitotic glycolipids isolated from the green alga Avrainvillea nigricans collected in Dominica. J Am Chem Soc 129:5822–5823PubMedGoogle Scholar
  258. 258.
    Gerwick WH, Bernart MW, Moghaddam MF, Jiang JD, Solem ML, Nagle DG (1990) Eicosanoids from the Rhodophyta: a new metabolism in the alga. Hydrobiologia 204(205):621–628Google Scholar
  259. 259.
    Gerwick WH, Bernart MW (1992) Eicosanoides and related compounds from marine algae. In: Zabonky OR, Attaway DH (eds) Marine biotechnology, Vol I, Pharmaceutical and bioactive natural products. Plenum, New YorkGoogle Scholar
  260. 260.
    Bernart W, Whatley GG, Gerwick WH (1993) Unprecedented oxylipins from the marine green alga Acrosiphonia coalita. J Nat Prod 56:245–259PubMedGoogle Scholar
  261. 261.
    Gardner HW (1989) Soybean lipoxygenase-1 enzymically forms both (9 S)-and (13 S)-hydroperoxides from linoleic acid by a pH-dependent mechanism. Biochim Biophys Acta 1001:274–281PubMedGoogle Scholar
  262. 262.
    Irie T, Suzuki T, Yasunari Y, Kurosawa E, Masamune T (1969) Laurene, a sesquiterpene hydrocarbon from Laurencia species. Tetrahedron 25:459–68PubMedGoogle Scholar
  263. 263.
    Fenical W (1975) Halogenation in the Rhodophyta. J Phycol 11:245–259Google Scholar
  264. 264.
    Gribble GW (2008) Structure and biosynthesis of halogenated alkaloids. In: Fattorusso E, Taglialatela-Scafati O (eds) Modern alkaloids, structure, isolation, synthesis and biology. Wiley-VCH Verlang GmbH & Co, WeinheimGoogle Scholar
  265. 265.
    Wagner C, El Omari M, Koenig GM (2009) Biohalogenation: nature’s way to synthesize halogenated metabolites. J Nat Prod 72:540–553PubMedGoogle Scholar
  266. 266.
    Craigie JS, Gruenig DE (1967) Bromophenols from red algae. Science 157:1058–1059PubMedGoogle Scholar
  267. 267.
    Phillips DW, Towers GHN (1982) Chemical ecology of red algal bromophenols. I. Temporal, interpopulational and within-thallus measurements of lanosol levels in Rhodomela larix (Turner) C. Agardh. J Exp Mar Biol Ecol 58:285–293Google Scholar
  268. 268.
    Carlson DJ, Lubchenco J, Sparrow MA, Trowbridge CD (1989) Fine-scale variability of lanosol and its disulfate ester in the temperate red alga Neorhodomela larix. J Chem Ecol 15:1321–1333Google Scholar
  269. 269.
    Aknin M, Samb A, Mirailles J, Costantino V, Fattorusso E, Mangoni A (1992) Polysiphenol, a new brominated 9,10-dihydrophenanthrene from the Senegalese red alga Polysiphonia ferulacea. Tetrahedron Lett 33:555–558Google Scholar
  270. 270.
    Wiemer DF, Idler DD, Fenical W (1991) Vidalols A and B, new anti-inflammatory bromophenols from the Caribbean marine red alga Vidalia obtusaloba. Experientia 47:851–853PubMedGoogle Scholar
  271. 271.
    Kazlauskas R, Murphy PT, Wells RJ (1982) A brominated metabolite from the red alga Vidalia spiralis. Australian J Chem 35:219–220Google Scholar
  272. 272.
    McConnell OJ, Fenical W (1980) Halogen chemistry of the red alga Bonnemaisonia. Phytochem 19:233–247Google Scholar
  273. 273.
    Nylund GM, Cervin G, Persson F, Hermansson M, Steinberg PD, Pavia H (2008) Seaweed defence against bacteria: a poly-brominated 2-heptanone from the red alga Bonnemaisonia hamifera inhibits bacterial colonisation. Mar Ecol 369:39–50Google Scholar
  274. 274.
    Nylund GM, Persson F, Lindegarth M, Cervin G, Hermansson M, Pavia H (2010) The red alga Bonnemaisonia asparagoides regulates epiphytic bacterial abundance and community composition by chemical defense. FEMS Microbiol Ecol 71:84–93PubMedGoogle Scholar
  275. 275.
    de Nys R, Givskov M, Kumar N, Kjelleberg S, Steinberg PD (2006) Furanones. Progr Mol Subcell Biol 42:55–86Google Scholar
  276. 276.
    Kugler M (2005) Booster biocides for antifouling products: stricter environmental demands change the market. Chim Oggi 23:10–12Google Scholar
  277. 277.
