Advertisement

Marine Natural Products Synthesis

  • Victoria L. Wilde
  • Jonathan C. Morris
  • Andrew J. Phillips
Reference work entry

Abstract

Synthetic chemistry has played a significant role in the development of natural products chemistry, and the histories of the two fields are inextricably intertwined. Biology, isolation, structure elucidation, and synthesis are central to marine natural products chemistry and many advancements in the past 40 years have come in response to the challenges presented by compounds from the oceans. In this chapter we present an overview of marine natural products synthesis through a looking glass that focuses on some selected total syntheses from the past 40 odd years. In this light we can only provide a snapshot of where the field currently stands and the road that has led here. The vectors that define the size of the field and the constraints of this forum unfortunately do not cross, and as such it is not possible to be comprehensive. We direct the reader to recent reviews that cover the field in greater detail.

Keywords

Total Synthesis Alder Reaction Aldol Reaction Marine Natural Product Quinone Methide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    (a) Corey EJ, X-M Cheng (1995) The logic of chemical synthesis. Wiley-Interscience, New York; (b) Nicolaou KC, Sorensen EJ (1996) Classics in total synthesis: targets, strategies, methods. Wiley-VCH, Weinheim; (c) Nicolaou KC, Snyder SA (2003) Classics in total synthesis II: more targets, strategies, methods. Wiley-VCH, Weinheim; (d) Nicolaou KC, Chen JS (2011) Classics in total synthesis III: further targets, strategies, methods. Wiley-VCH, WeinheimGoogle Scholar
  2. 2.
    (a) Morris JC, Nicholas GM, Phillips AJ (2007) Marine natural products: synthetic aspects. Nat Prod Rep 24:87–108; (b) Morris JC, Phillips AJ (2008) Marine natural products: synthetic aspects. Nat Prod Rep 25:95–117; (c) Morris JC, Phillips AJ (2009) Marine natural products: synthetic aspects. Nat Prod Rep 26:245–265; (d) Morris JC, Phillips AJ (2010) Marine natural products: synthetic aspects. Nat Prod Rep 27:1186–1203; (e) Morris JC, Phillips AJ (2011) Marine natural products: synthetic aspects. Nat Prod Rep 28:269–289; (f) Nicholas GM, Phillips AJ (2006) Marine natural products: synthetic aspects. Nat Prod Rep 23:79–99Google Scholar
  3. 3.
    Scheuer PJ (1994) Tetrahedron perspective number 2: ciguatera and its off-shoots – chance encounters en route to a molecular structures. Tetrahedron 50:3–18CrossRefGoogle Scholar
  4. 4.
    Moore RE, Scheuer PJ (1971) Palytoxin: a new marine toxin from a coelenterate. Science 172:495–498PubMedCrossRefGoogle Scholar
  5. 5.
    Shimomura O, Goto T, Hirata Y (1957) Crystalline Cypridina luciferin. Bull Chem Soc Jpn 30:929–933CrossRefGoogle Scholar
  6. 6.
    (a) Kishi Y, Goto T, Hirata Y, Shimomura O, Johnson FH (1966) Cypridina bioluminescence I: structure of Cypridina luciferin. Tetrahedron Lett 3427–3436; (b) Kishi Y, Goto T, Eguchi S, Hirata Y, Watanabe E, Aoyama T (1966) Cypridina bioluminescence II structural studies of Cypridina luciferin by means of a high resolution mass spectrometer and an amino acid analyzer. Tetrahedron Lett 7:3437–3444; (c) Kishi Y, Goto T, Inoue S, Sugiura S, Kishimoto H (1966) Cypridina bioluminescence III total synthesis of Cypridina luciferin. Tetrahedron Lett 7:3445–3450Google Scholar
  7. 7.
    White EH, Karpetsky TP (1971) Unambiguous synthesis of Cypridina etioluciferamine. Application of titanium tetrachloride to the synthesis of pyrazine N-oxides. J Am Chem Soc 93:2333–2335CrossRefGoogle Scholar
  8. 8.
    (a) Goto T, Kishi Y, Takahashi S, Hirata Y (1965) Tetrodotoxin. Tetrahedron 21:2059–2088; (b) Tsuda K, Ikuma S, Kawamura M, Tachikawa R, Sakai K, Tamura C (1964) Tetrodotoxin. VII. On the structures of tetrodotoxin and its derivatives. Chem Pharm Bull 12:1357–1374; (c) Woodward RB (1964) The structure of tetrodotoxin. Pure Appl Chem 9:49–74Google Scholar
  9. 9.
    American Chemical Society (1964) Tetrodotoxin has hemilactal structure: Japanese and U.S. scientists find independently that the potent neurotoxin in pufferfish is identical to tarichatoxin. Chem Eng News 42(23):42–43CrossRefGoogle Scholar
  10. 10.
    Kishi Y, Fukuyama T, Aratani M, Nakatsubo F, Goto T, Inoue S, Tanino H, Sugiura S, Kakoi H (1972) Synthetic studies on tetodotoxin and related compounds. IV. Stereospecific total synthesis of DL-tetrodotoxin. J Am Chem Soc 94:9219–9221PubMedCrossRefGoogle Scholar
  11. 11.
    Ohyabu N, Nishikawa T, Isobe M (2003) First asymmetric total synthesis of tetrodotoxin. J Am Chem Soc 125:8798–8805PubMedCrossRefGoogle Scholar
  12. 12.
    Hinman A, Du Bois J (2003) A stereoselective synthesis of (–)–tetrodotoxin. J Am Chem Soc 125:11510–11511PubMedCrossRefGoogle Scholar
  13. 13.
    Espino CG, Du Bois JJ (2001) A Rh-catalyzed C-H insertion reaction for the oxidative conversion of carbamates to oxazolidinones. Angew Chem Int Ed 40:598–600CrossRefGoogle Scholar
  14. 14.
    (a) MarinLit database, Department of Chemistry, University of Canterbury, Christchurch, New Zealand. http://www.chem.canterbury.ac.nz/marinlit/marinlit.shtml. (b) Blunt JW, Personal communication
  15. 15.
    Diyabalange T, Amsler CD, McClintock JB, Baker BJ (2006) Palmerolide A, a cytotoxic macrolide from the antarctic tunicate Synoicum adareanum. J Am Chem Soc 128:5630–5631CrossRefGoogle Scholar
  16. 16.
    Jiang X, Liu B, Lebreton S, De Brabander JK (2007) Total synthesis and structure revision of the marine metabolite palmerolide A. J Am Chem Soc 129:6386–6387PubMedCrossRefGoogle Scholar
  17. 17.
    Nicolaou KC, Guduru R, Sun Y-P, Banerji B, Chen DY-K (2007) Total synthesis of the originally proposed and revised structures of palmerolide A. Angew Chem Int Ed 46:5896–5900CrossRefGoogle Scholar
  18. 18.
    Lebar M, Baker BJ (2007) On the stereochemistry of palmerolide A. Tetrahedron Lett 48:8009–8010CrossRefGoogle Scholar
  19. 19.
    Nicolaou KC, Bulger PG, Sarlah D (2005) Metathesis reactions in total synthesis. Angew Chem Int Ed 44:3281–3284Google Scholar
  20. 20.
    Shen R, Porco JA Jr (2000) Synthesis of enamides related to the salicylate antitumor macrolides using copper-mediated vinylic substitution. Org Lett 2:1333–1336PubMedCrossRefGoogle Scholar
  21. 21.
    (a) Chandrasexhar S, Vijeender K, Chandrsekhar G, Reddy CC (2007) Towards the synthesis of palmerolide A: asymmetric synthesis of C1–C14 fragment. Tetrahedron: Asymm 18:2473–2478; (b) Penner M, Rauniyar V, Kaspar LT, Hall DG (2009) Catalytic asymmetric synthesis of palmerolide a via organoboron methodology. J Am Chem Soc 131:14216–14217; (c) Cantagrel G, Meker C, Cossy J (2007) Synthetic studies towards the marine natural product palmerolide A: synthesis of the C3-C15 and C16-C23 fragments. Synlett 19:2983–2986Google Scholar
  22. 22.
    Lindquist N, Fenical W, Van Duyne GD, Clardy J (1991) Isolation and structure determination of diazonamides A and B, unusual cytotoxin metabolites from the marine ascidian Diazona chinesis. J Am Chem Soc 113:2303–2304CrossRefGoogle Scholar
  23. 23.
    Lachia M, Moody C (2008) The synthetic challenge of diazonamide A, a macrocyclic indole bis-oxazole marine natural product. Nat Prod Rep 25:227–253PubMedCrossRefGoogle Scholar
  24. 24.
    (a) Li J, Jeong S, Esser L, Harran PG (2001) Total synthesis of nominal diazonamides – part 1: convergent preparation of the structure proposed for (-)-diazonamide A. Angew Chem Int Ed 40:4765–4769; (b) Li J, Burgett AWG, Esser L, Amezcua C, Harran PG (2001) Total synthesis of nominal diazonamides – part 2: on the true structure and original of natural isolates. Angew Chem Int Ed 40:4770–4773Google Scholar
  25. 25.
    Nicolaou KC, Bella M, Chen DY-K, Huang X, Ling T, Snyder SA (2002) Total synthesis of diazonamide A. Angew Chem Int Ed 41:3495–3499CrossRefGoogle Scholar
  26. 26.
    Burgett AWG, Li Q, Wei Q, Harran PG (2003) A concise and flexible total synthesis of (-)-diazonamide A. Angew Chem Int Ed 42:4961–4966CrossRefGoogle Scholar
  27. 27.
    Knowles RR, Carpenter J, Blakey SB, Kayano A, Mangion IK, Sinz CJ, MacMillan DWC (2011) Total synthesis of diazonamide A. Chem Sci 2:308–311CrossRefGoogle Scholar
  28. 28.
    (a) Mai CM, Sammons MF, Sammakia T (2010) A concise formal synthesis of diazonamide a by the stereoselective construction of the C10 quaternary center. Angew Chem Int Ed 49:2397–2400; (b) Cheung CM, Goldberg FW, Magnus P, Russell CJ, Turnbull R, Lynch V (2007) An expediant formal total synthesis of (-)-diazonamide A via a powerful, stereoselective O-Aryl to C-Aryl migration to form the C10 quaternary center. J Am Chem Soc 129:12320–12327Google Scholar
  29. 29.
    Satake M, Ofuji K, Naoki H, James KJ, Furey A, McMahon T, Silke J, Yasumoto T (1998) Azaspiracid, a new marine toxin having unique spiro ring assemblies, isolated from Irish mussels, Mytilus edulis. J Am Chem Soc 120:9967–9968CrossRefGoogle Scholar
  30. 30.
    Nicolaou KC, Li Y, Uesaka N, Koftis TV, Vyskocil S, Ling T, Govindasamy M, Qian W, Bernal F, Chen DYK (2003) Total synthesis of the proposed azaspiracid-1 structure, part 1: construction of the enantiomerically pure C1-C20, C21-C27 and C28-C40 fragments. Angew Chem Int Ed 42:3643–3648CrossRefGoogle Scholar
  31. 31.
    Nicolaou KC, Chen DYK, Li Y, Qian W, Ling T, Vyskocil S, Koftis TV, Govindasamy M, Uesaka N (2003) Total synthesis of the proposed azaspiracid-1 structure, part 2: coupling of the C1-C20, C21-C27 and C28-C40 fragments and completion of the synthesis. Angew Chem Int Ed 42:3649–3653CrossRefGoogle Scholar
  32. 32.
    (a) Nicolaou KC, Vyskocil S, Koftis TV, Yamada YMA, Ling T, Chen DYK, Tang W, Petrovic G, Frederick MO, Li Y, Satake M (2004) Structural revision and total synthesis of azaspiracid-1, part 1: intelligence gathering and tentative proposal. Angew Chem Int Ed 43:4312–4318; (b) Nicolaou KC, Koftis TV, Vyskocil S, Petrovic G, Ling T, Yamada YMA, Tang W, Frederick MO (2004) Structural revision and total synthesis of azaspiracid-1, part 2: definition of the ABCD domain and total synthesis. Angew Chem Int Ed 43:4318–4324Google Scholar
  33. 33.
    Hopmann C, Faulkner DJ (1997) Lissoketal, a spiroketal from the Palauan ascidian Lissoclinum voeltzkowi. Tetrahedron Lett 38:169–170CrossRefGoogle Scholar
  34. 34.
    Nakamura H, Ono M, Shida Y, Akita H (2002) New total syntheses of (+)-macrosphelides C, F and G. Tetrahedron: Asymm 13:705–713CrossRefGoogle Scholar
  35. 35.