    Koch B, Liljefors T, Persson T, Nielsen J, Kjelleberg S, Givskov M (2005) The LuxR receptor: the sites of interaction with quorum-sensing signals and inhibitors. Microbiol 151:3589–3602Google Scholar
  278. 278.
    Bernart MW, Gerwick WH, Corcoran EE, Lee AY, Clardy J (1992) Laurencione, a heterocycle from the red alga Laurencia spectabilis. Phytochem 31:1273–1276Google Scholar
  279. 279.
    San-Martin A, Rovirosa J, Xu C, Lu HSM, Clardy J (1987) Further structural studies on the 2-methyl-3(2 H)-furanone derived metabolites of the marine alga Laurencia chilensis. Tetrahedron Lett 28:6013–6014Google Scholar
  280. 280.
    Galloway WRJD, Hodgkinson JT, Bowden SD, Welch M, Spring DR (2011) Quorum sensing in gram-negative bacteria: small molecule modulation of AHL and AI-2 quorum sensing pathways. Chem Rev 111:28–67PubMedGoogle Scholar
  281. 281.
    Lowery CA, McKenzie KM, Qi L, Meijler MM, Janda KD (2005) Quorum sensing in Vibrio harveyi: probing the specificity of the LuxP binding site. Bioorg Med Chem Lett 15:2395–2398PubMedGoogle Scholar
  282. 282.
    Suzuki M, Kurosawa E (1981) Constituents of marine plants. Part 46. Okamurallene, a novel halogenated C15 metabolite from the red alga Laurencia okamurai Yamada. Tetrahedron Lett 22:3853–3856Google Scholar
  283. 283.
    Suzuki M, Kondo H, Tanaka I (1991) Constituents of marine plants. 79. The absolute stereochemistry of okamurallene and its congeners, halogenated C15 nonterpenoids from the red alga Laurencia intricata. Chem Lett 1:33–34Google Scholar
  284. 284.
    Carter-Franklin JN, Butler A (2004) Vanadium bromoperoxidase-catalyzed biosynthesis of halogenated marine natural products. J Am Chem Soc 126:15060–15066PubMedGoogle Scholar
  285. 285.
    McConnell OJ, Fenical W (1978) Ochtodene and ochtodiol: novel polyhalogenated cyclic monoterpenes from the red seaweed Ochtodes secundiramea. J Org Chem 43:4238–4241Google Scholar
  286. 286.
    Paul VJ, Hay ME, Duffy JE, Fenical W, Gustafson K (1988) Chemical defense in the seaweed Ochtodes secundiramea. Effects of its monoterpenoid components upon diverse coral-reef herbivores. J Exp Mar Biol Ecol 114:249–260Google Scholar
  287. 287.
    Pennings SC, Paul VJ (1993) Sequestration of dietary secondary metabolites by three species of sea hares: location, specificity and dynamics. Mar Biol 117:535–546Google Scholar
  288. 288.
    Polzin JJ, Rorrer GL, Cheney DP (2003) Metabolic flux analysis of halogenated monoterpene biosynthesis in microplantlets of the macrophytic red alga Ochtodes secundiramea. Biomol Eng 20:205–215PubMedGoogle Scholar
  289. 289.
    Sims JJ, Lin GHY, Wing RM (1974) Marine natural products. X. Elatol, a halogenated sesquiterpene alcohol from the red alga Laurencia elata. Tetrahedron Lett 39:3487–3490Google Scholar
  290. 290.
    Brennan MR, Erickson KL, Minott DA, Pascoe KO (1987) Chamigrane metabolites from a Jamaican variety of Laurencia obtusa. Phytochem 26:1053–1057Google Scholar
  291. 291.
    Salgado LT, Viana NB, Andrade LR, Leal RN, da Gama BAP, Attias M, Pereira RC, Amado Filho GM (2008) Intra-cellular storage, transport and exocytosis of halogenated compounds in marine red alga Laurencia obtusa. J Struct Biol 162:345–355PubMedGoogle Scholar
  292. 292.
    Vairappan CS, Anangdan SP, Tan KL, Matsunaga S (2010) Role of secondary metabolites as defense chemicals against ice-ice disease bacteria in biofouler at carrageenophyte farms. J Appl Phycol 22:305–311Google Scholar
  293. 293.
    Dias T, Brito I, Moujir L, Paiz N, Darias J, Cueto M (2005) Cytotoxic sesquiterpenes from Aplysia dactylomela. J Nat Prod 68:1677–1679PubMedGoogle Scholar
  294. 294.
    Oliveira dos Santos A, Veiga-Santos P, Ueda-Nakamura T, Dias Filho BP, Sudatti DB, Bianco EM, Rcrespo P, Nakamura CV (2010) Effect of elatol, isolated from red seaweed Laurencia dendroidea, on Leishmania amazonensis. Mar Drugs 8:2733–2743Google Scholar
  295. 295.
    Kornprobst JM, Al-Easa HS (2003) Brominated diterpenes of marine origin. Curr Org Chem 7:1181–1229Google Scholar
  296. 296.