    Kinnel RB, Henning PG, Scheuer PJ (1993) Palau’amine: a cytotoxin and immunosuppressive hexacyclic bisguanidine antibiotic from the sponge Stylotella agminata. J Am Chem Soc 115:3376–3377CrossRefGoogle Scholar
  36. 36.
    (a) Kobayashi H, Kitamura K, Nagai K, Nakao Y, Fusetani N, van Soest RWM, Matsunaga S (2007) Carteramine A, an inhibitor of neutrophil chemotaxis, from the marine sponge Stylissa carteri. Tetrahedron Lett 48:2127–2129; (b) Buchanan MS, Carroll AR, Addepalli R, Avery VM, Hooper JNA, Quinn RJ (2007) Natural products, stylissadines A and B, specific antagonists of the P2X7 receptor, an important inflammatory target. J Org Chem 72:2309–2317; (c) Grube A, Köck M (2007) Structural assignment of tetrbromostyloguanidine: does the relative configuration of the Palau-amines need revision? Angew Chem Int Ed 46:2320–2324Google Scholar
  37. 37.
    Seiple IB, Su S, Young IS, Lewis CA, Yamagachi J, Baran PS (2009) Total synthesis of palau-amine. Angew Chem Int Ed 122:1113–1116Google Scholar
  38. 38.
    Nicolaou KC, Snyder SA (2005) Chasing molecules that were never there: misassigned natural products and the role of chemical synthesis in modern structure elucidation. Angew Chem Int Ed 44:1012–1044CrossRefGoogle Scholar
  39. 39.
    Koert U (1995) Oxidative polycyclization versus the “polyepoxide cascade”: new pathways in polyether (bio)synthesis? Angew Chem Int Ed Engl 34:298–300CrossRefGoogle Scholar
  40. 40.
    Nicolaou KC, Duggan ME, Hwang C-K, Somers PK (1985) Activation of 6-endo over 5-exo epoxide openings. Ring-selective formation of tetrahydropyran systems and stereocontrolled synthesis of the ABC ring framework of brevetoxin B. J Chem Soc Chem Commun 1359–1362Google Scholar
  41. 41.
    Vilotijevic I, Jamison TF (2007) Epoxide-opening cascades promoted by water. Science 317:1189–1192PubMedCrossRefGoogle Scholar
  42. 42.
    Prasad AVK, Shimizu Y (1989) The structure of hemibrevetoxin-B: a new type of toxin in the Gulf of Mexico red tide organism. J Am Chem Soc 111:6476–6477CrossRefGoogle Scholar
  43. 43.
    Zakarian A, Batch A, Holton RA (2003) A convergent total synthesis of hemibrevetoxin B. J Am Chem Soc 125:7822–7824PubMedCrossRefGoogle Scholar
  44. 44.
    Ichige T, Okano Y, Kanoh N, Nakata M (2007) Total synthesis of methyl sarcophytoate. J Am Chem Soc 129:9862–9863PubMedCrossRefGoogle Scholar
  45. 45.
    (a) Layton ME, Morales CA, Shair, MD (2001) Biomimetic Synthesis of (-)-longithorone. J Am Chem Soc 124:773–775; (b) Morales CA, Layton ME, Shair MD (2004) Synthesis of (-)-longithorone A: using organic synthesis to probe a proposed biosynthesis. Proc Natl Assoc Soc 101:12036–12041Google Scholar
  46. 46.
    Kim J, Ashenhurst J, Movassaghi M (2009) Total synthesis of (+)-11,11’-dideoxyverticillin A. Science 324:238–241PubMedCrossRefGoogle Scholar
  47. 47.
    Hodous B, Fu GC (2002) Enantioselective synthesis of quaternary stereocenters via intermolecular C acylation of silyl ketene acetals: dual activation of the electrophile and the nucleophile. J Am Chem Soc 125:4050–4051Google Scholar
  48. 48.
    (a) Evans DA, Kværnø L, Mulder JA, Raymer B, Dunn TB, Beauchemin A, Olhava EJ, Juhl M, Kagechika K (2007) Total synthesis of (+)-azaspiracid-1. Part 1: synthesis of the fully elaborated ABCD aldehyde. Angew Chem Int Ed 46:4693–4697; (b) Evans DA, Dunn TB, Kværnø L, Beauchemin A, Raymer B, Olhava EJ, Mulder JA, Juhl M, Kagechika K, Favor DA (2007) Total synthesis of (+)-azazpiracid-1. Part 2: synthesis of the EFGHI sulfone and the completion of the synthesis. Angew Chem Int Ed Engl 46:4698–4703Google Scholar
  49. 49.
    Crabtree RH, Davis MW (1986) Directing effects in homogeneous hydrogenation with [Ir(cod)(PCy3)(py)]PF6. J Org Chem 51:2655–2661CrossRefGoogle Scholar
  50. 50.
    (a) Kobayashi J, Ishibashi M, Nakamura H, Ohizumi Y, Yamasu T, Sasaki T, Hirata Y (1986) Amphidinolide A, a novel antineoplastic macrolide from the marine dinoflagellate amphidinium sp. Tetrahedron Lett 27:5755–5758; (b) Kobayashi J, Ishibashi M, Hirota H (1991) 1 H- and 13 C-nmr Spectral investigation on amphidinolide, an antileukemic marine macrolide. J Nat Prod 54:1435–1439Google Scholar
  51. 51.
    Trost BM, Chisholm JD, Wrobleski ST, Jung M (2002) Ruthenium-catalyzed alkene-alkyne coupling: synthesis of the proposed structure of amphidinolide A. J Am Chem Soc 124:12420–12421PubMedCrossRefGoogle Scholar
  52. 52.
    Lam HW, Pattenden G (2002) Total synthesis of the presumed amphidinolide. Angew Chem Int Ed 41:508–511CrossRefGoogle Scholar
  53. 53.
    Maleczka RE Jr, Terrell LR, Geng F, Ward JS III (2002) Total synthesis of proposed amphidinolide A via a highly selective ring-closing metathesis. Org Lett 4:2841–2844PubMedCrossRefGoogle Scholar
  54. 54.
    Trost BM, Harrington PE (2004) Structure elucidation of (+)-amphidinolide A by total synthesis anf NMR chemical shift analysis. J Am Chem Soc 126:5028–5029PubMedCrossRefGoogle Scholar
  55. 55.