    Kubanek J, Prusak AC, Snell TW, Giese RA, Hardcastle KI, Fairchild CR, Aalbersberg W, Raventos-Suarez C, Hay ME (2005) Antineoplastic diterpene-benzoate macrolides from the Fijian red alga Callophycus serratus. Org Lett 7:5261–5264PubMedGoogle Scholar
  297. 297.
    Lane AL, Stout EP, Hay ME, Prusak AC, Hardcastle K, Fairchild CR, Franzblau SG, Le Roch K, Prudhomme J, Aalbersberg W, Kubanek J (2007) Callophycoic acids and callophycols from the Fijian red alga Callophycus serratus. J Org Chem 72:7343–7351PubMedGoogle Scholar
  298. 298.
    Stout EP, Prudhomme J, Le Roch K, Fairchild CR, Franzblau SG, Aalbersberg W, Hay ME, Kubanek J (2010) Unusual antimalarial meroditerpenes from tropical red macroalgae. Bioorg Med Chem Lett 20:5662–5665PubMedGoogle Scholar
  299. 299.
    Lane AL, Nyadong L, Galhena AS, Shearer TL, Stout EP, Parry RM, Kwasnik M, Wang MD, Hay ME, Fernandez FM, Kubanek J (2009) Desorption electrospray ionization mass spectrometry reveals surface-mediated antifungal chemical defense of a tropical seaweed. Proc Nat Acad Sci USA 106:7314–7319PubMedGoogle Scholar
  300. 300.
    Blunt JW, Hartshorn MP, McLennan TJ, Munro MHG, Robinson WT, Yorke SC (1978) Thyrsiferol: a squalene-derived metabolite of Laurencia thyrsifera. Tetrahedron Lett 1:69–72Google Scholar
  301. 301.
    Gonzalez AG, Arteaga JM, Fernandez JJ, Martin JD, Norte M, Ruano JZ (1984) Marine natural products from the Atlantic zone. 39. Terpenoids of the red alga Laurencia pinnatifida. Tetrahedron 40:2751–2755Google Scholar
  302. 302.
    Ji NY, Li XM, Xie H, Ding J, Li K, Ding LP, Wang BG (2008) Highly oxygenated triterpenoids from the marine red alga Laurencia mariannensis (rhodomelaceae). Helvetica Chim Acta 91:1940–1946Google Scholar
  303. 303.
    Little RD, Nishiguchi GA (2008) Synthetic efforts toward, and biological activity of, thyrsiferol and structurally-related analogues. Stud Nat Prod Chem 35:3–56Google Scholar
  304. 304.
    Gerwick WH, Singh IP (2002) Structural diversity of marine oxylipins. In: Kuo TM, Gardner HW (eds) Lipid biotechnology. Marcel Dekker, New YorkGoogle Scholar
  305. 305.
    Noguchi T, Matsui T, Miyazawa K, Asakawa M, Iijima N, Shida Y, Fuse M, Hosaka Y, Kirigaya C et al (1994) Poisoning by the red alga ‘Ogonori’ (Gracilaria verrucosa) on the Nojima Coast, Yokohama, Kanagawa Prefecture, Japan. Toxicon 32:1533–1538PubMedGoogle Scholar
  306. 306.
    Gerhart DJ (1984) Prostaglandin A2: an agent of chemical defense in the Caribbean gorgonian Plexaura homomalla. Mar Ecol Prog Ser 19:181–187Google Scholar
  307. 307.
    Solem ML, Jiang ZD, Gerwick WH (1989) Three new and bioactive icosanoids from the temperate red marine alga Farlowia mollis. Lipids 24:256–260PubMedGoogle Scholar
  308. 308.
    Orwig KE, Leers-Sucheta S, Moghaddam MF, Jiang ZD, Gerwick WH, Stormshak F (1992) Unique metabolites of eicosapentaenoic acid interfere with corpus luteum function in the ewe. Prostaglandins 44:519–530PubMedGoogle Scholar
  309. 309.
    Hamberg M, Gerwick WH (1993) Biosynthesis of vicinal dihydroxy fatty acids in the red alga Gracilariopsis lemaneiformis: Identification of a sodium-dependant 12-lipoxygenase and a hydroperoxide isomerase. Arch Biochem Biophys 305:115–122PubMedGoogle Scholar
  310. 310.
    Higgs MD, Mulheirn LJ (1981) Hybridalactone, an unusual fatty acid metabolite from the red alga Laurencia hybrida (Rhodophyta, Rhodomelaceae). Tetrahedron 37:4259–4262Google Scholar
  311. 311.
    Corey EJ, De B, Ponder JW, Berg JM (1984) The stereochemistry and biosynthesis of hybridalactone, an eicosanoid from Laurencia hybrida. Tetrahedron Lett 25:1015–1018Google Scholar
  312. 312.
    Nagle DG, Gerwick WH (1990) Constanolactones A and B, novel cyclopropyl hydroxy eicosanoids from the temperate red alga Constantinea simplex. Tetrahedron Lett 31:2995–2998Google Scholar
  313. 313.
    Gerwick WH (1993) Carbocyclic oxylipins of marine origin. Chem Rev 93:1807–1823Google Scholar
  314. 314.
    Molinski TF (2010) Microscale methodology for structure elucidation of natural products. Curr Opin Biotechnol 21:819–826PubMedGoogle Scholar
  315. 315.
    van den Hoek C, Mann DG, Jahns HM (1995) Algae: an introduction to phycology. Cambridge University Press, CambridgeGoogle Scholar
  316. 316.
    Katsaros C, Karyophyllis D, Galatis B (2006) Cytoskeleton and morphogenesis in brown algae. Ann Bot 97:679–693PubMedGoogle Scholar
  317. 317.
    Charrier B, Coelho SM, Le Bail A, Tonon T, Michel G, Potin P, Kloareg B, Boyen C, Peters AF, Cock JM (2008) Development and physiology of the brown alga Ectocarpus siliculosus: two centuries of research. New Phytol 177:319–332PubMedGoogle Scholar
  318. 318.
    Cathell MD, Szewczyk JC, Schauer CL (2010) Organic modification of the polysaccharide alginate. Mini-Rev Org Chem 7:61–67Google Scholar
  319. 319.
    Hunt NC, Grover LM (2010) Cell encapsulation using biopolymer gels for regenerative medicine. Biotech Lett 32:733–742Google Scholar
  320. 320.
    Qin Y (2010) Functional alginate fibers. Chem Fibers Int 60:32–33Google Scholar
  321. 321.
    Hara M (1986) Use of alginic acid. Properties and mannuronic acid/guluronic acid ratio of alginic acid. New Food Ind 28:10–14Google Scholar
  322. 322.
    Ashton WR (1975) Alginates in the food industry. Afinidad 32:653–658Google Scholar
  323. 323.
    Rioux LE, Turgeon SL, Beaulieu M (2010) Structural characterization of laminaran and galactofucan extracted from the brown seaweed Saccharina longicruris. Phytochem 71:1586–1595Google Scholar
  324. 324.
    Maeda M, Nishizawa K (1968) Fine structure of laminaran of Eisenia bicyclis. J Biochem 63:199–206PubMedGoogle Scholar
  325. 325.
    Strain HH, Sherma J (1972) Chloroplast pigments of higher plants, green algae, and brown algae and their influence upon the invention, modifications, and applications of Tswett’s chromatographic method. J Chromatogr 7:371–397Google Scholar
  326. 326.
    Maier I (1995) Brown algal pheromones. Prog Phycol Res 11:51–102Google Scholar
  327. 327.
    Jaenicke L (1977) Sex and sex attraction in seaweed. Trends Biochem Sci 7:152–155Google Scholar
  328. 328.
    Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR (2010) Marine natural products. Nat Prod Rep 27:165–237PubMedGoogle Scholar
  329. 329.
    Blunt JW, Copp BR, Hu WP, Munro MHG, Northcote PT, Prinsep MR (2009) Marine natural products. Nat Prod Rep 26:170–244PubMedGoogle Scholar
  330. 330.
    Cabrita MT, Vale C, Rauter AP (2010) Halogenated compounds from marine algae. Mar Drugs 8:2301–2317PubMedGoogle Scholar
  331. 331.
    Abad MJ, Bedoya LM, Bermejo P (2008) Natural marine anti-inflammatory products. Mini-Rev Med Chem 8:740–754PubMedGoogle Scholar
  332. 332.
    Boland W (1995) The chemistry of gamete attraction: chemical structures, biosynthesis, and biotic degradation of algal pheromones. Proc Natl Acad Sci USA 92:37–43PubMedGoogle Scholar
  333. 333.
    Mueller DG, Jaenicke L (1973) Fucoserraten, the female sex attractant of Fucus serratus (Phaeophyta). FEBS Lett 30:137–138Google Scholar
  334. 334.
    Mueller DG, Gassmann G (1985) Sexual reproduction and the role of sperm attractants in monoecious species of the brown algae order Fucales (Fucus, Hesperophycus, Pelvetia, and Pelvetiopsis). J Plant Physiol 118:401–408Google Scholar
  335. 335.
    Moore BS (1999) Biosynthesis of marine natural products: microorganisms and macroalgae. Nat Prod Rep 16:653–674PubMedGoogle Scholar
  336. 336.
    Hombeck M, Boland W (1998) Biosynthesis of the algal pheromone fucoserratene by the freshwater diatom Asterionella formosa (Bacillariophyceae). Tetrahedron 54:11033–11042Google Scholar
  337. 337.