    (a) Trost BM, Indolese A (1993) Ruthenium-catalyzed addition of alkenes to acetylenes. J Am Chem Soc 115:4361–4362; (b) Trost BM, Indolese AF, Mueller TJJ, Treptow B (1995) A Ru catalyzed addition of alkenes to alkynes. J Am Chem Soc 117:615–623; (c) Trost BM, Toste FD (1999) A new Ru catalyst for alkene-alkyne coupling. Tetrahedron Lett 40:7739–7743; (d) Trost BM, Toste FD (2000) Ruthenium-catalyzed cycloisomerizations of 1,6- and 1,7-enynes. J Am Chem Soc 122:714–715; (e) Schnaderbeck M (1998) The Ruthenium Catalyzed Alder-Ene Reaction. Ph.D. Thesis, Stanford University, 1998; (f) Sundermann MI (2000) The Ruthenium Catalyzed Alder-Ene Reaction: Macrocyclization and Studies of Alternate Catalysts. PhD thesis, Stanford University, 2000Google Scholar
  56. 56.
    Kita Y, Maeda Y, Omori K, Okuno T, Tamura Y (1993) A novel efficient synthesis of 1-ethoxyvinyl esters and their use in acylation of amines and alcoholsL synthesis of water-soluble oxaunomycin derivatives. Synlett 4:273–275CrossRefGoogle Scholar
  57. 57.
    Pettit GR, Herald CL, Doubek DL, Herald DL, Arnold E, Clardy J (1982) Isolation and structure of bryostatin 1. J Am Chem Soc 104:6846–6848CrossRefGoogle Scholar
  58. 58.
    (a) Evans DA, Carter PH et al (1998) Asymmetric synthesis of bryostatin 2. Angew Chem Int Ed 37:2354–2359; (b) Kageyama MT, Tamura T, Nantz MH, Roberts JC, Somfai P, Whritenour DC, Masamune S (1990) Synthesis of bryostatin 7. J Am Chem Soc 112(20):7407–7408; (c) Keck GE, Poudel YB, Cummins TJ, Rudra A, Covel JA (2011) Total Synthesis of Bryostatin 1. J Am Chem Soc 133:744–747; (d) Ohmori KY, Ogawa Y, Obitsu T, Ishikawa Y, Nishiyama S, Yamamura S (2000)Total synthesis of bryostatin 3. Angew Chem Int Ed 39:2290–2294; (e) Trost BM, Dong G (2008) Total synthesis of bryostatin 16 using atom-economical and chemoselective approaches. Nature (London) 456:485–488Google Scholar
  59. 59.
    Wender PA, Cribbs CM, Koehler KF, Sharkey NA, Herald CL, Kamano Y, Pettit GR, Blumberg PM (1998) Modeling of the bryostatins to the phorbol ester pharmacophore on protein kinase C. Proc Natl Assoc Soc 85:7197–7201CrossRefGoogle Scholar
  60. 60.
    (a) Wender PA, De Brabander J, Harran PG, Jimenez J-M, Koehler MFT, Lippa B, Park C-M, Shiozaki M (1998) Synthesis of the first members of a new class of biologically active bryostatin analogs. J Am Chem Soc 120:4534–4535; (b) Wender PA, De Brabander J, Harran PG, Jimenez J-M, Koehler MFT, Lipp B, Park C-M, Siedenbiedel C, Pettit GR (1998) The design, computer modeling, solution structure, and biological evaluation of synthetic analogs of bryostatin 1. Proc Natl Assoc Soc 95:6624–6629; (c) Wender PA, Hilinski MK, Mayweg AVW (2005) late-stage intermolecular CH activation for lead diversification: a highly chemoselective oxyfunctionalization of the C-9 position of potent bryostatin analogues. Org Lett 7:79–82; (d) Wender PA, DeChristopher BA, Schrier AJ (2008) Efficient synthetic access to a new family of highly potent bryostatin analogues via a prins-driven macrocyclization strategy. J Am Chem Soc 130:6658–6659Google Scholar
  61. 61.
    Hamasaki A, Zimpleman JM, Hwang I, Boger DL (2005) Total synthesis of ningalin D. J Am Chem Soc 127:10767–10770PubMedCrossRefGoogle Scholar
  62. 62.
    Enquist JA Jr, Stoltz BM (2009) Synthetic efforts toward cyathane diterpenoid natural products. Nat Prod Rep 26:661–680PubMedCrossRefGoogle Scholar
  63. 63.
    Pfeiffer MWB, Phillips AJ (2005) Total synthesis of (+)-cyanthiwigin U. J Am Chem Soc 127:5334–5335PubMedCrossRefGoogle Scholar
  64. 64.
    Enquist JA Jr, Stoltz BM (2008) The total synthesis of (-)-cyanthiwigin F by means of double catalytic enantioselective alkylation. Nature 453:1228–1231PubMedCrossRefGoogle Scholar
  65. 65.
    (a) Behenna DC, Stoltz BM (2004) The enantioselective Tsuji allylation. J Am Chem Soc 126:15044–15045; (b) Mohr JT, Behenna DC, Harned AM, Stoltz BM (2005) Deracemization of quaternary stereocenters by Pd-catalyzed enantioconvergent decarboxylative allylation of racemic β-ketoesters. Angew Chem Int Edn Engl 44:6924–6927Google Scholar
  66. 66.
    Hirama M, Oishi T, Uehara H, Inoue M, Maruyama M, Oguri H, Satake M (2001) Total synthesis of ciguatoxin CTX 3 C. Science 294:1904–1907PubMedCrossRefGoogle Scholar
  67. 67.
    Suh EM, Kishi Y (1994) Synthesis of palytoxin from palytoxin carboxylic acid. J Am Chem Soc 116:11205–11206CrossRefGoogle Scholar
  68. 68.
    Aicher TD, Buszek KR, Fang FG, Forsyth CJ, Jung SH, Kishi Y, Metelich MC, Scola PM, Spero DM, Yoon SK (1992) Total synthesis of halichondrin B and norhalichondrin B. J Am Chem Soc 114:3162–3164CrossRefGoogle Scholar
  69. 69.
    Jackson KL, Henderson JA, Motoyoshi H, Phillips AJ (2009) A total synthesis of norhalichondrin B. Angew Chem Int Ed 48:2346–2350CrossRefGoogle Scholar
  70. 70.
    Forsyth CJ, Ahmed F, Cink RD, Lee CS (1998) Total synthesis of phorboxazole A. J Am Chem Soc 120:5597–5598CrossRefGoogle Scholar
  71. 71.
    Smith AB III, Verhoest PR, Minbiole KP, Schelhass M (2001) Total synthesis of (+)- phorboxazole A. J Am Chem Soc 123:4834–4836PubMedCrossRefGoogle Scholar
  72. 72.