    Juettner F, Mueller H (1979) Excretion of octadiene and octatrienes by a freshwater diatom. Naturwissenschaften 66:363–364Google Scholar
  338. 338.
    Wendel T, Juettner F (1996) Lipoxygenase-mediated formation of hydrocarbons and unsaturated aldehydes in freshwater diatoms. Phytochem 41:1445–1449Google Scholar
  339. 339.
    Pohnert G, Boland W (1997) Pericyclic reactions in nature: synthesis and Cope rearrangement of thermolabile bis-alkenylcyclopropanes from female gametes of marine brown algae (Phaeophyceae). Tetrahedron 53:13681–13694Google Scholar
  340. 340.
    Pohnert G, Boland W (1996) Biosynthesis of the algal pheromone hormosirene by the freshwater diatom Gomphonema parvulum (Bacillariophyceae). Tetrahedron 52:10073–10082Google Scholar
  341. 341.
    Boland W, Pohnert G, Maier I (1995) Biosynthesis of algae pheromones. 4. Pericyclic reactions in nature: spontaneous Cope rearrangement inactivates algae pheromones. Angew Chem Int Ed Engl 34:1602–1604Google Scholar
  342. 342.
    Mueller DG, Schmid CE (1988) Qualitative and quantitative determination of pheromone secretion in female gametes of Ectocarpus siliculosus (Phaeophyceae). Biol Chem Hoppe-Seyler 369:647–653Google Scholar
  343. 343.
    Stratmann K, Boland W, Mueller DG (1993) Biosynthesis of pheromones in female gametes of marine brown algae (Phaeophyceae). Tetrahedron 49:3755–3766Google Scholar
  344. 344.
    Stratmann K, Boland W, Mueller DG (1992) Pheromones of marine brown algae: a new branch of eicosanoid metabolism. Angew Chem Int Ed Engl 31:1246–1248Google Scholar
  345. 345.
    Faulkner DJ (1987) Marine natural products. Nat Prod Rep 4:540–576Google Scholar
  346. 346.
    Amico V, Currenti R, Oriente G, Piattelli M, Tringali C (1981) A phloroglucinol derivative from the brown alga Zonaria tournefortii. Phytochem 20:1451–1453Google Scholar
  347. 347.
    Gerwick W, Fenical W (1982) Phenolic lipids from related marine algae of the order Dictyotales. Phytochem 21:633–637Google Scholar
  348. 348.
    Blackman AJ, Rogers GI, Volkman JK (1988) Phloroglucinol derivatives from three Australian marine algae of the genus Zonaria. J Nat Prod 51:158–160Google Scholar
  349. 349.
    Munakata T, Ooi T, Kusumi T (1997) A simple preparation of 17 (R)-hydroxyeicosatetraenoic acid and eicosapentaenoic acid from the eicosanoyl phloroglucinols, components of the brown alga, Zonaria diesingiana. Tetrahedron Lett 38:249–250Google Scholar
  350. 350.
    Wisespongpand P, Kuniyoshi M (2003) Bioactive phloroglucinols from the brown alga Zonaria diesingiana. J Appl Phycol 15:225–228Google Scholar
  351. 351.
    Ragan MA, Glombitza KW (1986) Phlorotannins, brown algal polyphenols. Prog Phycol Res 4:130–241Google Scholar
  352. 352.
    Herbert RB (1989) The biosynthesis of secondary metabolites, 2nd edn. Chapman and Hall, LondonGoogle Scholar
  353. 353.
    Hay ME, Fenical W (1988) Marine plant–herbivore interactions: the ecology of chemical defense. Annu Rev Ecol Syst 19:111–145Google Scholar
  354. 354.
    Ragan MA (1976) Physodes and the phenolic compounds of brown algae. Composition and significance of physodes in vivo. Bot Mar 19:145–154Google Scholar
  355. 355.
    Kaur I, Vijayaraghavan MR (1992) Physode distribution and genesis in Sargassum vulgare (C. Agardh) and Sargassum johnstonii Setchell and Gardner. Aquat Bot 45:375–384Google Scholar
  356. 356.
    Rosenthal GA, Janzen DH (1979) Herbivores, their interaction with secondary plant metabolites. Academic, New YorkGoogle Scholar
  357. 357.
    Norris JN, Fenical W (1982) Chemical defenses in tropical marine algae. In: Rutzler K, Macintyre IG (eds) The Atlantic barrier reef ecosystem at Carrie Bow Cay, Belize. Smithsonian Contribution to the Marine Sciences. Smithsonian Institution Press, Washington, DCGoogle Scholar
  358. 358.
    Bernays EA, Cooper-Driver G, Bilgener M (1989) Herbivores and plant tannins. Adv Ecol Res 19:263–302Google Scholar
  359. 359.
    Steinberg PD (1992) Geographical variation in the interaction between marine herbivores and brown algal secondary metabolites. In: Paul VJ (ed) Marine chemical ecology. Cornell, New YorkGoogle Scholar
  360. 360.
    Pavia H, Cervin G, Lindgren A, Aberg P (1997) Effects of UV-B radiation and simulated herbivory on phlorotannins in the brown alga Ascophyllum nodosum. Mar Ecol Prog Ser 157:139–146Google Scholar
  361. 361.
    Higa T (1981) Phenolic substances. In: Scheuer PJ (ed) Marine natural products, chemical and biological perspective, vol 4. Academic, LondonGoogle Scholar
  362. 362.
    Fukuyama Y, Kodama M, Miura I, Kinzyo Z, Mori H, Nakayama Y, Takahashi M (1990) Anti-plasmin inhibitor. VI. Structure of phlorofucofuroeckol A, a novel phlorotannin with both dibenzo-1,4-dioxin and dibenzofuran elements, from Ecklonia kurome Okamura. Chem Pharm Bull 38:133–135PubMedGoogle Scholar
  363. 363.
    Glombitza KW, Gerstberger G (1985) Antibiotics from algae. Part 31. Phlorotannins with dibenzodioxin structural elements from the brown alga Eisenia arborea. Phytochem 24:543–551Google Scholar
  364. 364.
    Fukuyama Y, Kodama M, Miura I, Kinzyo Z, Kido M, Mori H, Nakayama Y, Takahashi M (1989) Anti-plasmin inhibitor. Part III. Structure of an anti-plasmin inhibitor, eckol, isolated from the brown alga Ecklonia kurome Okamura and inhibitory activities of its derivatives on plasma plasmin inhibitors. Chem Pharm Bull 37:349–353PubMedGoogle Scholar
  365. 365.
    Nakayama Y, Takahashi M, Fukuyama Y, Kinzyo Z (1989) Anti-plasmin inhibitor. Part IV. An anti-plasmin inhibitor, eckol, isolated from the brown alga Ecklonia kurome Okamura. Agric Biol Chem 53:3025–3030Google Scholar
  366. 366.
    Fukuyama Y, Miura I, Kinzyo Z, Mori H, Kido M, Nakayama Y, Takahashi M, Ochi M (1985) Eckols, novel phlorotannins with a dibenzo-p-dioxin skeleton possessing inhibitory effects on α-2-macroglobulin from the brown alga Ecklonia kurome Okamura. Chem Lett 6:739–742Google Scholar
  367. 367.
    Mitani Y, Sakai S (1992) Eckols as tyrosinase inhibitors. Japan Patent 04235110 A 19920824Google Scholar
  368. 368.
    Shibata T, Nagayama K, Tanaka R, Yamaguchi K, Nakamura T (2003) Inhibitory effects of brown algal phlorotannins on secretory phospholipase A2s, lipoxygenases and cyclooxygenases. J Appl Phycol 15:61–66Google Scholar
  369. 369.
    Shibata T, Fujimoto K, Nagayama K, Yamaguchi K, Nakamura T (2002) Inhibitory activity of brown algal phlorotannins against hyaluronidase. Int J Food Sci Tech 37:703–709Google Scholar
  370. 370.
    Ahn MJ, Yoon KD, Min SY, Lee JS, Kim JH, Kim TG, Kim SH, Kim NG, Huh H, Kim J (2004) Inhibition of HIV-1 reverse transcriptase and protease by phlorotannins from the brown alga Ecklonia cava. Biol Pharm Bull 27:544–547PubMedGoogle Scholar
  371. 371.
    Nakamura T, Nagayama K, Uchida K, Tanaka R (1996) Antioxidant activity of phlorotannins isolated from the brown alga Eisenia bicyclis. Fisheries Sci 62:923–926Google Scholar
  372. 372.
    Kim KC, Kang KA, Zhang R, Piao MJ, Kim GY, Kang MY, Lee SJ, Lee NH, Surh YJ, Hyun JW (2010) Up-regulation of Nrf2-mediated heme oxygenase-1 expression by eckol, a phlorotannin compound, through activation of Erk and PI3K/Akt. Int J Biochem Cell Biol 42:297–305PubMedGoogle Scholar
  373. 373.
    Glombitza KW, Vogels HP (1985) Antibiotics from algae. XXXV. Phlorotannins from Ecklonia maxima. Planta Med 4:308–312Google Scholar
  374. 374.
    Nagayama K, Iwamura Y, Shibata T, Hirayama I, Nakamura T (2002) Bactericidal activity of phlorotannins from the brown alga Ecklonia kurome. J Antimicrob Chemother 50:889–893PubMedGoogle Scholar
  375. 375.
    Hirschfeld DR, Fenical W, Lin GHY, Wing RM, Radlick P, Sims JJ (1973) Marine natural products. VIII. Pachydictyol A, an exceptional diterpene alcohol from the brown alga, Pachydictyon coriaceum. J Am Chem Soc 95:4049–4050Google Scholar
  376. 376.