    Williams DR, Kiryanov AA, Emde U, Clark MO, Berliner MA, Reeves JT (2003) Total synthesis of phorboxazole A. Angew Chem Int Ed 42:1258–1262CrossRefGoogle Scholar
  73. 73.
    Gonzalez MA, Pattenden G (2003) A convergent total synthesis of phorboxazole A. Angew Chem Int Ed 42:1255–1258CrossRefGoogle Scholar
  74. 74.
    White JD, Lee TH, Kuntiyong P (2006) Total synthesis of phorboxazole A. 2. Assembly of subunits and completion of the synthesis. Org Lett 8:6043–6046PubMedCrossRefGoogle Scholar
  75. 75.
    Nicolaou KC, Hwang C-K, Duggan ME, Nugiel DA, Abe Y, Bal Reddy K, DeFrees SA, Reddy DR, Awartani RA (1995) Total synthesis of brevetoxin B. 1. First generation strategies and new approaches to oxepane systems. J Am Chem Soc 117:10227–10238CrossRefGoogle Scholar
  76. 76.
    Nicolaou KC, Yang Z, Shi G-Q, Gunzner JL, Agrios KA, Gartner P (1998) Total synthesis of brevetoxin A. Nature 392:264–269PubMedCrossRefGoogle Scholar
  77. 77.
    (a) Tsukano C, Sasaki M (2003) Total synthesis of gymnocin-A. J Am Chem Soc 125:14294–14295; (b) Sasaki M, Tsukano C, Tachibana K (2003) Synthetis entry to the ABCD ring fragment of gymnocin-A, a cytotoxic marine polyether. Tetrahedron Lett 44:4351–4354Google Scholar
  78. 78.
    Satake M, Shoji M, Oshima Y, Naoki H, Fujita T, Yasumoto T (2002) Gymnocin-A, a cytotoxic polyether from the notorious red tide dinoflagellate, Gymnodinium mikimotoi. Tetrahedron Lett 43:5829–5832CrossRefGoogle Scholar
  79. 79.
    Gunasekera SP, Gunasekera M, Longley RE (1990) Discodermolide: a new bioactive polyhydroxylated lactone from the marine sponge Discodermia dissoluta. J Org Chem 55:4912–4915CrossRefGoogle Scholar
  80. 80.
    (a) Florence GF, Gardner NM, Paterson I (2008) Development of practical syntheses of the marine anticancer agents discodermolide and dictyostatin. Nat Prod Rep 25:342–375; (b) Paterson I, Florence GF (2009) The chemical synthesis of discodermolide. Top Curr Chem 286:73–119Google Scholar
  81. 81.
    (a) Nerenberg JB, Hung DT, Somers PK, Schreiber SL (1993) Total synthesis of the immunosuppressive agent (-)-discodermolide. J Am Chem Soc 115:12621–12622; (b) Hung DT, Nerenberg JB, Schreiber SL (1996) Synthesis of discodermolides useful for investigating microtubule binding and stabilization. J Am Chem Soc 118:11054–11080Google Scholar
  82. 82.
    (a) Smith III AB, Qiu YP, Jones DR, Kobayashi K (1995) Total synthesis of (-)-discodermolide. J Am Chem Soc 117:12011–12012; (b) Smith III AB, Kaufman MD, Beauchamp TJ, LaMarche MJ, Arimoto H (1999) Gram-scale synthesis of (+)-discodermolide. Org Lett 1:1823–1826; (c) Smith III AB, Kaufman MD, Beauchamp TJ, LaMarche MJ, Arimoto H (2000) Gram-scale synthesis of (+)-discodermolide. Org Lett 2:1983; (d) Smith III AB, Beauchamp TJ, LaMarche MJ, Kaufman MD, Qiu YP, Arimoto H, Jones DR, Kobayashi K (2000) Evolution of the gram-scale synthesis of discodermolide. J Am Chem Soc 122:8654–8664; (e) Smith III AB, Freeze BS, Brouard I, Hirose T (2003) A practical improvement, enhancing the large-scale synthesis of (+)-discodermolide: a third generation approach. Org Lett 5:4405–4408; (f) Smith III AB, Freeze BS, Xian M, Hirose T (2005) Total synthesis of discodermolide: a highly convergent fourth-generation approach. Org Lett 7:1825–1828Google Scholar
  83. 83.
    (a) Paterson I, Florence GJ, Gerlach K, Scott JP (2000) Total synthesis of the antimicrotubule agent (+)-discodermolide using boron-mediated aldol reaction of chiral ketones. Angew Chem Int Ed 39:377–380; (b) Paterson I, Florence GJ (2000) Synthesis of (+)-discodermolide and analogues by control of asymmetric induction in aldol reaction of γ-chiral (Z)-enals. Tetrahedron Lett 41:6935–6939; (c) Paterson I, Florence GJ, Gerlach K, Scott JP, Sereinig N (2001) A practical synthesis of (+)-discodermolide and analogues: fragment union by complex aldol reactions. J Am Chem Soc 123:9535–9544; (d) Paterson I, Delgado O, Florence GJ, Lyothier I, Scott JP, Sereinig N (2003) 1,6-Asymmetric induction in boron-mediated aldol reactions: Application to a practical total synthesis of (+)-discodermolide. Org Lett 5:35–38; (e) Paterson I, Delgado O, Florence GJ, Lyothier I, O’Brien M, Scott JP, Sereinig N (2005) A second generation total synthesis of (+)-discodermolide: the development of a practical route using solely substrate-based stereocontrol. J Org Chem 70:150–160; (f) Paterson I, Lyothier I (2004) Total synthesis of (+)-discodermolide: an improved endgame exploiting a Still-Genarri-type olefination with a C1-C8 β-ketophosphonate fragment. Org Lett 6:4933–4936; (g) Paterson I, Lyothier I (2005) Development of a third-generation total synthesis of (+)-discodermolide: an expedient Still-Gennari-type fragment coupling utilizing an advanced β-ketophosphonate. J Org Chem 70:5494–5507Google Scholar
  84. 84.
    (a) Harried SS, Yang G, Strawn MA, Myles DC (1997) Total synthesis of (-)-discodermolide: an application of a chelation-controlled alkylation reaction. J Org Chem 62:6098–6099; (b) Harried SS, Lee CP, Yang G, Lee TIH, Myles DC (2003) Total synthesis of the potent microtubule-stabilizing agent (+)-discodermolide. J Org Chem 68:6646–6660Google Scholar
  85. 85.