    Faulker DJ, Ravi BN, Finer J, Clardy J (1977) Diterpenes from Dictyota dichotoma. Phytochem 16:991–993Google Scholar
  377. 377.
    Hay ME, Duffy JE, Pfister CA (1987) Chemical defense against different marine herbivores: are amphipods insect equivalents? Ecology 68:1567–1580Google Scholar
  378. 378.
    Duffy JE, Hay ME (1990) Seaweed adaptations to herbivory. BioScience 40:368–375Google Scholar
  379. 379.
    Gedara SR, Abdel-Halim OB, El-Sharkawy SH, Salama OM, Shier TW, Halim AF (2003) Cytotoxic hydroazulene diterpenes from the brown alga Dictyota dichotoma. Z Naturforsch 58c:17–22Google Scholar
  380. 380.
    Folmer F, Jaspars M, Dicato M, Diederich M (2010) Photosynthetic marine organisms as a source of anticancer compounds. Phytochem Rev 9:557–579Google Scholar
  381. 381.
    Ayyad SEN, Abdel-Halim OB, Shier WT, Hoye TR (2003) Cytotoxic hydroazulene diterpenes from the brown alga Cystoseira myrica. Z Naturforsch 58c:33–38Google Scholar
  382. 382.
    Zubia M, Fabre MS, Kerjean V, Lann KL, Stiger-Pouvreau V, Fauchon M, Deslandes E (2009) Antioxidant and antitumoural activities of some Phaeophyta from Brittany coasts. Food Chem 116:693–701Google Scholar
  383. 383.
    Finer J, Clardy J, Fenical W, Minale L, Riccio R, Battaile J, Kirkup M, Moore RE (1979) Structures of dictyodial and dictyolactone, unusual marine diterpenes. J Org Chem 44:2044–2047Google Scholar
  384. 384.
    Kirkup MP, Moore RE (1983) Two minor diterpenes related to dictyodial A from the brown alga Dictyota crenulata. Phytochem 22:2539–2541Google Scholar
  385. 385.
    Siamopoulou P, Bimplakis A, Iliopoulou D, Vagias C, Cos P, Berghe DV, Roussis V (2004) Diterpenes from the brown algae Dictyota dichotoma and Dictyota linearis. Phytochem 65:2025–2030Google Scholar
  386. 386.
    Manzo E, Ciavatta ML, Bakkas S, Villani G, Varcamonti M, Zanfardino A, Gavagnin M (2009) Diterpene content of the alga Dictyota ciliolata from a Moroccan lagoon. Phytochem Lett 2:211–215Google Scholar
  387. 387.
    Cronin G, Hay ME (1996) Chemical defenses, protein content, and susceptibility to herbivory of diploid vs. haploid stages of the isomorphic brown alga Dictyota ciliata (Phaeophyta). Bot Mar 39:395–399Google Scholar
  388. 388.
    Schmitt TM, Lindquist N, Hay ME (1998) Seaweed secondary metabolites as antifoulants. Effects of Dictyota spp. diterpenes on survivorship, settlement, and development of marine invertebrate larvae. Chemoecology 8:125–131Google Scholar
  389. 389.
    Ninomya M, Matsuka S, Kawakubo A, Bito N (1995) HIV-1 reverse transcriptase inhibitors containing hydroxydictyodial or dictyodial. Japan Patent 07285877 A 19951031Google Scholar
  390. 390.
    Sun HH, Ferrara NM, McConnell OJ, Fenical W (1980) Bifurcarenone, an inhibitor of mitotic cell division from the brown alga Bifurcaria galapagensis. Tetrahedron Lett 21:3123–3126Google Scholar
  391. 391.
    Mori K, Uno T (1989) Synthesis and structure revision of bifurcarenone, a unique monocyclic diterpene in combination with hydroquinone C7 unit as an inhibitor of mitotic cell division. Tetrahedron 45:1945–1958Google Scholar
  392. 392.
    Mori K, Uno T, Kido M (1990) Determination of the absolute configuration of bifurcarenone by the synthesis of its (1’R,2’R)-isomer. Tetrahedron 46:4193–4204Google Scholar
  393. 393.
    Amico A (1995) Marine brown algae of family Cystoseiraceae: chemistry and chemotaxonomy. Phytochem 39:1257–1279Google Scholar
  394. 394.
    Faulkner DJ (2002) Marine natural products. Nat Prod Rep 19:1–48 and references thereinPubMedGoogle Scholar
  395. 395.
    Gerwick WH, Fenical W, Fritsch N, Clardy J (1979) Stypotriol and stypoldione- ichthyotoxins of mixed biogenesis from the marine alga Stypopodium zonale. Tetrahedron Lett 2:145–148Google Scholar
  396. 396.
    Gerwick WH, Fenical W (1981) Ichthyotoxic and cytotoxic metabolites of the tropical brown alga Stypopodium zonale (Lamouroux) Papenfuss. J Org Chem 46:22–27Google Scholar
  397. 397.
    Gerwick WH, Fenical W, Norris JN (1985) Chemical variation in the tropical seaweed Stypopodium zonale (Dictyotaceae). Phytochem 24:1279–1283Google Scholar
  398. 398.
    Sampli P, Tsitsimpikou C, Vagias C, Harvala C, Roussis V (2000) Schimperiol, a new meroterpenoid from the brown alga Stypopodium schimperi. Nat Prod Lett 14:365–372Google Scholar
  399. 399.
    Dorta E, Diaz-Marrero AR, Cueto M, Darias J (2003) On the relative stereochemistry of atomaric acid and related compounds. Tetrahedron 59:2059–2062Google Scholar
  400. 400.
    Dorta E, Cueto M, Diaz-Marrero AR, Darias J (2002) Stypolactone, an interesting diterpenoid from the brown alga Stypopodium zonale. Tetrahedron Lett 43:9043–9046Google Scholar
  401. 401.
    Depix MS, Martinez J, Santibanez F, Rovirosa J, San Martin A, Maccioni RB (1998) The compound 14-keto-stypodiol diacetate from the algae Stypopodium flabelliforme inhibits microtubules and cell proliferation in DU-145 human prostatic cells. Mol Cell Biochem 187:191–199PubMedGoogle Scholar
  402. 402.
    O’Brien ET, White S, Jacobs RS, Boder GB, Wilson L (1984) Pharmacological properties of a marine natural product, stypoldione, obtained from the brown alga Stypopodium zonale. Hydrobiologia 116–117:141–145Google Scholar
  403. 403.
    White SJ, Jacobs RS (1983) Effect of stypoldione on cell-cycle progression, DNA and protein synthesis, and cell division in cultured sea-urchin embryos. Mol Pharmacol 24:500–508PubMedGoogle Scholar
  404. 404.
    Martinez JL, Sepulveda SP, Rovirosa J, San Martin A (1997) Effects in rat isolated aortic ring and atrium of diacetyl epitaondiol, diterpenoid from Stypopodium flabelliforme algae. An Asoc Quim Argent 85:69–75Google Scholar
  405. 405.
    Wessels M, Koenig GM, Wright AD (1999) A new tyrosine kinase inhibitor from the marine brown alga Stypopodium zonale. J Nat Prod 62:927–930PubMedGoogle Scholar
  406. 406.
    Rovirosa J, Sepulveda M, Quezada E, San-Martin A (1992) Isoepitaondiol, a diterpenoid of Stypopodium flabelliforme and the insecticidal activity of stypotriol, epitaondiol and derivatives. Phytochem 31:2679–2681Google Scholar
  407. 407.
    Sabry OMM, Andrews S, McPhail KL, Goeger DE, Yokochi A, LePage KT, Murray TF, Gerwick WH (2005) Neurotoxic meroditerpenoids from the tropical marine brown alga Stypopodium flabelliforme. J Nat Prod 68:1022–1030PubMedGoogle Scholar
  408. 408.
    Sanchez-Ferrando F, San-Martin A (1995) Epitaondiol: the first polycyclic meroditerpenoid containing two fused six-membered rings forced into the twist-boat conformation. J Org Chem 60:1475–1478Google Scholar
  409. 409.
    Kurata K, Taniguchi K, Shiraishi K, Hayama N, Tanaka I, Suzuki M (1989) Ecklonialactone A and B, two unusual metabolites from the brown alga Ecklonia stolonifera Okamura. Chem Lett 2:267–270Google Scholar
  410. 410.
    Kurata K, Taniguchi K, Shiraishi K, Suzuki M (1993) Ecklonialactones C-F from the brown alga Ecklonia stolonifera. Phytochem 33:155–159Google Scholar
  411. 411.
    Todd JS, Proteau PJ, Gerwick WH (1994) The absolute configuration of ecklonialactones A, B, and E, novel oxylipins from brown algae of the genera Eckonia and Egregia. J Nat Prod 57:171–174PubMedGoogle Scholar
  412. 412.
    Todd JS, Proteau PJ, Gerwick WH (1993) Egregiachlorides A-C: new chlorinated oxylipins from the marine brown alga Egregia menziesii. Tetrahedron Lett 34:7689–7692Google Scholar
  413. 413.
    Kousaka K, Ogi N, Akazawa Y, Fujieda M, Yamamoto Y, Takada Y, Kimura J (2003) Novel oxylipin metabolites from the brown alga Eisenia bicyclis. J Nat Prod 66:1318–1323PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Hyukjae Choi
    • 1
  • Alban R. Pereira
    • 1
  • William H. Gerwick
    • 1
  1. 1.Scripps Institution of Oceanography, Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of CaliforniaSan DiegoUSA

Personalised recommendations