    (a) Marshall JA, Johns BA (1998) Total synthesis of (+)-discodermolide. J Org Chem 63:7885–7892; (b) Marshall JA, Lu ZH, Johns BA (1998) Synthesis of discodermolide subunits by SN2’ addition of nonracemic allenylstannanes to aldehydes. J Org Chem 63:817–823Google Scholar
  86. 86.
    Arefolov A, Panek JS (2005) Crotylsilane reagents in the synthesis of complex polyketide natural products: total synthesis of (+)-discodermolide. J Am Chem Soc 127:5596–5603PubMedCrossRefGoogle Scholar
  87. 87.
    de Lemos E, Porée FH, Commercon A, Betzer JF, Pancrazi A, Ardisson J (2007) α-Oxygenated crotyltitanium and dyotropic rearrangement in the total synthesis of discodermolide. Angew Chem Int Ed 46:1917–1921CrossRefGoogle Scholar
  88. 88.
    (a) Mickel SJ, Sedelmeier GH, Niederer D, Daeffler R, Osmani A, Schreiner K, Seeger-Weibel M, Berod B, Schaer K, Gamboni R, Chen S, Chen W, Jagoe CT, Kinder FR, Loo M, Prasad K, Repic O, Shieh W-C, Wang R-M, Waykole L, Xu DD, Xue S (2004) Large-scale synthesis of the anti-cancer marine natural product (+)-discodermolide. Part 1: synthetic strategy and preparation of a common precursor. Org Process Res Dev 8:92–100; (b) Mickel SJ, Sedelmeier GH, Niederer D, Schuerch F, Grimler D, Koch G, Daeffler R, Osmani A, Hirni A, Schaer K, Gamboni R, Bach A, Chaudhary A, Chen A, Chen W, Chen B, Hu B, Jagoe CT, Kim H-Y, Kinder FR, Liu Y, Lu Y, McKenna J, Prasad M, Ramsey TM, Repic O, Rogers L, Shieh W-C, Wang R-M, Waykole L (2004) Large-scale synthesis of the anti-cancer marine natural product (+)-discodermolide. Part 2: synthesis of fragment C1-6 and C9-14. Org Process Res Dev 8:101–106; (c) Mickel SJ, Sedelmeier GH, Niederer D, Schuerch F, Koch G, Kuesters E, Daeffler R, Osmani A, Seeger-Weibel M, Schmid E, Hirni A, Schaer K, Gamboni R, Bach A, Chen S, Chen W, Geng P, Jagoe CT, Kinder FR, Lee GT, McKenna J, Ramsey TM, Repic O, Rogers L, Shieh W-C, Wang R-M, Waykole L (2004) Large-scale synthesis of the anti-cancer marine natural product (+)-discodermolide. Part 3: synthesis of the C15-21 fragment. Org Process Res Dev 8:107–112; (d) Mickel SJ, Sedelmeier GH, Niederer D, Schuerch F, Seger M, Schreiner K, Daeffler R, Osmani A, Bixel D, Loiseleur O, Cercus J, Stettler H, Schaer K, Gamboni R (2004) Large-scale synthesis of the anti-cancer marine natural product (+)-discodermolide. Part 4: preparation of the C7-24 fragment. Org Process Res Dev 8:113–121; (e) Mickel SJ, Niederer D, Daeffler R, Osmani A, Kuesters E, Schmid E, Schaer K, Gamboni R, Chen W, Loeser E, Kinder FR, Konigsberger K, Prasad K, Ramsey TM, Repic O, Wang R-M, Florence G, Lyothier I, Paterson I (2004) Large-scale synthesis of the anti-cancer marine natural product (+)-discodermolide. Part 5: linkage of fragments C1-6 and C7-24 and finale. Org Process Res Dev 8:122–130; (f) Mickel SJ (2004) Toward a commercial synthesis of (+)-discodermolide. Curr Opin Drug Dev 7:869–881; (g) Mickel SJ, Fischer R, Marterer W (2004) Broad spectrum chemistry as practised by novartis process research. Chimia 58:640–648Google Scholar
  89. 89.
    Mita A, Lockhart C, Chen TL, Bocinski K, Curtright J, Cooper W, Hammond L, Rothenberg M, Rowinsky E, Sharma S (2004) A phase I pharmacokinetic (PK) trial of XAA296A (Discodermolide) administered every 3 wks to adult patients with advanced solid malignancies. In: ASCO annual meeting proceedings (Post-Meeting Edition) J Clin Oncol 22(14S) (July 15 Suppl). Abstract 2025Google Scholar
  90. 90.
    (a) Evans DA, Coleman PJ, Dias LC (1997) Enantioselective synthesis of altohyrtin C (spongistatin 2): synthesis of the AB- and CD- spiroketal subunits. Angew Chem Int Ed 36:2738–2741; (b) Evans D A, Trotter BW, Côté B, Coleman PJ (1997) Enantioselective synthesis of Alrohyrtin C (spongistatin 2): synthesis of the EF- bis(pyran) subunit. Angew Chem Int Ed 36:2741–2744; (c) Evans DA, Trotter BW, Côté B, Coleman PJ, Dias LC, Tyler AN (1997) Enantioselective synthesis of altohyrin C (spongistatin 2): fragment assembly and revision of the spongistatin 2 stereochemical assignment. Angew Chem Int Ed 36:2744–2747; (d) Evans DA, Trotter BW, Coleman PJ, Côté B, Dias LC, Rajapakse HA, Tyler AN (1999) Enantioselective total synthesis of altohyrtin C (spongistatin 2). Tetrahedron 55:8671–8726Google Scholar
  91. 91.
    (a) Guo J, Duffy KJ, Stevens KL, Dalko PI, Roth RM, Hayward MM, Kishi Y (1998) Total synthesis of altohyrtin A (spongistatin 1): part 1. Angew Chem Int Ed 37:187–190; (b) Hayward MM, Roth RM, Duffy KJ, Dalko PI, Stevens KL, Guo J, Kishi Y (1998) Total synthesis of altohyrtin A (spongistatin 1): part 2. Angew Chem Int Ed 37:192–196Google Scholar
  92. 92.
    (a) Smith III AB, Lin Q, Doughty VA, Zhuang L, McBriar MD, Kerns JK, Brook CS, Murase N, Nakayama K (2001) The spongistatins: architecturally complex natural products-Part one: a formal synthesis of (+)-spongistatin 1 by construction of an advanced ABCD fragment. Angew Chem Int Ed 40:196–199; (b) Smith III AB, Zhu W, Shirakami S, Sfouggatakis C, Doughty VA, Bennett CS, Sakamoto Y (2003) Total synthesis of (+)-sponginstatin 1. An effective second-generation construction of an advanced EF Wittig salt, fragment union, and final elaboration. Org Lett 5:761–764; (c) Smith III AB, Tomioka T, Risatti CA, Sperry JB, Sfouggatakis C (2008) Gram-scale synthesis of (+)-spongistatin 1: Development of an improved, scalable synthesis of the F-ring subunit, fragment union and final elaboration. Org Lett 10:4359–4362Google Scholar
  93. 93.
    (a) Paterson I, Chen DY-K, Coster MJ, Acena JL, Bach J, Gibson KR, Keown LE, Oballa RM, Trieselmann T, Wallace DJ, Hodgson AP, Norcross RD (2001) Stereocontrolled total synthesis of (+)-altohyrtin A/spongistatin 1. Angew Chem Int Ed 40:4055–4060; (b) Paterson I, Chen DYK, Coster MJ, Acena JL, Bach J, Wallace DJ (2005) The stereocontrolled total synthesis of altohyrtin A/spongistatin 1: fragment couplings, completion of the synthesis, analogue generation and biological evaluation. Org Biomol Chem 3:2431–2440Google Scholar
  94. 94.
    Crimmins MT, Katz JD, Washburn DG, Allwein SP, McAtee LF (2002) Asymmetric total synthesis of spongistatins 1 and 2. J Am Chem Soc 124:5661–5663PubMedCrossRefGoogle Scholar
  95. 95.
    Heathcock CH, McLaughlin M, Medina J, Hubbs JL, Wallace GA, Scott R, Claffey MM, Hayes CJ, Ott GR (2003) Multigram synthesis of the C29-C51 subunit and completion of the total synthesis of altohyrtin C (spongistatin 2). J Am Chem Soc 125:12844–12849PubMedCrossRefGoogle Scholar
  96. 96.
    Ball M, Gaunt MJ, Hook DF, Jessiman AS, Kawahara S, Orsini P, Scolaro A, Talbot AC, Tanner HR, Yamanoi S, Ley SV (2005) Total synthesis of spongistatin 1: a synthetic strategy exploiting its latent pseudo-symmetry. Angew Chem Int Ed 44:5433–5438CrossRefGoogle Scholar
  97. 97.
    (a) Newhouse T, Lewis CA, Baran PS (2009) Enantioselective total syntheses of kapakahines B and F. J Am Chem Soc 131:6360–6361; (b) Newhouse T, Lewis CA, Eastman KJ, Baran PS (2010) Scalable total syntheses of N-linked tryptamine dimers by direct indole-aniline coupling: Psychotrimine and kapakahines B and F. J Am Chem Soc 132:7119–7137Google Scholar
  98. 98.
    (a) Espejo VR, Rainier JD (2010) Total synthesis of kapakahine E and F. Org Lett 12:2154–2157; (b) Rainier JD, Espejo VR (2011) Total syntheses of kapakahines E and F. Israel J Chem 51:473–482Google Scholar
  99. 99.
    Fürstner A, Nevado C, Tremblay M, Chevrier C, Teplý F, Aïssa C, Waser M (2006) Total synthesis of ilejimalide B. Angew Chem Int Ed 45:5837–5842CrossRefGoogle Scholar
  100. 100.
    (a) Rinehart KL, Holt TG, Fregeau NL, Stroh JG, Keifer PA, Sun F, Li LH, Martin D (1990) Ecteinascidins 729, 743, 745, 759A, 759B, and 770: potent antitumor agents from the Caribbean tunicate Ecteinascidia turbinate. J Org Chem 55:4512–4515; (b) Rinehart KL, Holt TG, Fregeau NL, Stroh JG, Keifer PA, Sun F, Li LH, Martin DG (1991) Ecteinascidins 729, 743, 745, 759A, 759B, and 770: potent antitumor agents from the Caribbean tunicate Ecteinascidia turbinate [erratum to document cited in CA113(9):75189d]. J Org Chem 56:1676Google Scholar
  101. 101.
    Cuevas C, Francesch A (2009) Development of Yondelis (trabectedin, ET-743). A semisynthetic process solves the supply problem. Nat Prod Rep 26:322–337PubMedCrossRefGoogle Scholar
  102. 102.
    Corey EJ, Gin DY, Kania RS (1996) Enantioselective total synthesis of ecteinascidin 743. J Am Chem Soc 118:9202–9203CrossRefGoogle Scholar
  103. 103.
    Martinez EJ, Corey EJ (2000) A new, more efficient, and effective process for the synthesis of a key pentacyclic intermediate for production of ecteinascidin and phthalascidin antitumor agents. Org Lett 2:993–996PubMedCrossRefGoogle Scholar
  104. 104.
    Cuevas C, Pérez M, Martin MJ, Chicharro JL, Fernández-Rivas C, Flores M, Francesch A, Gallego P, Zarzuelo M, de la Calle F, Gracia J, Polanco C, Rodriguez I, Manzanares I (2000) Synthesis of ecteinascidin ET-743 and phthalascidin Pt-650 from cyanosafracin B. Org Lett 2:2545–2548PubMedCrossRefGoogle Scholar
  105. 105.
    Endo A, Yanagisawa A, Abe M, Tohma S, Kan T, Fukuyama T (2002) Total synthesis of ecteinascidin 743. J Am Chem Soc 124:6552–6554PubMedCrossRefGoogle Scholar
  106. 106.
    Chen J, Chen X, Bois-Choussy M, Zhu J (2006) Total synthesis of ecteinascidin 743. J Am Chem Soc 128:87–89PubMedCrossRefGoogle Scholar
  107. 107.
    Zheng S, Chan C, Furuuchi T, Wright BJD, Zhou B, Guo J, Danishefsky SJ (2006) Stereospecific formal total synthesis of Ecteinascidin 743. Angew Chem Int Ed 45:1754–1759CrossRefGoogle Scholar
  108. 108.
    Fishlock D, Williams RM (2008) Synthetic studies on ET-743. Assembly of the pentacyclic core and a formal synthesis. J Org Chem 73:9594–9600PubMedCrossRefGoogle Scholar
  109. 109.
    Kishi Y, Fang FG, Forsyth CJ, Scola PM, Yoon SK (1995) Halichondrins and related compounds. US Patent 5,338,865Google Scholar
  110. 110.
    Jackson KL, Henderson JA, Phillips AJ (2009) The Halichondrins and E7389. Chem Rev 109:3044–3079PubMedCrossRefGoogle Scholar
  111. 111.
    (a) Horton PA, Koehn FE, Longley RE, McConnell OJ (1994) Lasonolide A, a new cytotoxin macrolide from the marine sponge forcepia sp. J Am Chem Soc 116:6015–6016. (b) Lee E, Song HY, Kang JW, Kim D-K, Jung C-K, Joo JM (2002) Lasonolide A: structural revision and synthesis of the unnatural (−)-enantiomer. J Am Chem Soc 124:384–385. (c) Lee E, Song, HY, Joo JM, Kang JW, Kim D-K, Jung C-K, Hong CY, Jeong SW, Jeon K (2002) Synthesis of (+)-lasonolide A: (−)-lasonolide A is the biologically active enantiomer. Bioorg Med Chem Lett 12:3519–3520. (d) Song HY, Joo JM, Kang JW, Kim D-S, Jung C-K, Kwak HS, Park JH, Lee E, Hong CY, Jeong SW, Jeon K, Park JH (2003) Lasonolide A: structural revision and total synthesis. J Org Chem 68:8080–8087Google Scholar
  112. 112.
    (a) Sharma P, Alam MJ (1988) Sclerophytins A and B. Isolation and structures of novel cytotoxic diterpenes from the marine coral Sclerophytum capitalis. J Chem Soc Perkin Trans 1: 2537– 2540. (b) Alam M, Sharma P, Zektzer AS, Martin GE, Ji X, van der Helm D (1989) Sclerophytin C-F: isolation and structures of four new diterpenes from the soft coral Sclerophytum capitalis. J Org Chem 54: 1896– 1900. (c) Paquette LA, Moradei OM, Bernardelli P, Lange T (2000) Synthesis of the alleged structure of Sclerophytin A. The setting of two oxygen bridges within the fused cyclodecanol B ring is not Nature’s Way. Org Lett 2: 1875– 1878. (d) Friedrich D, Doskotch RW, Paquette LA (2000) Revised constitution of sclerophytins A and B. Org Lett 2:1879–1882. (e) Bernardelli P, Moradei OM, Friedrich D, Yang J, Gallou F, Dyck BP, Doskotch RW, Lange T, Paquette LA (2001) Total asymmetric synthesis of the putative structure of the cytotoxic diterpenoid (−)-sclerophytin A and of the authentic natural sclerophytins A and B. J Am Chem Soc 123: 9021– 9032. (f) Overman LE, Pennington LD (2000) Total synthesis of the supposed structure of (−)-sclerophytin A and an improved route to (−)-7-deacetoxyalcyonin acetate. Org Lett 2: 2683– 2686. (g) MacMillan DWC, Overman LE, Pennington LD (2001) A general strategy for the synthesis of cladiellin diterpenes: enantioselective total syntheses of 6-acetoxycladiell-7(16),11-dien-3-ol (deacetoxyalcyonin acetate), cladiell-11-ene-3,6,7-triol, sclerophytin A, and the initially purported structure of sclerophytin A. J Am Chem Soc 123:9033–9044. (h) Gallou F, MacMillan DWC, Overman LE, Paquette LA, Pennington LD, Yang J (2001) Enantioselective syntheses of authentic sclerophytin A, sclerophytin B, and cladiell-11-ene-3,6,7-triol. Org Lett 3: 135– 137Google Scholar
  113. 113.
    (a) Carroll AR, Coll JC, Bourne DJ, MacLeod JK, Zabriskie TM, Ireland CM, Bowden BF (1996) Patellins 1–6 and trunkamide A: Novel cyclic hexa-, hepta-, and octa- peptides from colonial ascidians, lissoclinum sp. Aust J Chem 49:659–667. (b) Wipf P, Uto Y (2000) Total synthesis and revision of stereochemistry of the marine metabolite trunkamide A. J Org Chem 65:1037–1049Google Scholar
  114. 114.
    (a) Degnan BM, Hawkins CJ, Lavin MF, McCaffrey EJ, Parry DL, Watters DJ (1989) Novel cytotoxin compounds from the ascidian lissoclinum bistratum. J Med Chem 32:1354–1359. (b) Statsuk AV, Liu D, Kozmin SA (2004) Synthesis of bistramide A. J Am Chem Soc 126:9546–9547Google Scholar
  115. 115.
    (a) Patil AD, Freyer AJ, Taylor PB, Carté B, Zuber G, Johnson RK, Faulkner DJ (1997) Batzelladines F-I, novel alkaloids from the sponge batzella sp.: Inducers of p56lck-CD4 dissociation. J Org Chem 62:1814. (b) Cohen F, Overman LE (2001) Enantioselective total synthesis of batzelladine F: structural revision and stereochemical definition. J Am Chem Soc 123:10782–10783Google Scholar
  116. 116.
    (a) Oettit GR, Cichacz ZA, Gao F, Boyd MR (1994) Isolation and structure of the cancer cell growth inhibitor dictyostatin 1. J Chem Soc Chem Commun 1111–1112. (b) Paterson I, Britton R, Delgado O, Meyer A, Poullennec KG (2004) Total synthesis and configurational assignment of (−)-dictyostatin, a microtubule-stabilizing macrolide of marine sponge origin. Angew Chem Int Ed 43:4629–4633. (c) Shin Y, Fournier J-H, Fukui Y, Brückner AM, Curran DP (2004) Total synthesis of (−)-dictyostatin: confirmation of relative and absolute configurations. Angew Chem 116:4734–4737Google Scholar
  117. 117.
    (a) Pettit GR, Herald CL, Kamano Y (1983) Antineoplastic agents. 93. Structure of the bugular neritina (marine bryozoa) antineoplastic component bryostatin 3. J Org Chem 48:5354–5356. (b) Ohmori K, Ogawa Y, Obitsu T, Ishikawa Y, Nishiyama S, Yamamura S (2000) Total synthesis of bryostatin 3. Angew Chem Int Ed 39:2290–2294Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Victoria L. Wilde
    • 1
  • Jonathan C. Morris
    • 2
  • Andrew J. Phillips
    • 1
  1. 1.Department of ChemistryYale UniversityNew HavenUSA
  2. 2.School of ChemistryUniversity of New South WalesSydneyAustralia

Personalised recommendations